mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@89510 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			544 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			544 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass performs loop invariant code motion on machine instructions. We
 | 
						|
// attempt to remove as much code from the body of a loop as possible.
 | 
						|
//
 | 
						|
// This pass does not attempt to throttle itself to limit register pressure.
 | 
						|
// The register allocation phases are expected to perform rematerialization
 | 
						|
// to recover when register pressure is high.
 | 
						|
//
 | 
						|
// This pass is not intended to be a replacement or a complete alternative
 | 
						|
// for the LLVM-IR-level LICM pass. It is only designed to hoist simple
 | 
						|
// constructs that are not exposed before lowering and instruction selection.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "machine-licm"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/CodeGen/MachineConstantPool.h"
 | 
						|
#include "llvm/CodeGen/MachineDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineLoopInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineMemOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/PseudoSourceValue.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumHoisted, "Number of machine instructions hoisted out of loops");
 | 
						|
STATISTIC(NumCSEed,   "Number of hoisted machine instructions CSEed");
 | 
						|
 | 
						|
namespace {
 | 
						|
  class MachineLICM : public MachineFunctionPass {
 | 
						|
    MachineConstantPool *MCP;
 | 
						|
    const TargetMachine   *TM;
 | 
						|
    const TargetInstrInfo *TII;
 | 
						|
    const TargetRegisterInfo *TRI;
 | 
						|
    BitVector AllocatableSet;
 | 
						|
 | 
						|
    // Various analyses that we use...
 | 
						|
    AliasAnalysis        *AA;      // Alias analysis info.
 | 
						|
    MachineLoopInfo      *LI;      // Current MachineLoopInfo
 | 
						|
    MachineDominatorTree *DT;      // Machine dominator tree for the cur loop
 | 
						|
    MachineRegisterInfo  *RegInfo; // Machine register information
 | 
						|
 | 
						|
    // State that is updated as we process loops
 | 
						|
    bool         Changed;          // True if a loop is changed.
 | 
						|
    bool         FirstInLoop;      // True if it's the first LICM in the loop.
 | 
						|
    MachineLoop *CurLoop;          // The current loop we are working on.
 | 
						|
    MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
 | 
						|
 | 
						|
    // For each opcode, keep a list of potentail CSE instructions.
 | 
						|
    DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap;
 | 
						|
  public:
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    MachineLICM() : MachineFunctionPass(&ID) {}
 | 
						|
 | 
						|
    virtual bool runOnMachineFunction(MachineFunction &MF);
 | 
						|
 | 
						|
    const char *getPassName() const { return "Machine Instruction LICM"; }
 | 
						|
 | 
						|
    // FIXME: Loop preheaders?
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.setPreservesCFG();
 | 
						|
      AU.addRequired<MachineLoopInfo>();
 | 
						|
      AU.addRequired<MachineDominatorTree>();
 | 
						|
      AU.addRequired<AliasAnalysis>();
 | 
						|
      AU.addPreserved<MachineLoopInfo>();
 | 
						|
      AU.addPreserved<MachineDominatorTree>();
 | 
						|
      MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
 | 
						|
    virtual void releaseMemory() {
 | 
						|
      CSEMap.clear();
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    /// IsLoopInvariantInst - Returns true if the instruction is loop
 | 
						|
    /// invariant. I.e., all virtual register operands are defined outside of
 | 
						|
    /// the loop, physical registers aren't accessed (explicitly or implicitly),
 | 
						|
    /// and the instruction is hoistable.
 | 
						|
    /// 
 | 
						|
    bool IsLoopInvariantInst(MachineInstr &I);
 | 
						|
 | 
						|
    /// IsProfitableToHoist - Return true if it is potentially profitable to
 | 
						|
    /// hoist the given loop invariant.
 | 
						|
    bool IsProfitableToHoist(MachineInstr &MI);
 | 
						|
 | 
						|
    /// HoistRegion - Walk the specified region of the CFG (defined by all
 | 
						|
    /// blocks dominated by the specified block, and that are in the current
 | 
						|
    /// loop) in depth first order w.r.t the DominatorTree. This allows us to
 | 
						|
    /// visit definitions before uses, allowing us to hoist a loop body in one
 | 
						|
    /// pass without iteration.
 | 
						|
    ///
 | 
						|
    void HoistRegion(MachineDomTreeNode *N);
 | 
						|
 | 
						|
    /// isLoadFromConstantMemory - Return true if the given instruction is a
 | 
						|
    /// load from constant memory.
 | 
						|
    bool isLoadFromConstantMemory(MachineInstr *MI);
 | 
						|
 | 
						|
    /// ExtractHoistableLoad - Unfold a load from the given machineinstr if
 | 
						|
    /// the load itself could be hoisted. Return the unfolded and hoistable
 | 
						|
    /// load, or null if the load couldn't be unfolded or if it wouldn't
 | 
						|
    /// be hoistable.
 | 
						|
    MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
 | 
						|
 | 
						|
    /// LookForDuplicate - Find an instruction amount PrevMIs that is a
 | 
						|
    /// duplicate of MI. Return this instruction if it's found.
 | 
						|
    const MachineInstr *LookForDuplicate(const MachineInstr *MI,
 | 
						|
                                     std::vector<const MachineInstr*> &PrevMIs);
 | 
						|
 | 
						|
    /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on
 | 
						|
    /// the preheader that compute the same value. If it's found, do a RAU on
 | 
						|
    /// with the definition of the existing instruction rather than hoisting
 | 
						|
    /// the instruction to the preheader.
 | 
						|
    bool EliminateCSE(MachineInstr *MI,
 | 
						|
           DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI);
 | 
						|
 | 
						|
    /// Hoist - When an instruction is found to only use loop invariant operands
 | 
						|
    /// that is safe to hoist, this instruction is called to do the dirty work.
 | 
						|
    ///
 | 
						|
    void Hoist(MachineInstr *MI);
 | 
						|
 | 
						|
    /// InitCSEMap - Initialize the CSE map with instructions that are in the
 | 
						|
    /// current loop preheader that may become duplicates of instructions that
 | 
						|
    /// are hoisted out of the loop.
 | 
						|
    void InitCSEMap(MachineBasicBlock *BB);
 | 
						|
  };
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char MachineLICM::ID = 0;
 | 
						|
static RegisterPass<MachineLICM>
 | 
						|
X("machinelicm", "Machine Loop Invariant Code Motion");
 | 
						|
 | 
						|
FunctionPass *llvm::createMachineLICMPass() { return new MachineLICM(); }
 | 
						|
 | 
						|
/// LoopIsOuterMostWithPreheader - Test if the given loop is the outer-most
 | 
						|
/// loop that has a preheader.
 | 
						|
static bool LoopIsOuterMostWithPreheader(MachineLoop *CurLoop) {
 | 
						|
  for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
 | 
						|
    if (L->getLoopPreheader())
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Hoist expressions out of the specified loop. Note, alias info for inner loop
 | 
						|
/// is not preserved so it is not a good idea to run LICM multiple times on one
 | 
						|
/// loop.
 | 
						|
///
 | 
						|
bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  DEBUG(errs() << "******** Machine LICM ********\n");
 | 
						|
 | 
						|
  Changed = FirstInLoop = false;
 | 
						|
  MCP = MF.getConstantPool();
 | 
						|
  TM = &MF.getTarget();
 | 
						|
  TII = TM->getInstrInfo();
 | 
						|
  TRI = TM->getRegisterInfo();
 | 
						|
  RegInfo = &MF.getRegInfo();
 | 
						|
  AllocatableSet = TRI->getAllocatableSet(MF);
 | 
						|
 | 
						|
  // Get our Loop information...
 | 
						|
  LI = &getAnalysis<MachineLoopInfo>();
 | 
						|
  DT = &getAnalysis<MachineDominatorTree>();
 | 
						|
  AA = &getAnalysis<AliasAnalysis>();
 | 
						|
 | 
						|
  for (MachineLoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) {
 | 
						|
    CurLoop = *I;
 | 
						|
 | 
						|
    // Only visit outer-most preheader-sporting loops.
 | 
						|
    if (!LoopIsOuterMostWithPreheader(CurLoop))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Determine the block to which to hoist instructions. If we can't find a
 | 
						|
    // suitable loop preheader, we can't do any hoisting.
 | 
						|
    //
 | 
						|
    // FIXME: We are only hoisting if the basic block coming into this loop
 | 
						|
    // has only one successor. This isn't the case in general because we haven't
 | 
						|
    // broken critical edges or added preheaders.
 | 
						|
    CurPreheader = CurLoop->getLoopPreheader();
 | 
						|
    if (!CurPreheader)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // CSEMap is initialized for loop header when the first instruction is
 | 
						|
    // being hoisted.
 | 
						|
    FirstInLoop = true;
 | 
						|
    HoistRegion(DT->getNode(CurLoop->getHeader()));
 | 
						|
    CSEMap.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
 | 
						|
/// dominated by the specified block, and that are in the current loop) in depth
 | 
						|
/// first order w.r.t the DominatorTree. This allows us to visit definitions
 | 
						|
/// before uses, allowing us to hoist a loop body in one pass without iteration.
 | 
						|
///
 | 
						|
void MachineLICM::HoistRegion(MachineDomTreeNode *N) {
 | 
						|
  assert(N != 0 && "Null dominator tree node?");
 | 
						|
  MachineBasicBlock *BB = N->getBlock();
 | 
						|
 | 
						|
  // If this subregion is not in the top level loop at all, exit.
 | 
						|
  if (!CurLoop->contains(BB)) return;
 | 
						|
 | 
						|
  for (MachineBasicBlock::iterator
 | 
						|
         MII = BB->begin(), E = BB->end(); MII != E; ) {
 | 
						|
    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
 | 
						|
    Hoist(&*MII);
 | 
						|
    MII = NextMII;
 | 
						|
  }
 | 
						|
 | 
						|
  const std::vector<MachineDomTreeNode*> &Children = N->getChildren();
 | 
						|
 | 
						|
  for (unsigned I = 0, E = Children.size(); I != E; ++I)
 | 
						|
    HoistRegion(Children[I]);
 | 
						|
}
 | 
						|
 | 
						|
/// IsLoopInvariantInst - Returns true if the instruction is loop
 | 
						|
/// invariant. I.e., all virtual register operands are defined outside of the
 | 
						|
/// loop, physical registers aren't accessed explicitly, and there are no side
 | 
						|
/// effects that aren't captured by the operands or other flags.
 | 
						|
/// 
 | 
						|
bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
 | 
						|
  const TargetInstrDesc &TID = I.getDesc();
 | 
						|
  
 | 
						|
  // Ignore stuff that we obviously can't hoist.
 | 
						|
  if (TID.mayStore() || TID.isCall() || TID.isTerminator() ||
 | 
						|
      TID.hasUnmodeledSideEffects())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (TID.mayLoad()) {
 | 
						|
    // Okay, this instruction does a load. As a refinement, we allow the target
 | 
						|
    // to decide whether the loaded value is actually a constant. If so, we can
 | 
						|
    // actually use it as a load.
 | 
						|
    if (!I.isInvariantLoad(AA))
 | 
						|
      // FIXME: we should be able to hoist loads with no other side effects if
 | 
						|
      // there are no other instructions which can change memory in this loop.
 | 
						|
      // This is a trivial form of alias analysis.
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG({
 | 
						|
      errs() << "--- Checking if we can hoist " << I;
 | 
						|
      if (I.getDesc().getImplicitUses()) {
 | 
						|
        errs() << "  * Instruction has implicit uses:\n";
 | 
						|
 | 
						|
        const TargetRegisterInfo *TRI = TM->getRegisterInfo();
 | 
						|
        for (const unsigned *ImpUses = I.getDesc().getImplicitUses();
 | 
						|
             *ImpUses; ++ImpUses)
 | 
						|
          errs() << "      -> " << TRI->getName(*ImpUses) << "\n";
 | 
						|
      }
 | 
						|
 | 
						|
      if (I.getDesc().getImplicitDefs()) {
 | 
						|
        errs() << "  * Instruction has implicit defines:\n";
 | 
						|
 | 
						|
        const TargetRegisterInfo *TRI = TM->getRegisterInfo();
 | 
						|
        for (const unsigned *ImpDefs = I.getDesc().getImplicitDefs();
 | 
						|
             *ImpDefs; ++ImpDefs)
 | 
						|
          errs() << "      -> " << TRI->getName(*ImpDefs) << "\n";
 | 
						|
      }
 | 
						|
    });
 | 
						|
 | 
						|
  if (I.getDesc().getImplicitDefs() || I.getDesc().getImplicitUses()) {
 | 
						|
    DEBUG(errs() << "Cannot hoist with implicit defines or uses\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // The instruction is loop invariant if all of its operands are.
 | 
						|
  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
 | 
						|
    const MachineOperand &MO = I.getOperand(i);
 | 
						|
 | 
						|
    if (!MO.isReg())
 | 
						|
      continue;
 | 
						|
 | 
						|
    unsigned Reg = MO.getReg();
 | 
						|
    if (Reg == 0) continue;
 | 
						|
 | 
						|
    // Don't hoist an instruction that uses or defines a physical register.
 | 
						|
    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
 | 
						|
      if (MO.isUse()) {
 | 
						|
        // If the physreg has no defs anywhere, it's just an ambient register
 | 
						|
        // and we can freely move its uses. Alternatively, if it's allocatable,
 | 
						|
        // it could get allocated to something with a def during allocation.
 | 
						|
        if (!RegInfo->def_empty(Reg))
 | 
						|
          return false;
 | 
						|
        if (AllocatableSet.test(Reg))
 | 
						|
          return false;
 | 
						|
        // Check for a def among the register's aliases too.
 | 
						|
        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
 | 
						|
          unsigned AliasReg = *Alias;
 | 
						|
          if (!RegInfo->def_empty(AliasReg))
 | 
						|
            return false;
 | 
						|
          if (AllocatableSet.test(AliasReg))
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        // Otherwise it's safe to move.
 | 
						|
        continue;
 | 
						|
      } else if (!MO.isDead()) {
 | 
						|
        // A def that isn't dead. We can't move it.
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!MO.isUse())
 | 
						|
      continue;
 | 
						|
 | 
						|
    assert(RegInfo->getVRegDef(Reg) &&
 | 
						|
           "Machine instr not mapped for this vreg?!");
 | 
						|
 | 
						|
    // If the loop contains the definition of an operand, then the instruction
 | 
						|
    // isn't loop invariant.
 | 
						|
    if (CurLoop->contains(RegInfo->getVRegDef(Reg)->getParent()))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we got this far, the instruction is loop invariant!
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// HasPHIUses - Return true if the specified register has any PHI use.
 | 
						|
static bool HasPHIUses(unsigned Reg, MachineRegisterInfo *RegInfo) {
 | 
						|
  for (MachineRegisterInfo::use_iterator UI = RegInfo->use_begin(Reg),
 | 
						|
         UE = RegInfo->use_end(); UI != UE; ++UI) {
 | 
						|
    MachineInstr *UseMI = &*UI;
 | 
						|
    if (UseMI->getOpcode() == TargetInstrInfo::PHI)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isLoadFromConstantMemory - Return true if the given instruction is a
 | 
						|
/// load from constant memory. Machine LICM will hoist these even if they are
 | 
						|
/// not re-materializable.
 | 
						|
bool MachineLICM::isLoadFromConstantMemory(MachineInstr *MI) {
 | 
						|
  if (!MI->getDesc().mayLoad()) return false;
 | 
						|
  if (!MI->hasOneMemOperand()) return false;
 | 
						|
  MachineMemOperand *MMO = *MI->memoperands_begin();
 | 
						|
  if (MMO->isVolatile()) return false;
 | 
						|
  if (!MMO->getValue()) return false;
 | 
						|
  const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(MMO->getValue());
 | 
						|
  if (PSV) {
 | 
						|
    MachineFunction &MF = *MI->getParent()->getParent();
 | 
						|
    return PSV->isConstant(MF.getFrameInfo());
 | 
						|
  } else {
 | 
						|
    return AA->pointsToConstantMemory(MMO->getValue());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// IsProfitableToHoist - Return true if it is potentially profitable to hoist
 | 
						|
/// the given loop invariant.
 | 
						|
bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
 | 
						|
  if (MI.getOpcode() == TargetInstrInfo::IMPLICIT_DEF)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // FIXME: For now, only hoist re-materilizable instructions. LICM will
 | 
						|
  // increase register pressure. We want to make sure it doesn't increase
 | 
						|
  // spilling.
 | 
						|
  // Also hoist loads from constant memory, e.g. load from stubs, GOT. Hoisting
 | 
						|
  // these tend to help performance in low register pressure situation. The
 | 
						|
  // trade off is it may cause spill in high pressure situation. It will end up
 | 
						|
  // adding a store in the loop preheader. But the reload is no more expensive.
 | 
						|
  // The side benefit is these loads are frequently CSE'ed.
 | 
						|
  if (!TII->isTriviallyReMaterializable(&MI, AA)) {
 | 
						|
    if (!isLoadFromConstantMemory(&MI))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If result(s) of this instruction is used by PHIs, then don't hoist it.
 | 
						|
  // The presence of joins makes it difficult for current register allocator
 | 
						|
  // implementation to perform remat.
 | 
						|
  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | 
						|
    const MachineOperand &MO = MI.getOperand(i);
 | 
						|
    if (!MO.isReg() || !MO.isDef())
 | 
						|
      continue;
 | 
						|
    if (HasPHIUses(MO.getReg(), RegInfo))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
 | 
						|
  // If not, we may be able to unfold a load and hoist that.
 | 
						|
  // First test whether the instruction is loading from an amenable
 | 
						|
  // memory location.
 | 
						|
  if (!isLoadFromConstantMemory(MI))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // Next determine the register class for a temporary register.
 | 
						|
  unsigned LoadRegIndex;
 | 
						|
  unsigned NewOpc =
 | 
						|
    TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
 | 
						|
                                    /*UnfoldLoad=*/true,
 | 
						|
                                    /*UnfoldStore=*/false,
 | 
						|
                                    &LoadRegIndex);
 | 
						|
  if (NewOpc == 0) return 0;
 | 
						|
  const TargetInstrDesc &TID = TII->get(NewOpc);
 | 
						|
  if (TID.getNumDefs() != 1) return 0;
 | 
						|
  const TargetRegisterClass *RC = TID.OpInfo[LoadRegIndex].getRegClass(TRI);
 | 
						|
  // Ok, we're unfolding. Create a temporary register and do the unfold.
 | 
						|
  unsigned Reg = RegInfo->createVirtualRegister(RC);
 | 
						|
 | 
						|
  MachineFunction &MF = *MI->getParent()->getParent();
 | 
						|
  SmallVector<MachineInstr *, 2> NewMIs;
 | 
						|
  bool Success =
 | 
						|
    TII->unfoldMemoryOperand(MF, MI, Reg,
 | 
						|
                             /*UnfoldLoad=*/true, /*UnfoldStore=*/false,
 | 
						|
                             NewMIs);
 | 
						|
  (void)Success;
 | 
						|
  assert(Success &&
 | 
						|
         "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
 | 
						|
         "succeeded!");
 | 
						|
  assert(NewMIs.size() == 2 &&
 | 
						|
         "Unfolded a load into multiple instructions!");
 | 
						|
  MachineBasicBlock *MBB = MI->getParent();
 | 
						|
  MBB->insert(MI, NewMIs[0]);
 | 
						|
  MBB->insert(MI, NewMIs[1]);
 | 
						|
  // If unfolding produced a load that wasn't loop-invariant or profitable to
 | 
						|
  // hoist, discard the new instructions and bail.
 | 
						|
  if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
 | 
						|
    NewMIs[0]->eraseFromParent();
 | 
						|
    NewMIs[1]->eraseFromParent();
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  // Otherwise we successfully unfolded a load that we can hoist.
 | 
						|
  MI->eraseFromParent();
 | 
						|
  return NewMIs[0];
 | 
						|
}
 | 
						|
 | 
						|
void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
 | 
						|
  for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) {
 | 
						|
    const MachineInstr *MI = &*I;
 | 
						|
    // FIXME: For now, only hoist re-materilizable instructions. LICM will
 | 
						|
    // increase register pressure. We want to make sure it doesn't increase
 | 
						|
    // spilling.
 | 
						|
    if (TII->isTriviallyReMaterializable(MI, AA)) {
 | 
						|
      unsigned Opcode = MI->getOpcode();
 | 
						|
      DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
 | 
						|
        CI = CSEMap.find(Opcode);
 | 
						|
      if (CI != CSEMap.end())
 | 
						|
        CI->second.push_back(MI);
 | 
						|
      else {
 | 
						|
        std::vector<const MachineInstr*> CSEMIs;
 | 
						|
        CSEMIs.push_back(MI);
 | 
						|
        CSEMap.insert(std::make_pair(Opcode, CSEMIs));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
const MachineInstr*
 | 
						|
MachineLICM::LookForDuplicate(const MachineInstr *MI,
 | 
						|
                              std::vector<const MachineInstr*> &PrevMIs) {
 | 
						|
  for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) {
 | 
						|
    const MachineInstr *PrevMI = PrevMIs[i];
 | 
						|
    if (TII->isIdentical(MI, PrevMI, RegInfo))
 | 
						|
      return PrevMI;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
bool MachineLICM::EliminateCSE(MachineInstr *MI,
 | 
						|
          DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) {
 | 
						|
  if (CI == CSEMap.end())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
 | 
						|
    DEBUG(errs() << "CSEing " << *MI << " with " << *Dup);
 | 
						|
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
      const MachineOperand &MO = MI->getOperand(i);
 | 
						|
      if (MO.isReg() && MO.isDef())
 | 
						|
        RegInfo->replaceRegWith(MO.getReg(), Dup->getOperand(i).getReg());
 | 
						|
    }
 | 
						|
    MI->eraseFromParent();
 | 
						|
    ++NumCSEed;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Hoist - When an instruction is found to use only loop invariant operands
 | 
						|
/// that are safe to hoist, this instruction is called to do the dirty work.
 | 
						|
///
 | 
						|
void MachineLICM::Hoist(MachineInstr *MI) {
 | 
						|
  // First check whether we should hoist this instruction.
 | 
						|
  if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
 | 
						|
    // If not, try unfolding a hoistable load.
 | 
						|
    MI = ExtractHoistableLoad(MI);
 | 
						|
    if (!MI) return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now move the instructions to the predecessor, inserting it before any
 | 
						|
  // terminator instructions.
 | 
						|
  DEBUG({
 | 
						|
      errs() << "Hoisting " << *MI;
 | 
						|
      if (CurPreheader->getBasicBlock())
 | 
						|
        errs() << " to MachineBasicBlock "
 | 
						|
               << CurPreheader->getName();
 | 
						|
      if (MI->getParent()->getBasicBlock())
 | 
						|
        errs() << " from MachineBasicBlock "
 | 
						|
               << MI->getParent()->getName();
 | 
						|
      errs() << "\n";
 | 
						|
    });
 | 
						|
 | 
						|
  // If this is the first instruction being hoisted to the preheader,
 | 
						|
  // initialize the CSE map with potential common expressions.
 | 
						|
  InitCSEMap(CurPreheader);
 | 
						|
 | 
						|
  // Look for opportunity to CSE the hoisted instruction.
 | 
						|
  unsigned Opcode = MI->getOpcode();
 | 
						|
  DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
 | 
						|
    CI = CSEMap.find(Opcode);
 | 
						|
  if (!EliminateCSE(MI, CI)) {
 | 
						|
    // Otherwise, splice the instruction to the preheader.
 | 
						|
    CurPreheader->splice(CurPreheader->getFirstTerminator(),MI->getParent(),MI);
 | 
						|
 | 
						|
    // Add to the CSE map.
 | 
						|
    if (CI != CSEMap.end())
 | 
						|
      CI->second.push_back(MI);
 | 
						|
    else {
 | 
						|
      std::vector<const MachineInstr*> CSEMIs;
 | 
						|
      CSEMIs.push_back(MI);
 | 
						|
      CSEMap.insert(std::make_pair(Opcode, CSEMIs));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ++NumHoisted;
 | 
						|
  Changed = true;
 | 
						|
}
 |