mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-26 18:20:39 +00:00 
			
		
		
		
	Matthijs Kooijman git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@49648 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1231 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			1231 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 | |
|                       "http://www.w3.org/TR/html4/strict.dtd">
 | |
| 
 | |
| <html>
 | |
| <head>
 | |
|   <title>Kaleidoscope: Implementing a Parser and AST</title>
 | |
|   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 | |
|   <meta name="author" content="Chris Lattner">
 | |
|   <link rel="stylesheet" href="../llvm.css" type="text/css">
 | |
| </head>
 | |
| 
 | |
| <body>
 | |
| 
 | |
| <div class="doc_title">Kaleidoscope: Implementing a Parser and AST</div>
 | |
| 
 | |
| <ul>
 | |
| <li><a href="index.html">Up to Tutorial Index</a></li>
 | |
| <li>Chapter 2
 | |
|   <ol>
 | |
|     <li><a href="#intro">Chapter 2 Introduction</a></li>
 | |
|     <li><a href="#ast">The Abstract Syntax Tree (AST)</a></li>
 | |
|     <li><a href="#parserbasics">Parser Basics</a></li>
 | |
|     <li><a href="#parserprimexprs">Basic Expression Parsing</a></li>
 | |
|     <li><a href="#parserbinops">Binary Expression Parsing</a></li>
 | |
|     <li><a href="#parsertop">Parsing the Rest</a></li>
 | |
|     <li><a href="#driver">The Driver</a></li>
 | |
|     <li><a href="#conclusions">Conclusions</a></li>
 | |
|     <li><a href="#code">Full Code Listing</a></li>
 | |
|   </ol>
 | |
| </li>
 | |
| <li><a href="LangImpl3.html">Chapter 3</a>: Code generation to LLVM IR</li>
 | |
| </ul>
 | |
| 
 | |
| <div class="doc_author">
 | |
|   <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="intro">Chapter 2 Introduction</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>Welcome to Chapter 2 of the "<a href="index.html">Implementing a language
 | |
| with LLVM</a>" tutorial.  This chapter shows you how to use the lexer, built in 
 | |
| <a href="LangImpl1.html">Chapter 1</a>, to build a full <a
 | |
| href="http://en.wikipedia.org/wiki/Parsing">parser</a> for
 | |
| our Kaleidoscope language.  Once we have a parser, we'll define and build an <a 
 | |
| href="http://en.wikipedia.org/wiki/Abstract_syntax_tree">Abstract Syntax 
 | |
| Tree</a> (AST).</p>
 | |
| 
 | |
| <p>The parser we will build uses a combination of <a 
 | |
| href="http://en.wikipedia.org/wiki/Recursive_descent_parser">Recursive Descent
 | |
| Parsing</a> and <a href=
 | |
| "http://en.wikipedia.org/wiki/Operator-precedence_parser">Operator-Precedence 
 | |
| Parsing</a> to parse the Kaleidoscope language (the latter for 
 | |
| binary expressions and the former for everything else).  Before we get to
 | |
| parsing though, lets talk about the output of the parser: the Abstract Syntax
 | |
| Tree.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="ast">The Abstract Syntax Tree (AST)</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>The AST for a program captures its behavior in such a way that it is easy for
 | |
| later stages of the compiler (e.g. code generation) to interpret.  We basically
 | |
| want one object for each construct in the language, and the AST should closely
 | |
| model the language.  In Kaleidoscope, we have expressions, a prototype, and a
 | |
| function object.  We'll start with expressions first:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| /// ExprAST - Base class for all expression nodes.
 | |
| class ExprAST {
 | |
| public:
 | |
|   virtual ~ExprAST() {}
 | |
| };
 | |
| 
 | |
| /// NumberExprAST - Expression class for numeric literals like "1.0".
 | |
| class NumberExprAST : public ExprAST {
 | |
|   double Val;
 | |
| public:
 | |
|   explicit NumberExprAST(double val) : Val(val) {}
 | |
| };
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>The code above shows the definition of the base ExprAST class and one
 | |
| subclass which we use for numeric literals.  The important thing to note about
 | |
| this code is that the NumberExprAST class captures the numeric value of the
 | |
| literal as an instance variable. This allows later phases of the compiler to
 | |
| know what the stored numeric value is.</p>
 | |
| 
 | |
| <p>Right now we only create the AST,  so there are no useful accessor methods on
 | |
| them.  It would be very easy to add a virtual method to pretty print the code,
 | |
| for example.  Here are the other expression AST node definitions that we'll use
 | |
| in the basic form of the Kaleidoscope language:
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| /// VariableExprAST - Expression class for referencing a variable, like "a".
 | |
| class VariableExprAST : public ExprAST {
 | |
|   std::string Name;
 | |
| public:
 | |
|   explicit VariableExprAST(const std::string &name) : Name(name) {}
 | |
| };
 | |
| 
 | |
| /// BinaryExprAST - Expression class for a binary operator.
 | |
| class BinaryExprAST : public ExprAST {
 | |
|   char Op;
 | |
|   ExprAST *LHS, *RHS;
 | |
| public:
 | |
|   BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 
 | |
|     : Op(op), LHS(lhs), RHS(rhs) {}
 | |
| };
 | |
| 
 | |
| /// CallExprAST - Expression class for function calls.
 | |
| class CallExprAST : public ExprAST {
 | |
|   std::string Callee;
 | |
|   std::vector<ExprAST*> Args;
 | |
| public:
 | |
|   CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
 | |
|     : Callee(callee), Args(args) {}
 | |
| };
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>This is all (intentionally) rather straight-forward: variables capture the
 | |
| variable name, binary operators capture their opcode (e.g. '+'), and calls
 | |
| capture a function name as well as a list of any argument expressions.  One thing 
 | |
| that is nice about our AST is that it captures the language features without 
 | |
| talking about the syntax of the language.  Note that there is no discussion about 
 | |
| precedence of binary operators, lexical structure, etc.</p>
 | |
| 
 | |
| <p>For our basic language, these are all of the expression nodes we'll define.
 | |
| Because it doesn't have conditional control flow, it isn't Turing-complete;
 | |
| we'll fix that in a later installment.  The two things we need next are a way
 | |
| to talk about the interface to a function, and a way to talk about functions
 | |
| themselves:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| /// PrototypeAST - This class represents the "prototype" for a function,
 | |
| /// which captures its name, and its argument names (thus implicitly the number
 | |
| /// of arguments the function takes).
 | |
| class PrototypeAST {
 | |
|   std::string Name;
 | |
|   std::vector<std::string> Args;
 | |
| public:
 | |
|   PrototypeAST(const std::string &name, const std::vector<std::string> &args)
 | |
|     : Name(name), Args(args) {}
 | |
| };
 | |
| 
 | |
| /// FunctionAST - This class represents a function definition itself.
 | |
| class FunctionAST {
 | |
|   PrototypeAST *Proto;
 | |
|   ExprAST *Body;
 | |
| public:
 | |
|   FunctionAST(PrototypeAST *proto, ExprAST *body)
 | |
|     : Proto(proto), Body(body) {}
 | |
| };
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>In Kaleidoscope, functions are typed with just a count of their arguments.
 | |
| Since all values are double precision floating point, the type of each argument
 | |
| doesn't need to be stored anywhere.  In a more aggressive and realistic
 | |
| language, the "ExprAST" class would probably have a type field.</p>
 | |
| 
 | |
| <p>With this scaffolding, we can now talk about parsing expressions and function
 | |
| bodies in Kaleidoscope.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="parserbasics">Parser Basics</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>Now that we have an AST to build, we need to define the parser code to build
 | |
| it.  The idea here is that we want to parse something like "x+y" (which is
 | |
| returned as three tokens by the lexer) into an AST that could be generated with
 | |
| calls like this:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|   ExprAST *X = new VariableExprAST("x");
 | |
|   ExprAST *Y = new VariableExprAST("y");
 | |
|   ExprAST *Result = new BinaryExprAST('+', X, Y);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>In order to do this, we'll start by defining some basic helper routines:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
 | |
| /// token the parser is looking at.  getNextToken reads another token from the
 | |
| /// lexer and updates CurTok with its results.
 | |
| static int CurTok;
 | |
| static int getNextToken() {
 | |
|   return CurTok = gettok();
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| This implements a simple token buffer around the lexer.  This allows 
 | |
| us to look one token ahead at what the lexer is returning.  Every function in
 | |
| our parser will assume that CurTok is the current token that needs to be
 | |
| parsed.</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| 
 | |
| /// Error* - These are little helper functions for error handling.
 | |
| ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
 | |
| PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
 | |
| FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| The <tt>Error</tt> routines are simple helper routines that our parser will use
 | |
| to handle errors.  The error recovery in our parser will not be the best and
 | |
| is not particular user-friendly, but it will be enough for our tutorial.  These
 | |
| routines make it easier to handle errors in routines that have various return
 | |
| types: they always return null.</p>
 | |
| 
 | |
| <p>With these basic helper functions, we can implement the first
 | |
| piece of our grammar: numeric literals.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="parserprimexprs">Basic Expression
 | |
|  Parsing</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>We start with numeric literals, because they are the simplest to process.
 | |
| For each production in our grammar, we'll define a function which parses that
 | |
| production.  For numeric literals, we have:
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| /// numberexpr ::= number
 | |
| static ExprAST *ParseNumberExpr() {
 | |
|   ExprAST *Result = new NumberExprAST(NumVal);
 | |
|   getNextToken(); // consume the number
 | |
|   return Result;
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>This routine is very simple: it expects to be called when the current token
 | |
| is a <tt>tok_number</tt> token.  It takes the current number value, creates 
 | |
| a <tt>NumberExprAST</tt> node, advances the lexer to the next token, and finally
 | |
| returns.</p>
 | |
| 
 | |
| <p>There are some interesting aspects to this.  The most important one is that
 | |
| this routine eats all of the tokens that correspond to the production and
 | |
| returns the lexer buffer with the next token (which is not part of the grammar
 | |
| production) ready to go.  This is a fairly standard way to go for recursive
 | |
| descent parsers.  For a better example, the parenthesis operator is defined like
 | |
| this:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| /// parenexpr ::= '(' expression ')'
 | |
| static ExprAST *ParseParenExpr() {
 | |
|   getNextToken();  // eat (.
 | |
|   ExprAST *V = ParseExpression();
 | |
|   if (!V) return 0;
 | |
|   
 | |
|   if (CurTok != ')')
 | |
|     return Error("expected ')'");
 | |
|   getNextToken();  // eat ).
 | |
|   return V;
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>This function illustrates a number of interesting things about the 
 | |
| parser:</p>
 | |
| 
 | |
| <p>
 | |
| 1) It shows how we use the Error routines.  When called, this function expects
 | |
| that the current token is a '(' token, but after parsing the subexpression, it
 | |
| is possible that there is no ')' waiting.  For example, if the user types in
 | |
| "(4 x" instead of "(4)", the parser should emit an error.  Because errors can
 | |
| occur, the parser needs a way to indicate that they happened: in our parser, we
 | |
| return null on an error.</p>
 | |
| 
 | |
| <p>2) Another interesting aspect of this function is that it uses recursion by
 | |
| calling <tt>ParseExpression</tt> (we will soon see that <tt>ParseExpression</tt> can call
 | |
| <tt>ParseParenExpr</tt>).  This is powerful because it allows us to handle 
 | |
| recursive grammars, and keeps each production very simple.  Note that
 | |
| parentheses do not cause construction of AST nodes themselves.  While we could
 | |
| do it this way, the most important role of parentheses are to guide the parser
 | |
| and provide grouping.  Once the parser constructs the AST, parentheses are not
 | |
| needed.</p>
 | |
| 
 | |
| <p>The next simple production is for handling variable references and function
 | |
| calls:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| /// identifierexpr
 | |
| ///   ::= identifier
 | |
| ///   ::= identifier '(' expression* ')'
 | |
| static ExprAST *ParseIdentifierExpr() {
 | |
|   std::string IdName = IdentifierStr;
 | |
|   
 | |
|   getNextToken();  // eat identifier.
 | |
|   
 | |
|   if (CurTok != '(') // Simple variable ref.
 | |
|     return new VariableExprAST(IdName);
 | |
|   
 | |
|   // Call.
 | |
|   getNextToken();  // eat (
 | |
|   std::vector<ExprAST*> Args;
 | |
|   if (CurTok != ')') {
 | |
|     while (1) {
 | |
|       ExprAST *Arg = ParseExpression();
 | |
|       if (!Arg) return 0;
 | |
|       Args.push_back(Arg);
 | |
|     
 | |
|       if (CurTok == ')') break;
 | |
|     
 | |
|       if (CurTok != ',')
 | |
|         return Error("Expected ')' or ',' in argument list");
 | |
|       getNextToken();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Eat the ')'.
 | |
|   getNextToken();
 | |
|   
 | |
|   return new CallExprAST(IdName, Args);
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>This routine follows the same style as the other routines.  (It expects to be
 | |
| called if the current token is a <tt>tok_identifier</tt> token).  It also has
 | |
| recursion and error handling.  One interesting aspect of this is that it uses
 | |
| <em>look-ahead</em> to determine if the current identifier is a stand alone
 | |
| variable reference or if it is a function call expression.  It handles this by
 | |
| checking to see if the token after the identifier is a '(' token, constructing
 | |
| either a <tt>VariableExprAST</tt> or <tt>CallExprAST</tt> node as appropriate.
 | |
| </p>
 | |
| 
 | |
| <p>Now that we have all of our simple expression-parsing logic in place, we can
 | |
| define a helper function to wrap it together into one entry point.  We call this
 | |
| class of expressions "primary" expressions, for reasons that will become more
 | |
| clear <a href="LangImpl6.html#unary">later in the tutorial</a>.  In order to
 | |
| parse an arbitrary primary expression, we need to determine what sort of
 | |
| expression it is:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| /// primary
 | |
| ///   ::= identifierexpr
 | |
| ///   ::= numberexpr
 | |
| ///   ::= parenexpr
 | |
| static ExprAST *ParsePrimary() {
 | |
|   switch (CurTok) {
 | |
|   default: return Error("unknown token when expecting an expression");
 | |
|   case tok_identifier: return ParseIdentifierExpr();
 | |
|   case tok_number:     return ParseNumberExpr();
 | |
|   case '(':            return ParseParenExpr();
 | |
|   }
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Now that you see the definition of this function, it is more obvious why we
 | |
| can assume the state of CurTok in the various functions.  This uses look-ahead
 | |
| to determine which sort of expression is being inspected, and then parses it
 | |
| with a function call.</p>
 | |
| 
 | |
| <p>Now that basic expressions are handled, we need to handle binary expressions.
 | |
| They are a bit more complex.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="parserbinops">Binary Expression
 | |
|  Parsing</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>Binary expressions are significantly harder to parse because they are often
 | |
| ambiguous.  For example, when given the string "x+y*z", the parser can choose
 | |
| to parse it as either "(x+y)*z" or "x+(y*z)".  With common definitions from
 | |
| mathematics, we expect the later parse, because "*" (multiplication) has
 | |
| higher <em>precedence</em> than "+" (addition).</p>
 | |
| 
 | |
| <p>There are many ways to handle this, but an elegant and efficient way is to
 | |
| use <a href=
 | |
| "http://en.wikipedia.org/wiki/Operator-precedence_parser">Operator-Precedence 
 | |
| Parsing</a>.  This parsing technique uses the precedence of binary operators to
 | |
| guide recursion.  To start with, we need a table of precedences:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| /// BinopPrecedence - This holds the precedence for each binary operator that is
 | |
| /// defined.
 | |
| static std::map<char, int> BinopPrecedence;
 | |
| 
 | |
| /// GetTokPrecedence - Get the precedence of the pending binary operator token.
 | |
| static int GetTokPrecedence() {
 | |
|   if (!isascii(CurTok))
 | |
|     return -1;
 | |
|     
 | |
|   // Make sure it's a declared binop.
 | |
|   int TokPrec = BinopPrecedence[CurTok];
 | |
|   if (TokPrec <= 0) return -1;
 | |
|   return TokPrec;
 | |
| }
 | |
| 
 | |
| int main() {
 | |
|   // Install standard binary operators.
 | |
|   // 1 is lowest precedence.
 | |
|   BinopPrecedence['<'] = 10;
 | |
|   BinopPrecedence['+'] = 20;
 | |
|   BinopPrecedence['-'] = 20;
 | |
|   BinopPrecedence['*'] = 40;  // highest.
 | |
|   ...
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>For the basic form of Kaleidoscope, we will only support 4 binary operators
 | |
| (this can obviously be extended by you, our brave and intrepid reader).  The
 | |
| <tt>GetTokPrecedence</tt> function returns the precedence for the current token,
 | |
| or -1 if the token is not a binary operator.  Having a map makes it easy to add
 | |
| new operators and makes it clear that the algorithm doesn't depend on the
 | |
| specific operators involved, but it would be easy enough to eliminate the map
 | |
| and do the comparisons in the <tt>GetTokPrecedence</tt> function.  (Or just use
 | |
| a fixed-size array).</p>
 | |
| 
 | |
| <p>With the helper above defined, we can now start parsing binary expressions.
 | |
| The basic idea of operator precedence parsing is to break down an expression
 | |
| with potentially ambiguous binary operators into pieces.  Consider ,for example,
 | |
| the expression "a+b+(c+d)*e*f+g".  Operator precedence parsing considers this
 | |
| as a stream of primary expressions separated by binary operators.  As such,
 | |
| it will first parse the leading primary expression "a", then it will see the
 | |
| pairs [+, b] [+, (c+d)] [*, e] [*, f] and [+, g].  Note that because parentheses
 | |
| are primary expressions, the binary expression parser doesn't need to worry
 | |
| about nested subexpressions like (c+d) at all. 
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| To start, an expression is a primary expression potentially followed by a
 | |
| sequence of [binop,primaryexpr] pairs:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| /// expression
 | |
| ///   ::= primary binoprhs
 | |
| ///
 | |
| static ExprAST *ParseExpression() {
 | |
|   ExprAST *LHS = ParsePrimary();
 | |
|   if (!LHS) return 0;
 | |
|   
 | |
|   return ParseBinOpRHS(0, LHS);
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p><tt>ParseBinOpRHS</tt> is the function that parses the sequence of pairs for
 | |
| us.  It takes a precedence and a pointer to an expression for the part that has been
 | |
| parsed so far.   Note that "x" is a perfectly valid expression: As such, "binoprhs" is
 | |
| allowed to be empty, in which case it returns the expression that is passed into
 | |
| it. In our example above, the code passes the expression for "a" into
 | |
| <tt>ParseBinOpRHS</tt> and the current token is "+".</p>
 | |
| 
 | |
| <p>The precedence value passed into <tt>ParseBinOpRHS</tt> indicates the <em>
 | |
| minimal operator precedence</em> that the function is allowed to eat.  For
 | |
| example, if the current pair stream is [+, x] and <tt>ParseBinOpRHS</tt> is
 | |
| passed in a precedence of 40, it will not consume any tokens (because the
 | |
| precedence of '+' is only 20).  With this in mind, <tt>ParseBinOpRHS</tt> starts
 | |
| with:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| /// binoprhs
 | |
| ///   ::= ('+' primary)*
 | |
| static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
 | |
|   // If this is a binop, find its precedence.
 | |
|   while (1) {
 | |
|     int TokPrec = GetTokPrecedence();
 | |
|     
 | |
|     // If this is a binop that binds at least as tightly as the current binop,
 | |
|     // consume it, otherwise we are done.
 | |
|     if (TokPrec < ExprPrec)
 | |
|       return LHS;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>This code gets the precedence of the current token and checks to see if if is
 | |
| too low.  Because we defined invalid tokens to have a precedence of -1, this 
 | |
| check implicitly knows that the pair-stream ends when the token stream runs out
 | |
| of binary operators.  If this check succeeds, we know that the token is a binary
 | |
| operator and that it will be included in this expression:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|     // Okay, we know this is a binop.
 | |
|     int BinOp = CurTok;
 | |
|     getNextToken();  // eat binop
 | |
|     
 | |
|     // Parse the primary expression after the binary operator.
 | |
|     ExprAST *RHS = ParsePrimary();
 | |
|     if (!RHS) return 0;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>As such, this code eats (and remembers) the binary operator and then parses
 | |
| the primary expression that follows.  This builds up the whole pair, the first of
 | |
| which is [+, b] for the running example.</p>
 | |
| 
 | |
| <p>Now that we parsed the left-hand side of an expression and one pair of the 
 | |
| RHS sequence, we have to decide which way the expression associates.  In
 | |
| particular, we could have "(a+b) binop unparsed"  or "a + (b binop unparsed)".
 | |
| To determine this, we look ahead at "binop" to determine its precedence and 
 | |
| compare it to BinOp's precedence (which is '+' in this case):</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|     // If BinOp binds less tightly with RHS than the operator after RHS, let
 | |
|     // the pending operator take RHS as its LHS.
 | |
|     int NextPrec = GetTokPrecedence();
 | |
|     if (TokPrec < NextPrec) {
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>If the precedence of the binop to the right of "RHS" is lower or equal to the
 | |
| precedence of our current operator, then we know that the parentheses associate
 | |
| as "(a+b) binop ...".  In our example, the current operator is "+" and the next 
 | |
| operator is "+", we know that they have the same precedence.  In this case we'll
 | |
| create the AST node for "a+b", and then continue parsing:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|       ... if body omitted ...
 | |
|     }
 | |
|     
 | |
|     // Merge LHS/RHS.
 | |
|     LHS = new BinaryExprAST(BinOp, LHS, RHS);
 | |
|   }  // loop around to the top of the while loop.
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>In our example above, this will turn "a+b+" into "(a+b)" and execute the next
 | |
| iteration of the loop, with "+" as the current token.  The code above will eat, 
 | |
| remember, and parse "(c+d)" as the primary expression, which makes the
 | |
| current pair equal to [+, (c+d)].  It will then evaluate the 'if' conditional above with 
 | |
| "*" as the binop to the right of the primary.  In this case, the precedence of "*" is
 | |
| higher than the precedence of "+" so the if condition will be entered.</p>
 | |
| 
 | |
| <p>The critical question left here is "how can the if condition parse the right
 | |
| hand side in full"?  In particular, to build the AST correctly for our example,
 | |
| it needs to get all of "(c+d)*e*f" as the RHS expression variable.  The code to
 | |
| do this is surprisingly simple (code from the above two blocks duplicated for
 | |
| context):</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|     // If BinOp binds less tightly with RHS than the operator after RHS, let
 | |
|     // the pending operator take RHS as its LHS.
 | |
|     int NextPrec = GetTokPrecedence();
 | |
|     if (TokPrec < NextPrec) {
 | |
|       <b>RHS = ParseBinOpRHS(TokPrec+1, RHS);
 | |
|       if (RHS == 0) return 0;</b>
 | |
|     }
 | |
|     // Merge LHS/RHS.
 | |
|     LHS = new BinaryExprAST(BinOp, LHS, RHS);
 | |
|   }  // loop around to the top of the while loop.
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>At this point, we know that the binary operator to the RHS of our primary
 | |
| has higher precedence than the binop we are currently parsing.  As such, we know
 | |
| that any sequence of pairs whose operators are all higher precedence than "+"
 | |
| should be parsed together and returned as "RHS".  To do this, we recursively
 | |
| invoke the <tt>ParseBinOpRHS</tt> function specifying "TokPrec+1" as the minimum
 | |
| precedence required for it to continue.  In our example above, this will cause
 | |
| it to return the AST node for "(c+d)*e*f" as RHS, which is then set as the RHS
 | |
| of the '+' expression.</p>
 | |
| 
 | |
| <p>Finally, on the next iteration of the while loop, the "+g" piece is parsed
 | |
| and added to the AST.  With this little bit of code (14 non-trivial lines), we
 | |
| correctly handle fully general binary expression parsing in a very elegant way.
 | |
| This was a whirlwind tour of this code, and it is somewhat subtle.  I recommend
 | |
| running through it with a few tough examples to see how it works.
 | |
| </p>
 | |
| 
 | |
| <p>This wraps up handling of expressions.  At this point, we can point the
 | |
| parser at an arbitrary token stream and build an expression from it, stopping
 | |
| at the first token that is not part of the expression.  Next up we need to
 | |
| handle function definitions, etc.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="parsertop">Parsing the Rest</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>
 | |
| The next thing missing is handling of function prototypes.  In Kaleidoscope,
 | |
| these are used both for 'extern' function declarations as well as function body
 | |
| definitions.  The code to do this is straight-forward and not very interesting
 | |
| (once you've survived expressions):
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| /// prototype
 | |
| ///   ::= id '(' id* ')'
 | |
| static PrototypeAST *ParsePrototype() {
 | |
|   if (CurTok != tok_identifier)
 | |
|     return ErrorP("Expected function name in prototype");
 | |
| 
 | |
|   std::string FnName = IdentifierStr;
 | |
|   getNextToken();
 | |
|   
 | |
|   if (CurTok != '(')
 | |
|     return ErrorP("Expected '(' in prototype");
 | |
|   
 | |
|   // Read the list of argument names.
 | |
|   std::vector<std::string> ArgNames;
 | |
|   while (getNextToken() == tok_identifier)
 | |
|     ArgNames.push_back(IdentifierStr);
 | |
|   if (CurTok != ')')
 | |
|     return ErrorP("Expected ')' in prototype");
 | |
|   
 | |
|   // success.
 | |
|   getNextToken();  // eat ')'.
 | |
|   
 | |
|   return new PrototypeAST(FnName, ArgNames);
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Given this, a function definition is very simple, just a prototype plus
 | |
| an expression to implement the body:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| /// definition ::= 'def' prototype expression
 | |
| static FunctionAST *ParseDefinition() {
 | |
|   getNextToken();  // eat def.
 | |
|   PrototypeAST *Proto = ParsePrototype();
 | |
|   if (Proto == 0) return 0;
 | |
| 
 | |
|   if (ExprAST *E = ParseExpression())
 | |
|     return new FunctionAST(Proto, E);
 | |
|   return 0;
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>In addition, we support 'extern' to declare functions like 'sin' and 'cos' as
 | |
| well as to support forward declaration of user functions.  These 'extern's are just
 | |
| prototypes with no body:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| /// external ::= 'extern' prototype
 | |
| static PrototypeAST *ParseExtern() {
 | |
|   getNextToken();  // eat extern.
 | |
|   return ParsePrototype();
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Finally, we'll also let the user type in arbitrary top-level expressions and
 | |
| evaluate them on the fly.  We will handle this by defining anonymous nullary
 | |
| (zero argument) functions for them:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| /// toplevelexpr ::= expression
 | |
| static FunctionAST *ParseTopLevelExpr() {
 | |
|   if (ExprAST *E = ParseExpression()) {
 | |
|     // Make an anonymous proto.
 | |
|     PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
 | |
|     return new FunctionAST(Proto, E);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Now that we have all the pieces, let's build a little driver that will let us
 | |
| actually <em>execute</em> this code we've built!</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="driver">The Driver</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>The driver for this simply invokes all of the parsing pieces with a top-level
 | |
| dispatch loop.  There isn't much interesting here, so I'll just include the
 | |
| top-level loop.  See <a href="#code">below</a> for full code in the "Top-Level
 | |
| Parsing" section.</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| /// top ::= definition | external | expression | ';'
 | |
| static void MainLoop() {
 | |
|   while (1) {
 | |
|     fprintf(stderr, "ready> ");
 | |
|     switch (CurTok) {
 | |
|     case tok_eof:    return;
 | |
|     case ';':        getNextToken(); break;  // ignore top-level semicolons.
 | |
|     case tok_def:    HandleDefinition(); break;
 | |
|     case tok_extern: HandleExtern(); break;
 | |
|     default:         HandleTopLevelExpression(); break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>The most interesting part of this is that we ignore top-level semicolons.
 | |
| Why is this, you ask?  The basic reason is that if you type "4 + 5" at the
 | |
| command line, the parser doesn't know whether that is the end of what you will type
 | |
| or not.  For example, on the next line you could type "def foo..." in which case
 | |
| 4+5 is the end of a top-level expression.  Alternatively you could type "* 6",
 | |
| which would continue the expression.  Having top-level semicolons allows you to
 | |
| type "4+5;", and the parser will know you are done.</p> 
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="conclusions">Conclusions</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>With just under 400 lines of commented code (240 lines of non-comment, 
 | |
| non-blank code), we fully defined our minimal language, including a lexer,
 | |
| parser, and AST builder.  With this done, the executable will validate 
 | |
| Kaleidoscope code and tell us if it is grammatically invalid.  For
 | |
| example, here is a sample interaction:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| $ <b>./a.out</b>
 | |
| ready> <b>def foo(x y) x+foo(y, 4.0);</b>
 | |
| Parsed a function definition.
 | |
| ready> <b>def foo(x y) x+y y;</b>
 | |
| Parsed a function definition.
 | |
| Parsed a top-level expr
 | |
| ready> <b>def foo(x y) x+y );</b>
 | |
| Parsed a function definition.
 | |
| Error: unknown token when expecting an expression
 | |
| ready> <b>extern sin(a);</b>
 | |
| ready> Parsed an extern
 | |
| ready> <b>^D</b>
 | |
| $ 
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>There is a lot of room for extension here.  You can define new AST nodes,
 | |
| extend the language in many ways, etc.  In the <a href="LangImpl3.html">next
 | |
| installment</a>, we will describe how to generate LLVM Intermediate
 | |
| Representation (IR) from the AST.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="code">Full Code Listing</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>
 | |
| Here is the complete code listing for this and the previous chapter.  
 | |
| Note that it is fully self-contained: you don't need LLVM or any external
 | |
| libraries at all for this.  (Besides the C and C++ standard libraries, of
 | |
| course.)  To build this, just compile with:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|    # Compile
 | |
|    g++ -g -O3 toy.cpp 
 | |
|    # Run
 | |
|    ./a.out 
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Here is the code:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| #include <cstdio>
 | |
| #include <string>
 | |
| #include <map>
 | |
| #include <vector>
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Lexer
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
 | |
| // of these for known things.
 | |
| enum Token {
 | |
|   tok_eof = -1,
 | |
| 
 | |
|   // commands
 | |
|   tok_def = -2, tok_extern = -3,
 | |
| 
 | |
|   // primary
 | |
|   tok_identifier = -4, tok_number = -5,
 | |
| };
 | |
| 
 | |
| static std::string IdentifierStr;  // Filled in if tok_identifier
 | |
| static double NumVal;              // Filled in if tok_number
 | |
| 
 | |
| /// gettok - Return the next token from standard input.
 | |
| static int gettok() {
 | |
|   static int LastChar = ' ';
 | |
| 
 | |
|   // Skip any whitespace.
 | |
|   while (isspace(LastChar))
 | |
|     LastChar = getchar();
 | |
| 
 | |
|   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
 | |
|     IdentifierStr = LastChar;
 | |
|     while (isalnum((LastChar = getchar())))
 | |
|       IdentifierStr += LastChar;
 | |
| 
 | |
|     if (IdentifierStr == "def") return tok_def;
 | |
|     if (IdentifierStr == "extern") return tok_extern;
 | |
|     return tok_identifier;
 | |
|   }
 | |
| 
 | |
|   if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
 | |
|     std::string NumStr;
 | |
|     do {
 | |
|       NumStr += LastChar;
 | |
|       LastChar = getchar();
 | |
|     } while (isdigit(LastChar) || LastChar == '.');
 | |
| 
 | |
|     NumVal = strtod(NumStr.c_str(), 0);
 | |
|     return tok_number;
 | |
|   }
 | |
| 
 | |
|   if (LastChar == '#') {
 | |
|     // Comment until end of line.
 | |
|     do LastChar = getchar();
 | |
|     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
 | |
|     
 | |
|     if (LastChar != EOF)
 | |
|       return gettok();
 | |
|   }
 | |
|   
 | |
|   // Check for end of file.  Don't eat the EOF.
 | |
|   if (LastChar == EOF)
 | |
|     return tok_eof;
 | |
| 
 | |
|   // Otherwise, just return the character as its ascii value.
 | |
|   int ThisChar = LastChar;
 | |
|   LastChar = getchar();
 | |
|   return ThisChar;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Abstract Syntax Tree (aka Parse Tree)
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// ExprAST - Base class for all expression nodes.
 | |
| class ExprAST {
 | |
| public:
 | |
|   virtual ~ExprAST() {}
 | |
| };
 | |
| 
 | |
| /// NumberExprAST - Expression class for numeric literals like "1.0".
 | |
| class NumberExprAST : public ExprAST {
 | |
|   double Val;
 | |
| public:
 | |
|   explicit NumberExprAST(double val) : Val(val) {}
 | |
| };
 | |
| 
 | |
| /// VariableExprAST - Expression class for referencing a variable, like "a".
 | |
| class VariableExprAST : public ExprAST {
 | |
|   std::string Name;
 | |
| public:
 | |
|   explicit VariableExprAST(const std::string &name) : Name(name) {}
 | |
| };
 | |
| 
 | |
| /// BinaryExprAST - Expression class for a binary operator.
 | |
| class BinaryExprAST : public ExprAST {
 | |
|   char Op;
 | |
|   ExprAST *LHS, *RHS;
 | |
| public:
 | |
|   BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 
 | |
|     : Op(op), LHS(lhs), RHS(rhs) {}
 | |
| };
 | |
| 
 | |
| /// CallExprAST - Expression class for function calls.
 | |
| class CallExprAST : public ExprAST {
 | |
|   std::string Callee;
 | |
|   std::vector<ExprAST*> Args;
 | |
| public:
 | |
|   CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
 | |
|     : Callee(callee), Args(args) {}
 | |
| };
 | |
| 
 | |
| /// PrototypeAST - This class represents the "prototype" for a function,
 | |
| /// which captures its name, and its argument names (thus implicitly the number
 | |
| /// of arguments the function takes).
 | |
| class PrototypeAST {
 | |
|   std::string Name;
 | |
|   std::vector<std::string> Args;
 | |
| public:
 | |
|   PrototypeAST(const std::string &name, const std::vector<std::string> &args)
 | |
|     : Name(name), Args(args) {}
 | |
|   
 | |
| };
 | |
| 
 | |
| /// FunctionAST - This class represents a function definition itself.
 | |
| class FunctionAST {
 | |
|   PrototypeAST *Proto;
 | |
|   ExprAST *Body;
 | |
| public:
 | |
|   FunctionAST(PrototypeAST *proto, ExprAST *body)
 | |
|     : Proto(proto), Body(body) {}
 | |
|   
 | |
| };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Parser
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
 | |
| /// token the parser is looking at.  getNextToken reads another token from the
 | |
| /// lexer and updates CurTok with its results.
 | |
| static int CurTok;
 | |
| static int getNextToken() {
 | |
|   return CurTok = gettok();
 | |
| }
 | |
| 
 | |
| /// BinopPrecedence - This holds the precedence for each binary operator that is
 | |
| /// defined.
 | |
| static std::map<char, int> BinopPrecedence;
 | |
| 
 | |
| /// GetTokPrecedence - Get the precedence of the pending binary operator token.
 | |
| static int GetTokPrecedence() {
 | |
|   if (!isascii(CurTok))
 | |
|     return -1;
 | |
|   
 | |
|   // Make sure it's a declared binop.
 | |
|   int TokPrec = BinopPrecedence[CurTok];
 | |
|   if (TokPrec <= 0) return -1;
 | |
|   return TokPrec;
 | |
| }
 | |
| 
 | |
| /// Error* - These are little helper functions for error handling.
 | |
| ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
 | |
| PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
 | |
| FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
 | |
| 
 | |
| static ExprAST *ParseExpression();
 | |
| 
 | |
| /// identifierexpr
 | |
| ///   ::= identifier
 | |
| ///   ::= identifier '(' expression* ')'
 | |
| static ExprAST *ParseIdentifierExpr() {
 | |
|   std::string IdName = IdentifierStr;
 | |
|   
 | |
|   getNextToken();  // eat identifier.
 | |
|   
 | |
|   if (CurTok != '(') // Simple variable ref.
 | |
|     return new VariableExprAST(IdName);
 | |
|   
 | |
|   // Call.
 | |
|   getNextToken();  // eat (
 | |
|   std::vector<ExprAST*> Args;
 | |
|   if (CurTok != ')') {
 | |
|     while (1) {
 | |
|       ExprAST *Arg = ParseExpression();
 | |
|       if (!Arg) return 0;
 | |
|       Args.push_back(Arg);
 | |
|     
 | |
|       if (CurTok == ')') break;
 | |
|     
 | |
|       if (CurTok != ',')
 | |
|         return Error("Expected ')' or ',' in argument list");
 | |
|       getNextToken();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Eat the ')'.
 | |
|   getNextToken();
 | |
|   
 | |
|   return new CallExprAST(IdName, Args);
 | |
| }
 | |
| 
 | |
| /// numberexpr ::= number
 | |
| static ExprAST *ParseNumberExpr() {
 | |
|   ExprAST *Result = new NumberExprAST(NumVal);
 | |
|   getNextToken(); // consume the number
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// parenexpr ::= '(' expression ')'
 | |
| static ExprAST *ParseParenExpr() {
 | |
|   getNextToken();  // eat (.
 | |
|   ExprAST *V = ParseExpression();
 | |
|   if (!V) return 0;
 | |
|   
 | |
|   if (CurTok != ')')
 | |
|     return Error("expected ')'");
 | |
|   getNextToken();  // eat ).
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// primary
 | |
| ///   ::= identifierexpr
 | |
| ///   ::= numberexpr
 | |
| ///   ::= parenexpr
 | |
| static ExprAST *ParsePrimary() {
 | |
|   switch (CurTok) {
 | |
|   default: return Error("unknown token when expecting an expression");
 | |
|   case tok_identifier: return ParseIdentifierExpr();
 | |
|   case tok_number:     return ParseNumberExpr();
 | |
|   case '(':            return ParseParenExpr();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// binoprhs
 | |
| ///   ::= ('+' primary)*
 | |
| static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
 | |
|   // If this is a binop, find its precedence.
 | |
|   while (1) {
 | |
|     int TokPrec = GetTokPrecedence();
 | |
|     
 | |
|     // If this is a binop that binds at least as tightly as the current binop,
 | |
|     // consume it, otherwise we are done.
 | |
|     if (TokPrec < ExprPrec)
 | |
|       return LHS;
 | |
|     
 | |
|     // Okay, we know this is a binop.
 | |
|     int BinOp = CurTok;
 | |
|     getNextToken();  // eat binop
 | |
|     
 | |
|     // Parse the primary expression after the binary operator.
 | |
|     ExprAST *RHS = ParsePrimary();
 | |
|     if (!RHS) return 0;
 | |
|     
 | |
|     // If BinOp binds less tightly with RHS than the operator after RHS, let
 | |
|     // the pending operator take RHS as its LHS.
 | |
|     int NextPrec = GetTokPrecedence();
 | |
|     if (TokPrec < NextPrec) {
 | |
|       RHS = ParseBinOpRHS(TokPrec+1, RHS);
 | |
|       if (RHS == 0) return 0;
 | |
|     }
 | |
|     
 | |
|     // Merge LHS/RHS.
 | |
|     LHS = new BinaryExprAST(BinOp, LHS, RHS);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// expression
 | |
| ///   ::= primary binoprhs
 | |
| ///
 | |
| static ExprAST *ParseExpression() {
 | |
|   ExprAST *LHS = ParsePrimary();
 | |
|   if (!LHS) return 0;
 | |
|   
 | |
|   return ParseBinOpRHS(0, LHS);
 | |
| }
 | |
| 
 | |
| /// prototype
 | |
| ///   ::= id '(' id* ')'
 | |
| static PrototypeAST *ParsePrototype() {
 | |
|   if (CurTok != tok_identifier)
 | |
|     return ErrorP("Expected function name in prototype");
 | |
| 
 | |
|   std::string FnName = IdentifierStr;
 | |
|   getNextToken();
 | |
|   
 | |
|   if (CurTok != '(')
 | |
|     return ErrorP("Expected '(' in prototype");
 | |
|   
 | |
|   std::vector<std::string> ArgNames;
 | |
|   while (getNextToken() == tok_identifier)
 | |
|     ArgNames.push_back(IdentifierStr);
 | |
|   if (CurTok != ')')
 | |
|     return ErrorP("Expected ')' in prototype");
 | |
|   
 | |
|   // success.
 | |
|   getNextToken();  // eat ')'.
 | |
|   
 | |
|   return new PrototypeAST(FnName, ArgNames);
 | |
| }
 | |
| 
 | |
| /// definition ::= 'def' prototype expression
 | |
| static FunctionAST *ParseDefinition() {
 | |
|   getNextToken();  // eat def.
 | |
|   PrototypeAST *Proto = ParsePrototype();
 | |
|   if (Proto == 0) return 0;
 | |
| 
 | |
|   if (ExprAST *E = ParseExpression())
 | |
|     return new FunctionAST(Proto, E);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// toplevelexpr ::= expression
 | |
| static FunctionAST *ParseTopLevelExpr() {
 | |
|   if (ExprAST *E = ParseExpression()) {
 | |
|     // Make an anonymous proto.
 | |
|     PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
 | |
|     return new FunctionAST(Proto, E);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// external ::= 'extern' prototype
 | |
| static PrototypeAST *ParseExtern() {
 | |
|   getNextToken();  // eat extern.
 | |
|   return ParsePrototype();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Top-Level parsing
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static void HandleDefinition() {
 | |
|   if (FunctionAST *F = ParseDefinition()) {
 | |
|     fprintf(stderr, "Parsed a function definition.\n");
 | |
|   } else {
 | |
|     // Skip token for error recovery.
 | |
|     getNextToken();
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void HandleExtern() {
 | |
|   if (PrototypeAST *P = ParseExtern()) {
 | |
|     fprintf(stderr, "Parsed an extern\n");
 | |
|   } else {
 | |
|     // Skip token for error recovery.
 | |
|     getNextToken();
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void HandleTopLevelExpression() {
 | |
|   // Evaluate a top-level expression into an anonymous function.
 | |
|   if (FunctionAST *F = ParseTopLevelExpr()) {
 | |
|     fprintf(stderr, "Parsed a top-level expr\n");
 | |
|   } else {
 | |
|     // Skip token for error recovery.
 | |
|     getNextToken();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// top ::= definition | external | expression | ';'
 | |
| static void MainLoop() {
 | |
|   while (1) {
 | |
|     fprintf(stderr, "ready> ");
 | |
|     switch (CurTok) {
 | |
|     case tok_eof:    return;
 | |
|     case ';':        getNextToken(); break;  // ignore top-level semicolons.
 | |
|     case tok_def:    HandleDefinition(); break;
 | |
|     case tok_extern: HandleExtern(); break;
 | |
|     default:         HandleTopLevelExpression(); break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Main driver code.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| int main() {
 | |
|   // Install standard binary operators.
 | |
|   // 1 is lowest precedence.
 | |
|   BinopPrecedence['<'] = 10;
 | |
|   BinopPrecedence['+'] = 20;
 | |
|   BinopPrecedence['-'] = 20;
 | |
|   BinopPrecedence['*'] = 40;  // highest.
 | |
| 
 | |
|   // Prime the first token.
 | |
|   fprintf(stderr, "ready> ");
 | |
|   getNextToken();
 | |
| 
 | |
|   MainLoop();
 | |
|   return 0;
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| <a href="LangImpl3.html">Next: Implementing Code Generation to LLVM IR</a>
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <hr>
 | |
| <address>
 | |
|   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
 | |
|   src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
 | |
|   <a href="http://validator.w3.org/check/referer"><img
 | |
|   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
 | |
| 
 | |
|   <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
 | |
|   <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
 | |
|   Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $
 | |
| </address>
 | |
| </body>
 | |
| </html>
 |