mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	DLL* linkages got full (I hope) codegeneration support in C & both x86 assembler backends. External weak linkage added for future use, we don't provide any codegeneration, etc. support for it. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@30374 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			933 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			933 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the LLVM module linker.
 | |
| //
 | |
| // Specifically, this:
 | |
| //  * Merges global variables between the two modules
 | |
| //    * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
 | |
| //  * Merges functions between two modules
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Linker.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/SymbolTable.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Assembly/Writer.h"
 | |
| #include "llvm/System/Path.h"
 | |
| #include <iostream>
 | |
| #include <sstream>
 | |
| using namespace llvm;
 | |
| 
 | |
| // Error - Simple wrapper function to conditionally assign to E and return true.
 | |
| // This just makes error return conditions a little bit simpler...
 | |
| static inline bool Error(std::string *E, const std::string &Message) {
 | |
|   if (E) *E = Message;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // ToStr - Simple wrapper function to convert a type to a string.
 | |
| static std::string ToStr(const Type *Ty, const Module *M) {
 | |
|   std::ostringstream OS;
 | |
|   WriteTypeSymbolic(OS, Ty, M);
 | |
|   return OS.str();
 | |
| }
 | |
| 
 | |
| //
 | |
| // Function: ResolveTypes()
 | |
| //
 | |
| // Description:
 | |
| //  Attempt to link the two specified types together.
 | |
| //
 | |
| // Inputs:
 | |
| //  DestTy - The type to which we wish to resolve.
 | |
| //  SrcTy  - The original type which we want to resolve.
 | |
| //  Name   - The name of the type.
 | |
| //
 | |
| // Outputs:
 | |
| //  DestST - The symbol table in which the new type should be placed.
 | |
| //
 | |
| // Return value:
 | |
| //  true  - There is an error and the types cannot yet be linked.
 | |
| //  false - No errors.
 | |
| //
 | |
| static bool ResolveTypes(const Type *DestTy, const Type *SrcTy,
 | |
|                          SymbolTable *DestST, const std::string &Name) {
 | |
|   if (DestTy == SrcTy) return false;       // If already equal, noop
 | |
| 
 | |
|   // Does the type already exist in the module?
 | |
|   if (DestTy && !isa<OpaqueType>(DestTy)) {  // Yup, the type already exists...
 | |
|     if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) {
 | |
|       const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy);
 | |
|     } else {
 | |
|       return true;  // Cannot link types... neither is opaque and not-equal
 | |
|     }
 | |
|   } else {                       // Type not in dest module.  Add it now.
 | |
|     if (DestTy)                  // Type _is_ in module, just opaque...
 | |
|       const_cast<OpaqueType*>(cast<OpaqueType>(DestTy))
 | |
|                            ->refineAbstractTypeTo(SrcTy);
 | |
|     else if (!Name.empty())
 | |
|       DestST->insert(Name, const_cast<Type*>(SrcTy));
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static const FunctionType *getFT(const PATypeHolder &TH) {
 | |
|   return cast<FunctionType>(TH.get());
 | |
| }
 | |
| static const StructType *getST(const PATypeHolder &TH) {
 | |
|   return cast<StructType>(TH.get());
 | |
| }
 | |
| 
 | |
| // RecursiveResolveTypes - This is just like ResolveTypes, except that it
 | |
| // recurses down into derived types, merging the used types if the parent types
 | |
| // are compatible.
 | |
| static bool RecursiveResolveTypesI(const PATypeHolder &DestTy,
 | |
|                                    const PATypeHolder &SrcTy,
 | |
|                                    SymbolTable *DestST, const std::string &Name,
 | |
|                 std::vector<std::pair<PATypeHolder, PATypeHolder> > &Pointers) {
 | |
|   const Type *SrcTyT = SrcTy.get();
 | |
|   const Type *DestTyT = DestTy.get();
 | |
|   if (DestTyT == SrcTyT) return false;       // If already equal, noop
 | |
| 
 | |
|   // If we found our opaque type, resolve it now!
 | |
|   if (isa<OpaqueType>(DestTyT) || isa<OpaqueType>(SrcTyT))
 | |
|     return ResolveTypes(DestTyT, SrcTyT, DestST, Name);
 | |
| 
 | |
|   // Two types cannot be resolved together if they are of different primitive
 | |
|   // type.  For example, we cannot resolve an int to a float.
 | |
|   if (DestTyT->getTypeID() != SrcTyT->getTypeID()) return true;
 | |
| 
 | |
|   // Otherwise, resolve the used type used by this derived type...
 | |
|   switch (DestTyT->getTypeID()) {
 | |
|   case Type::FunctionTyID: {
 | |
|     if (cast<FunctionType>(DestTyT)->isVarArg() !=
 | |
|         cast<FunctionType>(SrcTyT)->isVarArg() ||
 | |
|         cast<FunctionType>(DestTyT)->getNumContainedTypes() !=
 | |
|         cast<FunctionType>(SrcTyT)->getNumContainedTypes())
 | |
|       return true;
 | |
|     for (unsigned i = 0, e = getFT(DestTy)->getNumContainedTypes(); i != e; ++i)
 | |
|       if (RecursiveResolveTypesI(getFT(DestTy)->getContainedType(i),
 | |
|                                  getFT(SrcTy)->getContainedType(i), DestST, "",
 | |
|                                  Pointers))
 | |
|         return true;
 | |
|     return false;
 | |
|   }
 | |
|   case Type::StructTyID: {
 | |
|     if (getST(DestTy)->getNumContainedTypes() !=
 | |
|         getST(SrcTy)->getNumContainedTypes()) return 1;
 | |
|     for (unsigned i = 0, e = getST(DestTy)->getNumContainedTypes(); i != e; ++i)
 | |
|       if (RecursiveResolveTypesI(getST(DestTy)->getContainedType(i),
 | |
|                                  getST(SrcTy)->getContainedType(i), DestST, "",
 | |
|                                  Pointers))
 | |
|         return true;
 | |
|     return false;
 | |
|   }
 | |
|   case Type::ArrayTyID: {
 | |
|     const ArrayType *DAT = cast<ArrayType>(DestTy.get());
 | |
|     const ArrayType *SAT = cast<ArrayType>(SrcTy.get());
 | |
|     if (DAT->getNumElements() != SAT->getNumElements()) return true;
 | |
|     return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
 | |
|                                   DestST, "", Pointers);
 | |
|   }
 | |
|   case Type::PointerTyID: {
 | |
|     // If this is a pointer type, check to see if we have already seen it.  If
 | |
|     // so, we are in a recursive branch.  Cut off the search now.  We cannot use
 | |
|     // an associative container for this search, because the type pointers (keys
 | |
|     // in the container) change whenever types get resolved...
 | |
|     for (unsigned i = 0, e = Pointers.size(); i != e; ++i)
 | |
|       if (Pointers[i].first == DestTy)
 | |
|         return Pointers[i].second != SrcTy;
 | |
| 
 | |
|     // Otherwise, add the current pointers to the vector to stop recursion on
 | |
|     // this pair.
 | |
|     Pointers.push_back(std::make_pair(DestTyT, SrcTyT));
 | |
|     bool Result =
 | |
|       RecursiveResolveTypesI(cast<PointerType>(DestTy.get())->getElementType(),
 | |
|                              cast<PointerType>(SrcTy.get())->getElementType(),
 | |
|                              DestST, "", Pointers);
 | |
|     Pointers.pop_back();
 | |
|     return Result;
 | |
|   }
 | |
|   default: assert(0 && "Unexpected type!"); return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool RecursiveResolveTypes(const PATypeHolder &DestTy,
 | |
|                                   const PATypeHolder &SrcTy,
 | |
|                                   SymbolTable *DestST, const std::string &Name){
 | |
|   std::vector<std::pair<PATypeHolder, PATypeHolder> > PointerTypes;
 | |
|   return RecursiveResolveTypesI(DestTy, SrcTy, DestST, Name, PointerTypes);
 | |
| }
 | |
| 
 | |
| 
 | |
| // LinkTypes - Go through the symbol table of the Src module and see if any
 | |
| // types are named in the src module that are not named in the Dst module.
 | |
| // Make sure there are no type name conflicts.
 | |
| static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
 | |
|   SymbolTable       *DestST = &Dest->getSymbolTable();
 | |
|   const SymbolTable *SrcST  = &Src->getSymbolTable();
 | |
| 
 | |
|   // Look for a type plane for Type's...
 | |
|   SymbolTable::type_const_iterator TI = SrcST->type_begin();
 | |
|   SymbolTable::type_const_iterator TE = SrcST->type_end();
 | |
|   if (TI == TE) return false;  // No named types, do nothing.
 | |
| 
 | |
|   // Some types cannot be resolved immediately because they depend on other
 | |
|   // types being resolved to each other first.  This contains a list of types we
 | |
|   // are waiting to recheck.
 | |
|   std::vector<std::string> DelayedTypesToResolve;
 | |
| 
 | |
|   for ( ; TI != TE; ++TI ) {
 | |
|     const std::string &Name = TI->first;
 | |
|     const Type *RHS = TI->second;
 | |
| 
 | |
|     // Check to see if this type name is already in the dest module...
 | |
|     Type *Entry = DestST->lookupType(Name);
 | |
| 
 | |
|     if (ResolveTypes(Entry, RHS, DestST, Name)) {
 | |
|       // They look different, save the types 'till later to resolve.
 | |
|       DelayedTypesToResolve.push_back(Name);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Iteratively resolve types while we can...
 | |
|   while (!DelayedTypesToResolve.empty()) {
 | |
|     // Loop over all of the types, attempting to resolve them if possible...
 | |
|     unsigned OldSize = DelayedTypesToResolve.size();
 | |
| 
 | |
|     // Try direct resolution by name...
 | |
|     for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) {
 | |
|       const std::string &Name = DelayedTypesToResolve[i];
 | |
|       Type *T1 = SrcST->lookupType(Name);
 | |
|       Type *T2 = DestST->lookupType(Name);
 | |
|       if (!ResolveTypes(T2, T1, DestST, Name)) {
 | |
|         // We are making progress!
 | |
|         DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
 | |
|         --i;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Did we not eliminate any types?
 | |
|     if (DelayedTypesToResolve.size() == OldSize) {
 | |
|       // Attempt to resolve subelements of types.  This allows us to merge these
 | |
|       // two types: { int* } and { opaque* }
 | |
|       for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
 | |
|         const std::string &Name = DelayedTypesToResolve[i];
 | |
|         PATypeHolder T1(SrcST->lookupType(Name));
 | |
|         PATypeHolder T2(DestST->lookupType(Name));
 | |
| 
 | |
|         if (!RecursiveResolveTypes(T2, T1, DestST, Name)) {
 | |
|           // We are making progress!
 | |
|           DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
 | |
| 
 | |
|           // Go back to the main loop, perhaps we can resolve directly by name
 | |
|           // now...
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If we STILL cannot resolve the types, then there is something wrong.
 | |
|       if (DelayedTypesToResolve.size() == OldSize) {
 | |
|         // Remove the symbol name from the destination.
 | |
|         DelayedTypesToResolve.pop_back();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static void PrintMap(const std::map<const Value*, Value*> &M) {
 | |
|   for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end();
 | |
|        I != E; ++I) {
 | |
|     std::cerr << " Fr: " << (void*)I->first << " ";
 | |
|     I->first->dump();
 | |
|     std::cerr << " To: " << (void*)I->second << " ";
 | |
|     I->second->dump();
 | |
|     std::cerr << "\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // RemapOperand - Use ValueMap to convert references from one module to another.
 | |
| // This is somewhat sophisticated in that it can automatically handle constant
 | |
| // references correctly as well.
 | |
| static Value *RemapOperand(const Value *In,
 | |
|                            std::map<const Value*, Value*> &ValueMap) {
 | |
|   std::map<const Value*,Value*>::const_iterator I = ValueMap.find(In);
 | |
|   if (I != ValueMap.end()) return I->second;
 | |
| 
 | |
|   // Check to see if it's a constant that we are interesting in transforming.
 | |
|   Value *Result = 0;
 | |
|   if (const Constant *CPV = dyn_cast<Constant>(In)) {
 | |
|     if ((!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV)) ||
 | |
|         isa<ConstantAggregateZero>(CPV))
 | |
|       return const_cast<Constant*>(CPV);   // Simple constants stay identical.
 | |
| 
 | |
|     if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
 | |
|       std::vector<Constant*> Operands(CPA->getNumOperands());
 | |
|       for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
 | |
|         Operands[i] =cast<Constant>(RemapOperand(CPA->getOperand(i), ValueMap));
 | |
|       Result = ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
 | |
|     } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
 | |
|       std::vector<Constant*> Operands(CPS->getNumOperands());
 | |
|       for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
 | |
|         Operands[i] =cast<Constant>(RemapOperand(CPS->getOperand(i), ValueMap));
 | |
|       Result = ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
 | |
|     } else if (isa<ConstantPointerNull>(CPV) || isa<UndefValue>(CPV)) {
 | |
|       Result = const_cast<Constant*>(CPV);
 | |
|     } else if (isa<GlobalValue>(CPV)) {
 | |
|       Result = cast<Constant>(RemapOperand(CPV, ValueMap));
 | |
|     } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CPV)) {
 | |
|       std::vector<Constant*> Operands(CP->getNumOperands());
 | |
|       for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
 | |
|         Operands[i] = cast<Constant>(RemapOperand(CP->getOperand(i), ValueMap));
 | |
|       Result = ConstantPacked::get(Operands);
 | |
|     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
 | |
|       std::vector<Constant*> Ops;
 | |
|       for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
 | |
|         Ops.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),ValueMap)));
 | |
|       Result = CE->getWithOperands(Ops);
 | |
|     } else {
 | |
|       assert(0 && "Unknown type of derived type constant value!");
 | |
|     }
 | |
|   } else if (isa<InlineAsm>(In)) {
 | |
|     Result = const_cast<Value*>(In);
 | |
|   }
 | |
|   
 | |
|   // Cache the mapping in our local map structure...
 | |
|   if (Result) {
 | |
|     ValueMap.insert(std::make_pair(In, Result));
 | |
|     return Result;
 | |
|   }
 | |
|   
 | |
| 
 | |
|   std::cerr << "LinkModules ValueMap: \n";
 | |
|   PrintMap(ValueMap);
 | |
| 
 | |
|   std::cerr << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
 | |
|   assert(0 && "Couldn't remap value!");
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict
 | |
| /// in the symbol table.  This is good for all clients except for us.  Go
 | |
| /// through the trouble to force this back.
 | |
| static void ForceRenaming(GlobalValue *GV, const std::string &Name) {
 | |
|   assert(GV->getName() != Name && "Can't force rename to self");
 | |
|   SymbolTable &ST = GV->getParent()->getSymbolTable();
 | |
| 
 | |
|   // If there is a conflict, rename the conflict.
 | |
|   Value *ConflictVal = ST.lookup(GV->getType(), Name);
 | |
|   assert(ConflictVal&&"Why do we have to force rename if there is no conflic?");
 | |
|   GlobalValue *ConflictGV = cast<GlobalValue>(ConflictVal);
 | |
|   assert(ConflictGV->hasInternalLinkage() &&
 | |
|          "Not conflicting with a static global, should link instead!");
 | |
| 
 | |
|   ConflictGV->setName("");          // Eliminate the conflict
 | |
|   GV->setName(Name);                // Force the name back
 | |
|   ConflictGV->setName(Name);        // This will cause ConflictGV to get renamed
 | |
|   assert(GV->getName() == Name && ConflictGV->getName() != Name &&
 | |
|          "ForceRenaming didn't work");
 | |
| }
 | |
| 
 | |
| /// GetLinkageResult - This analyzes the two global values and determines what
 | |
| /// the result will look like in the destination module.  In particular, it
 | |
| /// computes the resultant linkage type, computes whether the global in the
 | |
| /// source should be copied over to the destination (replacing the existing
 | |
| /// one), and computes whether this linkage is an error or not.
 | |
| static bool GetLinkageResult(GlobalValue *Dest, GlobalValue *Src,
 | |
|                              GlobalValue::LinkageTypes <, bool &LinkFromSrc,
 | |
|                              std::string *Err) {
 | |
|   assert((!Dest || !Src->hasInternalLinkage()) &&
 | |
|          "If Src has internal linkage, Dest shouldn't be set!");
 | |
|   if (!Dest) {
 | |
|     // Linking something to nothing.
 | |
|     LinkFromSrc = true;
 | |
|     LT = Src->getLinkage();
 | |
|   } else if (Src->isExternal()) {
 | |
|     // If Src is external or if both Src & Drc are external..  Just link the
 | |
|     // external globals, we aren't adding anything.
 | |
|     if (Src->hasDLLImportLinkage()) {
 | |
|       if (Dest->isExternal()) {
 | |
|         LinkFromSrc = true;
 | |
|         LT = Src->getLinkage();
 | |
|       }      
 | |
|     } else {
 | |
|       LinkFromSrc = false;
 | |
|       LT = Dest->getLinkage();
 | |
|     }
 | |
|   } else if (Dest->isExternal() && !Dest->hasDLLImportLinkage()) {
 | |
|     // If Dest is external but Src is not:
 | |
|     LinkFromSrc = true;
 | |
|     LT = Src->getLinkage();
 | |
|   } else if (Src->hasAppendingLinkage() || Dest->hasAppendingLinkage()) {
 | |
|     if (Src->getLinkage() != Dest->getLinkage())
 | |
|       return Error(Err, "Linking globals named '" + Src->getName() +
 | |
|             "': can only link appending global with another appending global!");
 | |
|     LinkFromSrc = true; // Special cased.
 | |
|     LT = Src->getLinkage();
 | |
|   } else if (Src->hasWeakLinkage() || Src->hasLinkOnceLinkage()) {
 | |
|     // At this point we know that Dest has LinkOnce, External, Weak, DLL* linkage.
 | |
|     if (Dest->hasLinkOnceLinkage() && Src->hasWeakLinkage()) {
 | |
|       LinkFromSrc = true;
 | |
|       LT = Src->getLinkage();
 | |
|     } else {
 | |
|       LinkFromSrc = false;
 | |
|       LT = Dest->getLinkage();
 | |
|     }
 | |
|   } else if (Dest->hasWeakLinkage() || Dest->hasLinkOnceLinkage()) {
 | |
|     // At this point we know that Src has External or DLL* linkage.
 | |
|     LinkFromSrc = true;
 | |
|     LT = GlobalValue::ExternalLinkage;
 | |
|   } else {
 | |
|     assert((Dest->hasExternalLinkage() ||
 | |
|             Dest->hasDLLImportLinkage() ||
 | |
|             Dest->hasDLLExportLinkage()) &&
 | |
|            (Src->hasExternalLinkage() ||
 | |
|             Src->hasDLLImportLinkage() ||
 | |
|             Src->hasDLLExportLinkage()) &&
 | |
|            "Unexpected linkage type!");
 | |
|     return Error(Err, "Linking globals named '" + Src->getName() +
 | |
|                  "': symbol multiply defined!");
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // LinkGlobals - Loop through the global variables in the src module and merge
 | |
| // them into the dest module.
 | |
| static bool LinkGlobals(Module *Dest, Module *Src,
 | |
|                         std::map<const Value*, Value*> &ValueMap,
 | |
|                     std::multimap<std::string, GlobalVariable *> &AppendingVars,
 | |
|                         std::map<std::string, GlobalValue*> &GlobalsByName,
 | |
|                         std::string *Err) {
 | |
|   // We will need a module level symbol table if the src module has a module
 | |
|   // level symbol table...
 | |
|   SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable();
 | |
| 
 | |
|   // Loop over all of the globals in the src module, mapping them over as we go
 | |
|   for (Module::global_iterator I = Src->global_begin(), E = Src->global_end();
 | |
|        I != E; ++I) {
 | |
|     GlobalVariable *SGV = I;
 | |
|     GlobalVariable *DGV = 0;
 | |
|     // Check to see if may have to link the global.
 | |
|     if (SGV->hasName() && !SGV->hasInternalLinkage())
 | |
|       if (!(DGV = Dest->getGlobalVariable(SGV->getName(),
 | |
|                                           SGV->getType()->getElementType()))) {
 | |
|         std::map<std::string, GlobalValue*>::iterator EGV =
 | |
|           GlobalsByName.find(SGV->getName());
 | |
|         if (EGV != GlobalsByName.end())
 | |
|           DGV = dyn_cast<GlobalVariable>(EGV->second);
 | |
|         if (DGV)
 | |
|           // If types don't agree due to opaque types, try to resolve them.
 | |
|           RecursiveResolveTypes(SGV->getType(), DGV->getType(),ST, "");
 | |
|       }
 | |
| 
 | |
|     if (DGV && DGV->hasInternalLinkage())
 | |
|       DGV = 0;
 | |
| 
 | |
|     assert(SGV->hasInitializer() ||
 | |
|            SGV->hasExternalLinkage() || SGV->hasDLLImportLinkage() &&
 | |
|            "Global must either be external or have an initializer!");
 | |
| 
 | |
|     GlobalValue::LinkageTypes NewLinkage;
 | |
|     bool LinkFromSrc;
 | |
|     if (GetLinkageResult(DGV, SGV, NewLinkage, LinkFromSrc, Err))
 | |
|       return true;
 | |
| 
 | |
|     if (!DGV) {
 | |
|       // No linking to be performed, simply create an identical version of the
 | |
|       // symbol over in the dest module... the initializer will be filled in
 | |
|       // later by LinkGlobalInits...
 | |
|       GlobalVariable *NewDGV =
 | |
|         new GlobalVariable(SGV->getType()->getElementType(),
 | |
|                            SGV->isConstant(), SGV->getLinkage(), /*init*/0,
 | |
|                            SGV->getName(), Dest);
 | |
|       // Propagate alignment info.
 | |
|       NewDGV->setAlignment(SGV->getAlignment());
 | |
|       
 | |
|       // If the LLVM runtime renamed the global, but it is an externally visible
 | |
|       // symbol, DGV must be an existing global with internal linkage.  Rename
 | |
|       // it.
 | |
|       if (NewDGV->getName() != SGV->getName() && !NewDGV->hasInternalLinkage())
 | |
|         ForceRenaming(NewDGV, SGV->getName());
 | |
| 
 | |
|       // Make sure to remember this mapping...
 | |
|       ValueMap.insert(std::make_pair(SGV, NewDGV));
 | |
|       if (SGV->hasAppendingLinkage())
 | |
|         // Keep track that this is an appending variable...
 | |
|         AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
 | |
|     } else if (DGV->hasAppendingLinkage()) {
 | |
|       // No linking is performed yet.  Just insert a new copy of the global, and
 | |
|       // keep track of the fact that it is an appending variable in the
 | |
|       // AppendingVars map.  The name is cleared out so that no linkage is
 | |
|       // performed.
 | |
|       GlobalVariable *NewDGV =
 | |
|         new GlobalVariable(SGV->getType()->getElementType(),
 | |
|                            SGV->isConstant(), SGV->getLinkage(), /*init*/0,
 | |
|                            "", Dest);
 | |
| 
 | |
|       // Propagate alignment info.
 | |
|       NewDGV->setAlignment(std::max(DGV->getAlignment(), SGV->getAlignment()));
 | |
| 
 | |
|       // Make sure to remember this mapping...
 | |
|       ValueMap.insert(std::make_pair(SGV, NewDGV));
 | |
| 
 | |
|       // Keep track that this is an appending variable...
 | |
|       AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
 | |
|     } else {
 | |
|       // Propagate alignment info.
 | |
|       DGV->setAlignment(std::max(DGV->getAlignment(), SGV->getAlignment()));
 | |
| 
 | |
|       // Otherwise, perform the mapping as instructed by GetLinkageResult.  If
 | |
|       // the types don't match, and if we are to link from the source, nuke DGV
 | |
|       // and create a new one of the appropriate type.
 | |
|       if (SGV->getType() != DGV->getType() && LinkFromSrc) {
 | |
|         GlobalVariable *NewDGV =
 | |
|           new GlobalVariable(SGV->getType()->getElementType(),
 | |
|                              DGV->isConstant(), DGV->getLinkage());
 | |
|         NewDGV->setAlignment(DGV->getAlignment());
 | |
|         Dest->getGlobalList().insert(DGV, NewDGV);
 | |
|         DGV->replaceAllUsesWith(ConstantExpr::getCast(NewDGV, DGV->getType()));
 | |
|         DGV->eraseFromParent();
 | |
|         NewDGV->setName(SGV->getName());
 | |
|         DGV = NewDGV;
 | |
|       }
 | |
| 
 | |
|       DGV->setLinkage(NewLinkage);
 | |
| 
 | |
|       if (LinkFromSrc) {
 | |
|         // Inherit const as appropriate
 | |
|         DGV->setConstant(SGV->isConstant());
 | |
|         DGV->setInitializer(0);
 | |
|       } else {
 | |
|         if (SGV->isConstant() && !DGV->isConstant()) {
 | |
|           if (DGV->isExternal())
 | |
|             DGV->setConstant(true);
 | |
|         }
 | |
|         SGV->setLinkage(GlobalValue::ExternalLinkage);
 | |
|         SGV->setInitializer(0);
 | |
|       }
 | |
| 
 | |
|       ValueMap.insert(std::make_pair(SGV,
 | |
|                                      ConstantExpr::getCast(DGV,
 | |
|                                                            SGV->getType())));
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| // LinkGlobalInits - Update the initializers in the Dest module now that all
 | |
| // globals that may be referenced are in Dest.
 | |
| static bool LinkGlobalInits(Module *Dest, const Module *Src,
 | |
|                             std::map<const Value*, Value*> &ValueMap,
 | |
|                             std::string *Err) {
 | |
| 
 | |
|   // Loop over all of the globals in the src module, mapping them over as we go
 | |
|   for (Module::const_global_iterator I = Src->global_begin(),
 | |
|        E = Src->global_end(); I != E; ++I) {
 | |
|     const GlobalVariable *SGV = I;
 | |
| 
 | |
|     if (SGV->hasInitializer()) {      // Only process initialized GV's
 | |
|       // Figure out what the initializer looks like in the dest module...
 | |
|       Constant *SInit =
 | |
|         cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap));
 | |
| 
 | |
|       GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[SGV]);
 | |
|       if (DGV->hasInitializer()) {
 | |
|         if (SGV->hasExternalLinkage()) {
 | |
|           if (DGV->getInitializer() != SInit)
 | |
|             return Error(Err, "Global Variable Collision on '" +
 | |
|                          ToStr(SGV->getType(), Src) +"':%"+SGV->getName()+
 | |
|                          " - Global variables have different initializers");
 | |
|         } else if (DGV->hasLinkOnceLinkage() || DGV->hasWeakLinkage()) {
 | |
|           // Nothing is required, mapped values will take the new global
 | |
|           // automatically.
 | |
|         } else if (SGV->hasLinkOnceLinkage() || SGV->hasWeakLinkage()) {
 | |
|           // Nothing is required, mapped values will take the new global
 | |
|           // automatically.
 | |
|         } else if (DGV->hasAppendingLinkage()) {
 | |
|           assert(0 && "Appending linkage unimplemented!");
 | |
|         } else {
 | |
|           assert(0 && "Unknown linkage!");
 | |
|         }
 | |
|       } else {
 | |
|         // Copy the initializer over now...
 | |
|         DGV->setInitializer(SInit);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // LinkFunctionProtos - Link the functions together between the two modules,
 | |
| // without doing function bodies... this just adds external function prototypes
 | |
| // to the Dest function...
 | |
| //
 | |
| static bool LinkFunctionProtos(Module *Dest, const Module *Src,
 | |
|                                std::map<const Value*, Value*> &ValueMap,
 | |
|                                std::map<std::string, GlobalValue*> &GlobalsByName,
 | |
|                                std::string *Err) {
 | |
|   SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable();
 | |
| 
 | |
|   // Loop over all of the functions in the src module, mapping them over as we
 | |
|   // go
 | |
|   for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
 | |
|     const Function *SF = I;   // SrcFunction
 | |
|     Function *DF = 0;
 | |
|     if (SF->hasName() && !SF->hasInternalLinkage()) {
 | |
|       // Check to see if may have to link the function.
 | |
|       if (!(DF = Dest->getFunction(SF->getName(), SF->getFunctionType()))) {
 | |
|         std::map<std::string, GlobalValue*>::iterator EF =
 | |
|           GlobalsByName.find(SF->getName());
 | |
|         if (EF != GlobalsByName.end())
 | |
|           DF = dyn_cast<Function>(EF->second);
 | |
|         if (DF && RecursiveResolveTypes(SF->getType(), DF->getType(), ST, ""))
 | |
|           DF = 0;  // FIXME: gross.
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!DF || SF->hasInternalLinkage() || DF->hasInternalLinkage()) {
 | |
|       // Function does not already exist, simply insert an function signature
 | |
|       // identical to SF into the dest module...
 | |
|       Function *NewDF = new Function(SF->getFunctionType(), SF->getLinkage(),
 | |
|                                      SF->getName(), Dest);
 | |
|       NewDF->setCallingConv(SF->getCallingConv());
 | |
| 
 | |
|       // If the LLVM runtime renamed the function, but it is an externally
 | |
|       // visible symbol, DF must be an existing function with internal linkage.
 | |
|       // Rename it.
 | |
|       if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage())
 | |
|         ForceRenaming(NewDF, SF->getName());
 | |
| 
 | |
|       // ... and remember this mapping...
 | |
|       ValueMap.insert(std::make_pair(SF, NewDF));
 | |
|     } else if (SF->isExternal()) {
 | |
|       // If SF is external or if both SF & DF are external..  Just link the
 | |
|       // external functions, we aren't adding anything.
 | |
|       if (SF->hasDLLImportLinkage()) {
 | |
|         if (DF->isExternal()) {
 | |
|           ValueMap.insert(std::make_pair(SF, DF));
 | |
|           DF->setLinkage(SF->getLinkage());          
 | |
|         }        
 | |
|       } else {
 | |
|         ValueMap.insert(std::make_pair(SF, DF));
 | |
|       }      
 | |
|     } else if (DF->isExternal() && !DF->hasDLLImportLinkage()) {
 | |
|       // If DF is external but SF is not...
 | |
|       // Link the external functions, update linkage qualifiers
 | |
|       ValueMap.insert(std::make_pair(SF, DF));
 | |
|       DF->setLinkage(SF->getLinkage());
 | |
|     } else if (SF->hasWeakLinkage() || SF->hasLinkOnceLinkage()) {
 | |
|       // At this point we know that DF has LinkOnce, Weak, or External linkage.
 | |
|       ValueMap.insert(std::make_pair(SF, DF));
 | |
| 
 | |
|       // Linkonce+Weak = Weak
 | |
|       if (DF->hasLinkOnceLinkage() && SF->hasWeakLinkage())
 | |
|         DF->setLinkage(SF->getLinkage());
 | |
| 
 | |
|     } else if (DF->hasWeakLinkage() || DF->hasLinkOnceLinkage()) {
 | |
|       // At this point we know that SF has LinkOnce or External linkage.
 | |
|       ValueMap.insert(std::make_pair(SF, DF));
 | |
|       if (!SF->hasLinkOnceLinkage())   // Don't inherit linkonce linkage
 | |
|         DF->setLinkage(SF->getLinkage());
 | |
| 
 | |
|     } else if (SF->getLinkage() != DF->getLinkage()) {
 | |
|       return Error(Err, "Functions named '" + SF->getName() +
 | |
|                    "' have different linkage specifiers!");
 | |
|     } else if (SF->hasExternalLinkage()) {
 | |
|       // The function is defined in both modules!!
 | |
|       return Error(Err, "Function '" +
 | |
|                    ToStr(SF->getFunctionType(), Src) + "':\"" +
 | |
|                    SF->getName() + "\" - Function is already defined!");
 | |
|     } else {
 | |
|       assert(0 && "Unknown linkage configuration found!");
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // LinkFunctionBody - Copy the source function over into the dest function and
 | |
| // fix up references to values.  At this point we know that Dest is an external
 | |
| // function, and that Src is not.
 | |
| static bool LinkFunctionBody(Function *Dest, Function *Src,
 | |
|                              std::map<const Value*, Value*> &GlobalMap,
 | |
|                              std::string *Err) {
 | |
|   assert(Src && Dest && Dest->isExternal() && !Src->isExternal());
 | |
| 
 | |
|   // Go through and convert function arguments over, remembering the mapping.
 | |
|   Function::arg_iterator DI = Dest->arg_begin();
 | |
|   for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
 | |
|        I != E; ++I, ++DI) {
 | |
|     DI->setName(I->getName());  // Copy the name information over...
 | |
| 
 | |
|     // Add a mapping to our local map
 | |
|     GlobalMap.insert(std::make_pair(I, DI));
 | |
|   }
 | |
| 
 | |
|   // Splice the body of the source function into the dest function.
 | |
|   Dest->getBasicBlockList().splice(Dest->end(), Src->getBasicBlockList());
 | |
| 
 | |
|   // At this point, all of the instructions and values of the function are now
 | |
|   // copied over.  The only problem is that they are still referencing values in
 | |
|   // the Source function as operands.  Loop through all of the operands of the
 | |
|   // functions and patch them up to point to the local versions...
 | |
|   //
 | |
|   for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
 | |
|     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | |
|       for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
 | |
|            OI != OE; ++OI)
 | |
|         if (!isa<Instruction>(*OI) && !isa<BasicBlock>(*OI))
 | |
|           *OI = RemapOperand(*OI, GlobalMap);
 | |
| 
 | |
|   // There is no need to map the arguments anymore.
 | |
|   for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
 | |
|        I != E; ++I)
 | |
|     GlobalMap.erase(I);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| // LinkFunctionBodies - Link in the function bodies that are defined in the
 | |
| // source module into the DestModule.  This consists basically of copying the
 | |
| // function over and fixing up references to values.
 | |
| static bool LinkFunctionBodies(Module *Dest, Module *Src,
 | |
|                                std::map<const Value*, Value*> &ValueMap,
 | |
|                                std::string *Err) {
 | |
| 
 | |
|   // Loop over all of the functions in the src module, mapping them over as we
 | |
|   // go
 | |
|   for (Module::iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF) {
 | |
|     if (!SF->isExternal()) {                  // No body if function is external
 | |
|       Function *DF = cast<Function>(ValueMap[SF]); // Destination function
 | |
| 
 | |
|       // DF not external SF external?
 | |
|       if (DF->isExternal()) {
 | |
|         // Only provide the function body if there isn't one already.
 | |
|         if (LinkFunctionBody(DF, SF, ValueMap, Err))
 | |
|           return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // LinkAppendingVars - If there were any appending global variables, link them
 | |
| // together now.  Return true on error.
 | |
| static bool LinkAppendingVars(Module *M,
 | |
|                   std::multimap<std::string, GlobalVariable *> &AppendingVars,
 | |
|                               std::string *ErrorMsg) {
 | |
|   if (AppendingVars.empty()) return false; // Nothing to do.
 | |
| 
 | |
|   // Loop over the multimap of appending vars, processing any variables with the
 | |
|   // same name, forming a new appending global variable with both of the
 | |
|   // initializers merged together, then rewrite references to the old variables
 | |
|   // and delete them.
 | |
|   std::vector<Constant*> Inits;
 | |
|   while (AppendingVars.size() > 1) {
 | |
|     // Get the first two elements in the map...
 | |
|     std::multimap<std::string,
 | |
|       GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++;
 | |
| 
 | |
|     // If the first two elements are for different names, there is no pair...
 | |
|     // Otherwise there is a pair, so link them together...
 | |
|     if (First->first == Second->first) {
 | |
|       GlobalVariable *G1 = First->second, *G2 = Second->second;
 | |
|       const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType());
 | |
|       const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType());
 | |
| 
 | |
|       // Check to see that they two arrays agree on type...
 | |
|       if (T1->getElementType() != T2->getElementType())
 | |
|         return Error(ErrorMsg,
 | |
|          "Appending variables with different element types need to be linked!");
 | |
|       if (G1->isConstant() != G2->isConstant())
 | |
|         return Error(ErrorMsg,
 | |
|                      "Appending variables linked with different const'ness!");
 | |
| 
 | |
|       unsigned NewSize = T1->getNumElements() + T2->getNumElements();
 | |
|       ArrayType *NewType = ArrayType::get(T1->getElementType(), NewSize);
 | |
| 
 | |
|       G1->setName("");   // Clear G1's name in case of a conflict!
 | |
|       
 | |
|       // Create the new global variable...
 | |
|       GlobalVariable *NG =
 | |
|         new GlobalVariable(NewType, G1->isConstant(), G1->getLinkage(),
 | |
|                            /*init*/0, First->first, M);
 | |
| 
 | |
|       // Merge the initializer...
 | |
|       Inits.reserve(NewSize);
 | |
|       if (ConstantArray *I = dyn_cast<ConstantArray>(G1->getInitializer())) {
 | |
|         for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
 | |
|           Inits.push_back(I->getOperand(i));
 | |
|       } else {
 | |
|         assert(isa<ConstantAggregateZero>(G1->getInitializer()));
 | |
|         Constant *CV = Constant::getNullValue(T1->getElementType());
 | |
|         for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
 | |
|           Inits.push_back(CV);
 | |
|       }
 | |
|       if (ConstantArray *I = dyn_cast<ConstantArray>(G2->getInitializer())) {
 | |
|         for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
 | |
|           Inits.push_back(I->getOperand(i));
 | |
|       } else {
 | |
|         assert(isa<ConstantAggregateZero>(G2->getInitializer()));
 | |
|         Constant *CV = Constant::getNullValue(T2->getElementType());
 | |
|         for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
 | |
|           Inits.push_back(CV);
 | |
|       }
 | |
|       NG->setInitializer(ConstantArray::get(NewType, Inits));
 | |
|       Inits.clear();
 | |
| 
 | |
|       // Replace any uses of the two global variables with uses of the new
 | |
|       // global...
 | |
| 
 | |
|       // FIXME: This should rewrite simple/straight-forward uses such as
 | |
|       // getelementptr instructions to not use the Cast!
 | |
|       G1->replaceAllUsesWith(ConstantExpr::getCast(NG, G1->getType()));
 | |
|       G2->replaceAllUsesWith(ConstantExpr::getCast(NG, G2->getType()));
 | |
| 
 | |
|       // Remove the two globals from the module now...
 | |
|       M->getGlobalList().erase(G1);
 | |
|       M->getGlobalList().erase(G2);
 | |
| 
 | |
|       // Put the new global into the AppendingVars map so that we can handle
 | |
|       // linking of more than two vars...
 | |
|       Second->second = NG;
 | |
|     }
 | |
|     AppendingVars.erase(First);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| // LinkModules - This function links two modules together, with the resulting
 | |
| // left module modified to be the composite of the two input modules.  If an
 | |
| // error occurs, true is returned and ErrorMsg (if not null) is set to indicate
 | |
| // the problem.  Upon failure, the Dest module could be in a modified state, and
 | |
| // shouldn't be relied on to be consistent.
 | |
| bool
 | |
| Linker::LinkModules(Module *Dest, Module *Src, std::string *ErrorMsg) {
 | |
|   assert(Dest != 0 && "Invalid Destination module");
 | |
|   assert(Src  != 0 && "Invalid Source Module");
 | |
| 
 | |
|   if (Dest->getEndianness() == Module::AnyEndianness)
 | |
|     Dest->setEndianness(Src->getEndianness());
 | |
|   if (Dest->getPointerSize() == Module::AnyPointerSize)
 | |
|     Dest->setPointerSize(Src->getPointerSize());
 | |
|   if (Dest->getTargetTriple().empty())
 | |
|     Dest->setTargetTriple(Src->getTargetTriple());
 | |
| 
 | |
|   if (Src->getEndianness() != Module::AnyEndianness &&
 | |
|       Dest->getEndianness() != Src->getEndianness())
 | |
|     std::cerr << "WARNING: Linking two modules of different endianness!\n";
 | |
|   if (Src->getPointerSize() != Module::AnyPointerSize &&
 | |
|       Dest->getPointerSize() != Src->getPointerSize())
 | |
|     std::cerr << "WARNING: Linking two modules of different pointer size!\n";
 | |
|   if (!Src->getTargetTriple().empty() &&
 | |
|       Dest->getTargetTriple() != Src->getTargetTriple())
 | |
|     std::cerr << "WARNING: Linking two modules of different target triples!\n";
 | |
| 
 | |
|   if (!Src->getModuleInlineAsm().empty()) {
 | |
|     if (Dest->getModuleInlineAsm().empty())
 | |
|       Dest->setModuleInlineAsm(Src->getModuleInlineAsm());
 | |
|     else
 | |
|       Dest->setModuleInlineAsm(Dest->getModuleInlineAsm()+"\n"+
 | |
|                                Src->getModuleInlineAsm());
 | |
|   }
 | |
|   
 | |
|   // Update the destination module's dependent libraries list with the libraries
 | |
|   // from the source module. There's no opportunity for duplicates here as the
 | |
|   // Module ensures that duplicate insertions are discarded.
 | |
|   Module::lib_iterator SI = Src->lib_begin();
 | |
|   Module::lib_iterator SE = Src->lib_end();
 | |
|   while ( SI != SE ) {
 | |
|     Dest->addLibrary(*SI);
 | |
|     ++SI;
 | |
|   }
 | |
| 
 | |
|   // LinkTypes - Go through the symbol table of the Src module and see if any
 | |
|   // types are named in the src module that are not named in the Dst module.
 | |
|   // Make sure there are no type name conflicts.
 | |
|   if (LinkTypes(Dest, Src, ErrorMsg)) return true;
 | |
| 
 | |
|   // ValueMap - Mapping of values from what they used to be in Src, to what they
 | |
|   // are now in Dest.
 | |
|   std::map<const Value*, Value*> ValueMap;
 | |
| 
 | |
|   // AppendingVars - Keep track of global variables in the destination module
 | |
|   // with appending linkage.  After the module is linked together, they are
 | |
|   // appended and the module is rewritten.
 | |
|   std::multimap<std::string, GlobalVariable *> AppendingVars;
 | |
| 
 | |
|   // GlobalsByName - The LLVM SymbolTable class fights our best efforts at
 | |
|   // linking by separating globals by type.  Until PR411 is fixed, we replicate
 | |
|   // it's functionality here.
 | |
|   std::map<std::string, GlobalValue*> GlobalsByName;
 | |
| 
 | |
|   for (Module::global_iterator I = Dest->global_begin(), E = Dest->global_end();
 | |
|        I != E; ++I) {
 | |
|     // Add all of the appending globals already in the Dest module to
 | |
|     // AppendingVars.
 | |
|     if (I->hasAppendingLinkage())
 | |
|       AppendingVars.insert(std::make_pair(I->getName(), I));
 | |
| 
 | |
|     // Keep track of all globals by name.
 | |
|     if (!I->hasInternalLinkage() && I->hasName())
 | |
|       GlobalsByName[I->getName()] = I;
 | |
|   }
 | |
| 
 | |
|   // Keep track of all globals by name.
 | |
|   for (Module::iterator I = Dest->begin(), E = Dest->end(); I != E; ++I)
 | |
|     if (!I->hasInternalLinkage() && I->hasName())
 | |
|       GlobalsByName[I->getName()] = I;
 | |
| 
 | |
|   // Insert all of the globals in src into the Dest module... without linking
 | |
|   // initializers (which could refer to functions not yet mapped over).
 | |
|   if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, GlobalsByName, ErrorMsg))
 | |
|     return true;
 | |
| 
 | |
|   // Link the functions together between the two modules, without doing function
 | |
|   // bodies... this just adds external function prototypes to the Dest
 | |
|   // function...  We do this so that when we begin processing function bodies,
 | |
|   // all of the global values that may be referenced are available in our
 | |
|   // ValueMap.
 | |
|   if (LinkFunctionProtos(Dest, Src, ValueMap, GlobalsByName, ErrorMsg))
 | |
|     return true;
 | |
| 
 | |
|   // Update the initializers in the Dest module now that all globals that may
 | |
|   // be referenced are in Dest.
 | |
|   if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true;
 | |
| 
 | |
|   // Link in the function bodies that are defined in the source module into the
 | |
|   // DestModule.  This consists basically of copying the function over and
 | |
|   // fixing up references to values.
 | |
|   if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true;
 | |
| 
 | |
|   // If there were any appending global variables, link them together now.
 | |
|   if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true;
 | |
| 
 | |
|   // If the source library's module id is in the dependent library list of the
 | |
|   // destination library, remove it since that module is now linked in.
 | |
|   sys::Path modId;
 | |
|   modId.set(Src->getModuleIdentifier());
 | |
|   if (!modId.isEmpty())
 | |
|     Dest->removeLibrary(modId.getBasename());
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // vim: sw=2
 |