mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-25 16:31:33 +00:00
1653366010
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@29636 91177308-0d34-0410-b5e6-96231b3b80d8
249 lines
6.9 KiB
C++
249 lines
6.9 KiB
C++
//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Chris Lattner and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the SmallVector class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ADT_SMALLVECTOR_H
|
|
#define LLVM_ADT_SMALLVECTOR_H
|
|
|
|
#include <algorithm>
|
|
#include <iterator>
|
|
#include <memory>
|
|
|
|
namespace llvm {
|
|
|
|
/// SmallVectorImpl - This class consists of common code factored out of the
|
|
/// SmallVector class to reduce code duplication based on the SmallVector 'N'
|
|
/// template parameter.
|
|
template <typename T>
|
|
class SmallVectorImpl {
|
|
T *Begin, *End, *Capacity;
|
|
|
|
// Allocate raw space for N elements of type T. If T has a ctor or dtor, we
|
|
// don't want it to be automatically run, so we need to represent the space as
|
|
// something else. An array of char would work great, but might not be
|
|
// aligned sufficiently. Instead, we either use GCC extensions, or some
|
|
// number of union instances for the space, which guarantee maximal alignment.
|
|
protected:
|
|
union U {
|
|
double D;
|
|
long double LD;
|
|
long long L;
|
|
void *P;
|
|
} FirstEl;
|
|
// Space after 'FirstEl' is clobbered, do not add any instance vars after it.
|
|
public:
|
|
// Default ctor - Initialize to empty.
|
|
SmallVectorImpl(unsigned N)
|
|
: Begin((T*)&FirstEl), End((T*)&FirstEl), Capacity((T*)&FirstEl+N) {
|
|
}
|
|
|
|
~SmallVectorImpl() {
|
|
// Destroy the constructed elements in the vector.
|
|
for (iterator I = Begin, E = End; I != E; ++I)
|
|
I->~T();
|
|
|
|
// If this wasn't grown from the inline copy, deallocate the old space.
|
|
if (!isSmall())
|
|
delete[] (char*)Begin;
|
|
}
|
|
|
|
typedef size_t size_type;
|
|
typedef T* iterator;
|
|
typedef const T* const_iterator;
|
|
typedef T& reference;
|
|
typedef const T& const_reference;
|
|
|
|
bool empty() const { return Begin == End; }
|
|
size_type size() const { return End-Begin; }
|
|
|
|
iterator begin() { return Begin; }
|
|
const_iterator begin() const { return Begin; }
|
|
|
|
iterator end() { return End; }
|
|
const_iterator end() const { return End; }
|
|
|
|
reference operator[](unsigned idx) {
|
|
return Begin[idx];
|
|
}
|
|
const_reference operator[](unsigned idx) const {
|
|
return Begin[idx];
|
|
}
|
|
|
|
reference back() {
|
|
return end()[-1];
|
|
}
|
|
const_reference back() const {
|
|
return end()[-1];
|
|
}
|
|
|
|
void push_back(const_reference Elt) {
|
|
if (End < Capacity) {
|
|
Retry:
|
|
new (End) T(Elt);
|
|
++End;
|
|
return;
|
|
}
|
|
grow();
|
|
goto Retry;
|
|
}
|
|
|
|
void pop_back() {
|
|
--End;
|
|
End->~T();
|
|
}
|
|
|
|
void clear() {
|
|
while (End != Begin) {
|
|
End->~T();
|
|
--End;
|
|
}
|
|
}
|
|
|
|
/// append - Add the specified range to the end of the SmallVector.
|
|
///
|
|
template<typename in_iter>
|
|
void append(in_iter in_start, in_iter in_end) {
|
|
unsigned NumInputs = std::distance(in_start, in_end);
|
|
// Grow allocated space if needed.
|
|
if (End+NumInputs > Capacity)
|
|
grow(size()+NumInputs);
|
|
|
|
// Copy the new elements over.
|
|
std::uninitialized_copy(in_start, in_end, End);
|
|
End += NumInputs;
|
|
}
|
|
|
|
void assign(unsigned NumElts, const T &Elt) {
|
|
clear();
|
|
if (Begin+NumElts > Capacity)
|
|
grow(NumElts);
|
|
End = Begin+NumElts;
|
|
for (; NumElts; --NumElts)
|
|
new (Begin+NumElts-1) T(Elt);
|
|
}
|
|
|
|
const SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
|
|
|
|
private:
|
|
/// isSmall - Return true if this is a smallvector which has not had dynamic
|
|
/// memory allocated for it.
|
|
bool isSmall() const {
|
|
return (void*)Begin == (void*)&FirstEl;
|
|
}
|
|
|
|
/// grow - double the size of the allocated memory, guaranteeing space for at
|
|
/// least one more element or MinSize if specified.
|
|
void grow(unsigned MinSize = 0);
|
|
};
|
|
|
|
// Define this out-of-line to dissuade the C++ compiler from inlining it.
|
|
template <typename T>
|
|
void SmallVectorImpl<T>::grow(unsigned MinSize) {
|
|
unsigned CurCapacity = Capacity-Begin;
|
|
unsigned CurSize = size();
|
|
unsigned NewCapacity = 2*CurCapacity;
|
|
if (NewCapacity < MinSize)
|
|
NewCapacity = MinSize;
|
|
T *NewElts = reinterpret_cast<T*>(new char[NewCapacity*sizeof(T)]);
|
|
|
|
// Copy the elements over.
|
|
std::uninitialized_copy(Begin, End, NewElts);
|
|
|
|
// Destroy the original elements.
|
|
for (iterator I = Begin, E = End; I != E; ++I)
|
|
I->~T();
|
|
|
|
// If this wasn't grown from the inline copy, deallocate the old space.
|
|
if (!isSmall())
|
|
delete[] (char*)Begin;
|
|
|
|
Begin = NewElts;
|
|
End = NewElts+CurSize;
|
|
Capacity = Begin+NewCapacity;
|
|
}
|
|
|
|
template <typename T>
|
|
const SmallVectorImpl<T> &
|
|
SmallVectorImpl<T>::operator=(const SmallVectorImpl<T> &RHS) {
|
|
// Avoid self-assignment.
|
|
if (this == &RHS) return *this;
|
|
|
|
// If we already have sufficient space, assign the common elements, then
|
|
// destroy any excess.
|
|
unsigned RHSSize = RHS.size();
|
|
unsigned CurSize = size();
|
|
if (CurSize >= RHSSize) {
|
|
// Assign common elements.
|
|
std::copy(RHS.Begin, RHS.Begin+RHSSize, Begin);
|
|
|
|
// Destroy excess elements.
|
|
for (unsigned i = RHSSize; i != CurSize; ++i)
|
|
Begin[i].~T();
|
|
|
|
// Trim.
|
|
End = Begin + RHSSize;
|
|
return *this;
|
|
}
|
|
|
|
// If we have to grow to have enough elements, destroy the current elements.
|
|
// This allows us to avoid copying them during the grow.
|
|
if (Capacity-Begin < RHSSize) {
|
|
// Destroy current elements.
|
|
for (iterator I = Begin, E = End; I != E; ++I)
|
|
I->~T();
|
|
End = Begin;
|
|
CurSize = 0;
|
|
grow(RHSSize);
|
|
} else if (CurSize) {
|
|
// Otherwise, use assignment for the already-constructed elements.
|
|
std::copy(RHS.Begin, RHS.Begin+CurSize, Begin);
|
|
}
|
|
|
|
// Copy construct the new elements in place.
|
|
std::uninitialized_copy(RHS.Begin+CurSize, RHS.End, Begin+CurSize);
|
|
|
|
// Set end.
|
|
End = Begin+RHSSize;
|
|
}
|
|
|
|
/// SmallVector - This is a 'vector' (really, a variable-sized array), optimized
|
|
/// for the case when the array is small. It contains some number of elements
|
|
/// in-place, which allows it to avoid heap allocation when the actual number of
|
|
/// elements is below that threshold. This allows normal "small" cases to be
|
|
/// fast without losing generality for large inputs.
|
|
///
|
|
/// Note that this does not attempt to be exception safe.
|
|
///
|
|
template <typename T, unsigned N>
|
|
class SmallVector : public SmallVectorImpl<T> {
|
|
/// InlineElts - These are 'N-1' elements that are stored inline in the body
|
|
/// of the vector. The extra '1' element is stored in SmallVectorImpl.
|
|
typedef typename SmallVectorImpl<T>::U U;
|
|
U InlineElts[(sizeof(T)*N+sizeof(U)-1)/sizeof(U) - 1];
|
|
public:
|
|
SmallVector() : SmallVectorImpl<T>(N) {
|
|
}
|
|
|
|
template<typename ItTy>
|
|
SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
|
|
append(S, E);
|
|
}
|
|
|
|
SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
|
|
operator=(RHS);
|
|
}
|
|
};
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|