mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232998 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			756 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			756 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass performs a simple dominator tree walk that eliminates trivially
 | 
						|
// redundant instructions.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar/EarlyCSE.h"
 | 
						|
#include "llvm/ADT/Hashing.h"
 | 
						|
#include "llvm/ADT/ScopedHashTable.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AssumptionCache.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/RecyclingAllocator.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include <deque>
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::PatternMatch;
 | 
						|
 | 
						|
#define DEBUG_TYPE "early-cse"
 | 
						|
 | 
						|
STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
 | 
						|
STATISTIC(NumCSE,      "Number of instructions CSE'd");
 | 
						|
STATISTIC(NumCSELoad,  "Number of load instructions CSE'd");
 | 
						|
STATISTIC(NumCSECall,  "Number of call instructions CSE'd");
 | 
						|
STATISTIC(NumDSE,      "Number of trivial dead stores removed");
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// SimpleValue
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
/// \brief Struct representing the available values in the scoped hash table.
 | 
						|
struct SimpleValue {
 | 
						|
  Instruction *Inst;
 | 
						|
 | 
						|
  SimpleValue(Instruction *I) : Inst(I) {
 | 
						|
    assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
 | 
						|
  }
 | 
						|
 | 
						|
  bool isSentinel() const {
 | 
						|
    return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
 | 
						|
           Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
 | 
						|
  }
 | 
						|
 | 
						|
  static bool canHandle(Instruction *Inst) {
 | 
						|
    // This can only handle non-void readnone functions.
 | 
						|
    if (CallInst *CI = dyn_cast<CallInst>(Inst))
 | 
						|
      return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
 | 
						|
    return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) ||
 | 
						|
           isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) ||
 | 
						|
           isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
 | 
						|
           isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
 | 
						|
           isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst);
 | 
						|
  }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
template <> struct DenseMapInfo<SimpleValue> {
 | 
						|
  static inline SimpleValue getEmptyKey() {
 | 
						|
    return DenseMapInfo<Instruction *>::getEmptyKey();
 | 
						|
  }
 | 
						|
  static inline SimpleValue getTombstoneKey() {
 | 
						|
    return DenseMapInfo<Instruction *>::getTombstoneKey();
 | 
						|
  }
 | 
						|
  static unsigned getHashValue(SimpleValue Val);
 | 
						|
  static bool isEqual(SimpleValue LHS, SimpleValue RHS);
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
 | 
						|
  Instruction *Inst = Val.Inst;
 | 
						|
  // Hash in all of the operands as pointers.
 | 
						|
  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) {
 | 
						|
    Value *LHS = BinOp->getOperand(0);
 | 
						|
    Value *RHS = BinOp->getOperand(1);
 | 
						|
    if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
 | 
						|
      std::swap(LHS, RHS);
 | 
						|
 | 
						|
    if (isa<OverflowingBinaryOperator>(BinOp)) {
 | 
						|
      // Hash the overflow behavior
 | 
						|
      unsigned Overflow =
 | 
						|
          BinOp->hasNoSignedWrap() * OverflowingBinaryOperator::NoSignedWrap |
 | 
						|
          BinOp->hasNoUnsignedWrap() *
 | 
						|
              OverflowingBinaryOperator::NoUnsignedWrap;
 | 
						|
      return hash_combine(BinOp->getOpcode(), Overflow, LHS, RHS);
 | 
						|
    }
 | 
						|
 | 
						|
    return hash_combine(BinOp->getOpcode(), LHS, RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
 | 
						|
    Value *LHS = CI->getOperand(0);
 | 
						|
    Value *RHS = CI->getOperand(1);
 | 
						|
    CmpInst::Predicate Pred = CI->getPredicate();
 | 
						|
    if (Inst->getOperand(0) > Inst->getOperand(1)) {
 | 
						|
      std::swap(LHS, RHS);
 | 
						|
      Pred = CI->getSwappedPredicate();
 | 
						|
    }
 | 
						|
    return hash_combine(Inst->getOpcode(), Pred, LHS, RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  if (CastInst *CI = dyn_cast<CastInst>(Inst))
 | 
						|
    return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0));
 | 
						|
 | 
						|
  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst))
 | 
						|
    return hash_combine(EVI->getOpcode(), EVI->getOperand(0),
 | 
						|
                        hash_combine_range(EVI->idx_begin(), EVI->idx_end()));
 | 
						|
 | 
						|
  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst))
 | 
						|
    return hash_combine(IVI->getOpcode(), IVI->getOperand(0),
 | 
						|
                        IVI->getOperand(1),
 | 
						|
                        hash_combine_range(IVI->idx_begin(), IVI->idx_end()));
 | 
						|
 | 
						|
  assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) ||
 | 
						|
          isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) ||
 | 
						|
          isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
 | 
						|
          isa<ShuffleVectorInst>(Inst)) &&
 | 
						|
         "Invalid/unknown instruction");
 | 
						|
 | 
						|
  // Mix in the opcode.
 | 
						|
  return hash_combine(
 | 
						|
      Inst->getOpcode(),
 | 
						|
      hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
 | 
						|
}
 | 
						|
 | 
						|
bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
 | 
						|
  Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
 | 
						|
 | 
						|
  if (LHS.isSentinel() || RHS.isSentinel())
 | 
						|
    return LHSI == RHSI;
 | 
						|
 | 
						|
  if (LHSI->getOpcode() != RHSI->getOpcode())
 | 
						|
    return false;
 | 
						|
  if (LHSI->isIdenticalTo(RHSI))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If we're not strictly identical, we still might be a commutable instruction
 | 
						|
  if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
 | 
						|
    if (!LHSBinOp->isCommutative())
 | 
						|
      return false;
 | 
						|
 | 
						|
    assert(isa<BinaryOperator>(RHSI) &&
 | 
						|
           "same opcode, but different instruction type?");
 | 
						|
    BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);
 | 
						|
 | 
						|
    // Check overflow attributes
 | 
						|
    if (isa<OverflowingBinaryOperator>(LHSBinOp)) {
 | 
						|
      assert(isa<OverflowingBinaryOperator>(RHSBinOp) &&
 | 
						|
             "same opcode, but different operator type?");
 | 
						|
      if (LHSBinOp->hasNoUnsignedWrap() != RHSBinOp->hasNoUnsignedWrap() ||
 | 
						|
          LHSBinOp->hasNoSignedWrap() != RHSBinOp->hasNoSignedWrap())
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Commuted equality
 | 
						|
    return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
 | 
						|
           LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
 | 
						|
  }
 | 
						|
  if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
 | 
						|
    assert(isa<CmpInst>(RHSI) &&
 | 
						|
           "same opcode, but different instruction type?");
 | 
						|
    CmpInst *RHSCmp = cast<CmpInst>(RHSI);
 | 
						|
    // Commuted equality
 | 
						|
    return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
 | 
						|
           LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
 | 
						|
           LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// CallValue
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
/// \brief Struct representing the available call values in the scoped hash
 | 
						|
/// table.
 | 
						|
struct CallValue {
 | 
						|
  Instruction *Inst;
 | 
						|
 | 
						|
  CallValue(Instruction *I) : Inst(I) {
 | 
						|
    assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
 | 
						|
  }
 | 
						|
 | 
						|
  bool isSentinel() const {
 | 
						|
    return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
 | 
						|
           Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
 | 
						|
  }
 | 
						|
 | 
						|
  static bool canHandle(Instruction *Inst) {
 | 
						|
    // Don't value number anything that returns void.
 | 
						|
    if (Inst->getType()->isVoidTy())
 | 
						|
      return false;
 | 
						|
 | 
						|
    CallInst *CI = dyn_cast<CallInst>(Inst);
 | 
						|
    if (!CI || !CI->onlyReadsMemory())
 | 
						|
      return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
template <> struct DenseMapInfo<CallValue> {
 | 
						|
  static inline CallValue getEmptyKey() {
 | 
						|
    return DenseMapInfo<Instruction *>::getEmptyKey();
 | 
						|
  }
 | 
						|
  static inline CallValue getTombstoneKey() {
 | 
						|
    return DenseMapInfo<Instruction *>::getTombstoneKey();
 | 
						|
  }
 | 
						|
  static unsigned getHashValue(CallValue Val);
 | 
						|
  static bool isEqual(CallValue LHS, CallValue RHS);
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
 | 
						|
  Instruction *Inst = Val.Inst;
 | 
						|
  // Hash all of the operands as pointers and mix in the opcode.
 | 
						|
  return hash_combine(
 | 
						|
      Inst->getOpcode(),
 | 
						|
      hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
 | 
						|
}
 | 
						|
 | 
						|
bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
 | 
						|
  Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
 | 
						|
  if (LHS.isSentinel() || RHS.isSentinel())
 | 
						|
    return LHSI == RHSI;
 | 
						|
  return LHSI->isIdenticalTo(RHSI);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// EarlyCSE implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
/// \brief A simple and fast domtree-based CSE pass.
 | 
						|
///
 | 
						|
/// This pass does a simple depth-first walk over the dominator tree,
 | 
						|
/// eliminating trivially redundant instructions and using instsimplify to
 | 
						|
/// canonicalize things as it goes. It is intended to be fast and catch obvious
 | 
						|
/// cases so that instcombine and other passes are more effective. It is
 | 
						|
/// expected that a later pass of GVN will catch the interesting/hard cases.
 | 
						|
class EarlyCSE {
 | 
						|
public:
 | 
						|
  Function &F;
 | 
						|
  const TargetLibraryInfo &TLI;
 | 
						|
  const TargetTransformInfo &TTI;
 | 
						|
  DominatorTree &DT;
 | 
						|
  AssumptionCache &AC;
 | 
						|
  typedef RecyclingAllocator<
 | 
						|
      BumpPtrAllocator, ScopedHashTableVal<SimpleValue, Value *>> AllocatorTy;
 | 
						|
  typedef ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>,
 | 
						|
                          AllocatorTy> ScopedHTType;
 | 
						|
 | 
						|
  /// \brief A scoped hash table of the current values of all of our simple
 | 
						|
  /// scalar expressions.
 | 
						|
  ///
 | 
						|
  /// As we walk down the domtree, we look to see if instructions are in this:
 | 
						|
  /// if so, we replace them with what we find, otherwise we insert them so
 | 
						|
  /// that dominated values can succeed in their lookup.
 | 
						|
  ScopedHTType AvailableValues;
 | 
						|
 | 
						|
  /// \brief A scoped hash table of the current values of loads.
 | 
						|
  ///
 | 
						|
  /// This allows us to get efficient access to dominating loads when we have
 | 
						|
  /// a fully redundant load.  In addition to the most recent load, we keep
 | 
						|
  /// track of a generation count of the read, which is compared against the
 | 
						|
  /// current generation count.  The current generation count is incremented
 | 
						|
  /// after every possibly writing memory operation, which ensures that we only
 | 
						|
  /// CSE loads with other loads that have no intervening store.
 | 
						|
  typedef RecyclingAllocator<
 | 
						|
      BumpPtrAllocator,
 | 
						|
      ScopedHashTableVal<Value *, std::pair<Value *, unsigned>>>
 | 
						|
      LoadMapAllocator;
 | 
						|
  typedef ScopedHashTable<Value *, std::pair<Value *, unsigned>,
 | 
						|
                          DenseMapInfo<Value *>, LoadMapAllocator> LoadHTType;
 | 
						|
  LoadHTType AvailableLoads;
 | 
						|
 | 
						|
  /// \brief A scoped hash table of the current values of read-only call
 | 
						|
  /// values.
 | 
						|
  ///
 | 
						|
  /// It uses the same generation count as loads.
 | 
						|
  typedef ScopedHashTable<CallValue, std::pair<Value *, unsigned>> CallHTType;
 | 
						|
  CallHTType AvailableCalls;
 | 
						|
 | 
						|
  /// \brief This is the current generation of the memory value.
 | 
						|
  unsigned CurrentGeneration;
 | 
						|
 | 
						|
  /// \brief Set up the EarlyCSE runner for a particular function.
 | 
						|
  EarlyCSE(Function &F, const TargetLibraryInfo &TLI,
 | 
						|
           const TargetTransformInfo &TTI, DominatorTree &DT,
 | 
						|
           AssumptionCache &AC)
 | 
						|
      : F(F), TLI(TLI), TTI(TTI), DT(DT), AC(AC), CurrentGeneration(0) {}
 | 
						|
 | 
						|
  bool run();
 | 
						|
 | 
						|
private:
 | 
						|
  // Almost a POD, but needs to call the constructors for the scoped hash
 | 
						|
  // tables so that a new scope gets pushed on. These are RAII so that the
 | 
						|
  // scope gets popped when the NodeScope is destroyed.
 | 
						|
  class NodeScope {
 | 
						|
  public:
 | 
						|
    NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
 | 
						|
              CallHTType &AvailableCalls)
 | 
						|
        : Scope(AvailableValues), LoadScope(AvailableLoads),
 | 
						|
          CallScope(AvailableCalls) {}
 | 
						|
 | 
						|
  private:
 | 
						|
    NodeScope(const NodeScope &) = delete;
 | 
						|
    void operator=(const NodeScope &) = delete;
 | 
						|
 | 
						|
    ScopedHTType::ScopeTy Scope;
 | 
						|
    LoadHTType::ScopeTy LoadScope;
 | 
						|
    CallHTType::ScopeTy CallScope;
 | 
						|
  };
 | 
						|
 | 
						|
  // Contains all the needed information to create a stack for doing a depth
 | 
						|
  // first tranversal of the tree. This includes scopes for values, loads, and
 | 
						|
  // calls as well as the generation. There is a child iterator so that the
 | 
						|
  // children do not need to be store spearately.
 | 
						|
  class StackNode {
 | 
						|
  public:
 | 
						|
    StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
 | 
						|
              CallHTType &AvailableCalls, unsigned cg, DomTreeNode *n,
 | 
						|
              DomTreeNode::iterator child, DomTreeNode::iterator end)
 | 
						|
        : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child),
 | 
						|
          EndIter(end), Scopes(AvailableValues, AvailableLoads, AvailableCalls),
 | 
						|
          Processed(false) {}
 | 
						|
 | 
						|
    // Accessors.
 | 
						|
    unsigned currentGeneration() { return CurrentGeneration; }
 | 
						|
    unsigned childGeneration() { return ChildGeneration; }
 | 
						|
    void childGeneration(unsigned generation) { ChildGeneration = generation; }
 | 
						|
    DomTreeNode *node() { return Node; }
 | 
						|
    DomTreeNode::iterator childIter() { return ChildIter; }
 | 
						|
    DomTreeNode *nextChild() {
 | 
						|
      DomTreeNode *child = *ChildIter;
 | 
						|
      ++ChildIter;
 | 
						|
      return child;
 | 
						|
    }
 | 
						|
    DomTreeNode::iterator end() { return EndIter; }
 | 
						|
    bool isProcessed() { return Processed; }
 | 
						|
    void process() { Processed = true; }
 | 
						|
 | 
						|
  private:
 | 
						|
    StackNode(const StackNode &) = delete;
 | 
						|
    void operator=(const StackNode &) = delete;
 | 
						|
 | 
						|
    // Members.
 | 
						|
    unsigned CurrentGeneration;
 | 
						|
    unsigned ChildGeneration;
 | 
						|
    DomTreeNode *Node;
 | 
						|
    DomTreeNode::iterator ChildIter;
 | 
						|
    DomTreeNode::iterator EndIter;
 | 
						|
    NodeScope Scopes;
 | 
						|
    bool Processed;
 | 
						|
  };
 | 
						|
 | 
						|
  /// \brief Wrapper class to handle memory instructions, including loads,
 | 
						|
  /// stores and intrinsic loads and stores defined by the target.
 | 
						|
  class ParseMemoryInst {
 | 
						|
  public:
 | 
						|
    ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI)
 | 
						|
        : Load(false), Store(false), Vol(false), MayReadFromMemory(false),
 | 
						|
          MayWriteToMemory(false), MatchingId(-1), Ptr(nullptr) {
 | 
						|
      MayReadFromMemory = Inst->mayReadFromMemory();
 | 
						|
      MayWriteToMemory = Inst->mayWriteToMemory();
 | 
						|
      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
 | 
						|
        MemIntrinsicInfo Info;
 | 
						|
        if (!TTI.getTgtMemIntrinsic(II, Info))
 | 
						|
          return;
 | 
						|
        if (Info.NumMemRefs == 1) {
 | 
						|
          Store = Info.WriteMem;
 | 
						|
          Load = Info.ReadMem;
 | 
						|
          MatchingId = Info.MatchingId;
 | 
						|
          MayReadFromMemory = Info.ReadMem;
 | 
						|
          MayWriteToMemory = Info.WriteMem;
 | 
						|
          Vol = Info.Vol;
 | 
						|
          Ptr = Info.PtrVal;
 | 
						|
        }
 | 
						|
      } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
 | 
						|
        Load = true;
 | 
						|
        Vol = !LI->isSimple();
 | 
						|
        Ptr = LI->getPointerOperand();
 | 
						|
      } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
 | 
						|
        Store = true;
 | 
						|
        Vol = !SI->isSimple();
 | 
						|
        Ptr = SI->getPointerOperand();
 | 
						|
      }
 | 
						|
    }
 | 
						|
    bool isLoad() { return Load; }
 | 
						|
    bool isStore() { return Store; }
 | 
						|
    bool isVolatile() { return Vol; }
 | 
						|
    bool isMatchingMemLoc(const ParseMemoryInst &Inst) {
 | 
						|
      return Ptr == Inst.Ptr && MatchingId == Inst.MatchingId;
 | 
						|
    }
 | 
						|
    bool isValid() { return Ptr != nullptr; }
 | 
						|
    int getMatchingId() { return MatchingId; }
 | 
						|
    Value *getPtr() { return Ptr; }
 | 
						|
    bool mayReadFromMemory() { return MayReadFromMemory; }
 | 
						|
    bool mayWriteToMemory() { return MayWriteToMemory; }
 | 
						|
 | 
						|
  private:
 | 
						|
    bool Load;
 | 
						|
    bool Store;
 | 
						|
    bool Vol;
 | 
						|
    bool MayReadFromMemory;
 | 
						|
    bool MayWriteToMemory;
 | 
						|
    // For regular (non-intrinsic) loads/stores, this is set to -1. For
 | 
						|
    // intrinsic loads/stores, the id is retrieved from the corresponding
 | 
						|
    // field in the MemIntrinsicInfo structure.  That field contains
 | 
						|
    // non-negative values only.
 | 
						|
    int MatchingId;
 | 
						|
    Value *Ptr;
 | 
						|
  };
 | 
						|
 | 
						|
  bool processNode(DomTreeNode *Node);
 | 
						|
 | 
						|
  Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const {
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
 | 
						|
      return LI;
 | 
						|
    else if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
 | 
						|
      return SI->getValueOperand();
 | 
						|
    assert(isa<IntrinsicInst>(Inst) && "Instruction not supported");
 | 
						|
    return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst),
 | 
						|
                                                 ExpectedType);
 | 
						|
  }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
bool EarlyCSE::processNode(DomTreeNode *Node) {
 | 
						|
  BasicBlock *BB = Node->getBlock();
 | 
						|
 | 
						|
  // If this block has a single predecessor, then the predecessor is the parent
 | 
						|
  // of the domtree node and all of the live out memory values are still current
 | 
						|
  // in this block.  If this block has multiple predecessors, then they could
 | 
						|
  // have invalidated the live-out memory values of our parent value.  For now,
 | 
						|
  // just be conservative and invalidate memory if this block has multiple
 | 
						|
  // predecessors.
 | 
						|
  if (!BB->getSinglePredecessor())
 | 
						|
    ++CurrentGeneration;
 | 
						|
 | 
						|
  /// LastStore - Keep track of the last non-volatile store that we saw... for
 | 
						|
  /// as long as there in no instruction that reads memory.  If we see a store
 | 
						|
  /// to the same location, we delete the dead store.  This zaps trivial dead
 | 
						|
  /// stores which can occur in bitfield code among other things.
 | 
						|
  Instruction *LastStore = nullptr;
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  const DataLayout &DL = BB->getModule()->getDataLayout();
 | 
						|
 | 
						|
  // See if any instructions in the block can be eliminated.  If so, do it.  If
 | 
						|
  // not, add them to AvailableValues.
 | 
						|
  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
 | 
						|
    Instruction *Inst = I++;
 | 
						|
 | 
						|
    // Dead instructions should just be removed.
 | 
						|
    if (isInstructionTriviallyDead(Inst, &TLI)) {
 | 
						|
      DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n');
 | 
						|
      Inst->eraseFromParent();
 | 
						|
      Changed = true;
 | 
						|
      ++NumSimplify;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Skip assume intrinsics, they don't really have side effects (although
 | 
						|
    // they're marked as such to ensure preservation of control dependencies),
 | 
						|
    // and this pass will not disturb any of the assumption's control
 | 
						|
    // dependencies.
 | 
						|
    if (match(Inst, m_Intrinsic<Intrinsic::assume>())) {
 | 
						|
      DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n');
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the instruction can be simplified (e.g. X+0 = X) then replace it with
 | 
						|
    // its simpler value.
 | 
						|
    if (Value *V = SimplifyInstruction(Inst, DL, &TLI, &DT, &AC)) {
 | 
						|
      DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << "  to: " << *V << '\n');
 | 
						|
      Inst->replaceAllUsesWith(V);
 | 
						|
      Inst->eraseFromParent();
 | 
						|
      Changed = true;
 | 
						|
      ++NumSimplify;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a simple instruction that we can value number, process it.
 | 
						|
    if (SimpleValue::canHandle(Inst)) {
 | 
						|
      // See if the instruction has an available value.  If so, use it.
 | 
						|
      if (Value *V = AvailableValues.lookup(Inst)) {
 | 
						|
        DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << "  to: " << *V << '\n');
 | 
						|
        Inst->replaceAllUsesWith(V);
 | 
						|
        Inst->eraseFromParent();
 | 
						|
        Changed = true;
 | 
						|
        ++NumCSE;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Otherwise, just remember that this value is available.
 | 
						|
      AvailableValues.insert(Inst, Inst);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    ParseMemoryInst MemInst(Inst, TTI);
 | 
						|
    // If this is a non-volatile load, process it.
 | 
						|
    if (MemInst.isValid() && MemInst.isLoad()) {
 | 
						|
      // Ignore volatile loads.
 | 
						|
      if (MemInst.isVolatile()) {
 | 
						|
        LastStore = nullptr;
 | 
						|
        // Don't CSE across synchronization boundaries.
 | 
						|
        if (Inst->mayWriteToMemory())
 | 
						|
          ++CurrentGeneration;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // If we have an available version of this load, and if it is the right
 | 
						|
      // generation, replace this instruction.
 | 
						|
      std::pair<Value *, unsigned> InVal =
 | 
						|
          AvailableLoads.lookup(MemInst.getPtr());
 | 
						|
      if (InVal.first != nullptr && InVal.second == CurrentGeneration) {
 | 
						|
        Value *Op = getOrCreateResult(InVal.first, Inst->getType());
 | 
						|
        if (Op != nullptr) {
 | 
						|
          DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst
 | 
						|
                       << "  to: " << *InVal.first << '\n');
 | 
						|
          if (!Inst->use_empty())
 | 
						|
            Inst->replaceAllUsesWith(Op);
 | 
						|
          Inst->eraseFromParent();
 | 
						|
          Changed = true;
 | 
						|
          ++NumCSELoad;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Otherwise, remember that we have this instruction.
 | 
						|
      AvailableLoads.insert(MemInst.getPtr(), std::pair<Value *, unsigned>(
 | 
						|
                                                  Inst, CurrentGeneration));
 | 
						|
      LastStore = nullptr;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this instruction may read from memory, forget LastStore.
 | 
						|
    // Load/store intrinsics will indicate both a read and a write to
 | 
						|
    // memory.  The target may override this (e.g. so that a store intrinsic
 | 
						|
    // does not read  from memory, and thus will be treated the same as a
 | 
						|
    // regular store for commoning purposes).
 | 
						|
    if (Inst->mayReadFromMemory() &&
 | 
						|
        !(MemInst.isValid() && !MemInst.mayReadFromMemory()))
 | 
						|
      LastStore = nullptr;
 | 
						|
 | 
						|
    // If this is a read-only call, process it.
 | 
						|
    if (CallValue::canHandle(Inst)) {
 | 
						|
      // If we have an available version of this call, and if it is the right
 | 
						|
      // generation, replace this instruction.
 | 
						|
      std::pair<Value *, unsigned> InVal = AvailableCalls.lookup(Inst);
 | 
						|
      if (InVal.first != nullptr && InVal.second == CurrentGeneration) {
 | 
						|
        DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst
 | 
						|
                     << "  to: " << *InVal.first << '\n');
 | 
						|
        if (!Inst->use_empty())
 | 
						|
          Inst->replaceAllUsesWith(InVal.first);
 | 
						|
        Inst->eraseFromParent();
 | 
						|
        Changed = true;
 | 
						|
        ++NumCSECall;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Otherwise, remember that we have this instruction.
 | 
						|
      AvailableCalls.insert(
 | 
						|
          Inst, std::pair<Value *, unsigned>(Inst, CurrentGeneration));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Okay, this isn't something we can CSE at all.  Check to see if it is
 | 
						|
    // something that could modify memory.  If so, our available memory values
 | 
						|
    // cannot be used so bump the generation count.
 | 
						|
    if (Inst->mayWriteToMemory()) {
 | 
						|
      ++CurrentGeneration;
 | 
						|
 | 
						|
      if (MemInst.isValid() && MemInst.isStore()) {
 | 
						|
        // We do a trivial form of DSE if there are two stores to the same
 | 
						|
        // location with no intervening loads.  Delete the earlier store.
 | 
						|
        if (LastStore) {
 | 
						|
          ParseMemoryInst LastStoreMemInst(LastStore, TTI);
 | 
						|
          if (LastStoreMemInst.isMatchingMemLoc(MemInst)) {
 | 
						|
            DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore
 | 
						|
                         << "  due to: " << *Inst << '\n');
 | 
						|
            LastStore->eraseFromParent();
 | 
						|
            Changed = true;
 | 
						|
            ++NumDSE;
 | 
						|
            LastStore = nullptr;
 | 
						|
          }
 | 
						|
          // fallthrough - we can exploit information about this store
 | 
						|
        }
 | 
						|
 | 
						|
        // Okay, we just invalidated anything we knew about loaded values.  Try
 | 
						|
        // to salvage *something* by remembering that the stored value is a live
 | 
						|
        // version of the pointer.  It is safe to forward from volatile stores
 | 
						|
        // to non-volatile loads, so we don't have to check for volatility of
 | 
						|
        // the store.
 | 
						|
        AvailableLoads.insert(MemInst.getPtr(), std::pair<Value *, unsigned>(
 | 
						|
                                                    Inst, CurrentGeneration));
 | 
						|
 | 
						|
        // Remember that this was the last store we saw for DSE.
 | 
						|
        if (!MemInst.isVolatile())
 | 
						|
          LastStore = Inst;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool EarlyCSE::run() {
 | 
						|
  // Note, deque is being used here because there is significant performance
 | 
						|
  // gains over vector when the container becomes very large due to the
 | 
						|
  // specific access patterns. For more information see the mailing list
 | 
						|
  // discussion on this:
 | 
						|
  // http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
 | 
						|
  std::deque<StackNode *> nodesToProcess;
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // Process the root node.
 | 
						|
  nodesToProcess.push_back(new StackNode(
 | 
						|
      AvailableValues, AvailableLoads, AvailableCalls, CurrentGeneration,
 | 
						|
      DT.getRootNode(), DT.getRootNode()->begin(), DT.getRootNode()->end()));
 | 
						|
 | 
						|
  // Save the current generation.
 | 
						|
  unsigned LiveOutGeneration = CurrentGeneration;
 | 
						|
 | 
						|
  // Process the stack.
 | 
						|
  while (!nodesToProcess.empty()) {
 | 
						|
    // Grab the first item off the stack. Set the current generation, remove
 | 
						|
    // the node from the stack, and process it.
 | 
						|
    StackNode *NodeToProcess = nodesToProcess.back();
 | 
						|
 | 
						|
    // Initialize class members.
 | 
						|
    CurrentGeneration = NodeToProcess->currentGeneration();
 | 
						|
 | 
						|
    // Check if the node needs to be processed.
 | 
						|
    if (!NodeToProcess->isProcessed()) {
 | 
						|
      // Process the node.
 | 
						|
      Changed |= processNode(NodeToProcess->node());
 | 
						|
      NodeToProcess->childGeneration(CurrentGeneration);
 | 
						|
      NodeToProcess->process();
 | 
						|
    } else if (NodeToProcess->childIter() != NodeToProcess->end()) {
 | 
						|
      // Push the next child onto the stack.
 | 
						|
      DomTreeNode *child = NodeToProcess->nextChild();
 | 
						|
      nodesToProcess.push_back(
 | 
						|
          new StackNode(AvailableValues, AvailableLoads, AvailableCalls,
 | 
						|
                        NodeToProcess->childGeneration(), child, child->begin(),
 | 
						|
                        child->end()));
 | 
						|
    } else {
 | 
						|
      // It has been processed, and there are no more children to process,
 | 
						|
      // so delete it and pop it off the stack.
 | 
						|
      delete NodeToProcess;
 | 
						|
      nodesToProcess.pop_back();
 | 
						|
    }
 | 
						|
  } // while (!nodes...)
 | 
						|
 | 
						|
  // Reset the current generation.
 | 
						|
  CurrentGeneration = LiveOutGeneration;
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses EarlyCSEPass::run(Function &F,
 | 
						|
                                    AnalysisManager<Function> *AM) {
 | 
						|
  auto &TLI = AM->getResult<TargetLibraryAnalysis>(F);
 | 
						|
  auto &TTI = AM->getResult<TargetIRAnalysis>(F);
 | 
						|
  auto &DT = AM->getResult<DominatorTreeAnalysis>(F);
 | 
						|
  auto &AC = AM->getResult<AssumptionAnalysis>(F);
 | 
						|
 | 
						|
  EarlyCSE CSE(F, TLI, TTI, DT, AC);
 | 
						|
 | 
						|
  if (!CSE.run())
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
 | 
						|
  // CSE preserves the dominator tree because it doesn't mutate the CFG.
 | 
						|
  // FIXME: Bundle this with other CFG-preservation.
 | 
						|
  PreservedAnalyses PA;
 | 
						|
  PA.preserve<DominatorTreeAnalysis>();
 | 
						|
  return PA;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
/// \brief A simple and fast domtree-based CSE pass.
 | 
						|
///
 | 
						|
/// This pass does a simple depth-first walk over the dominator tree,
 | 
						|
/// eliminating trivially redundant instructions and using instsimplify to
 | 
						|
/// canonicalize things as it goes. It is intended to be fast and catch obvious
 | 
						|
/// cases so that instcombine and other passes are more effective. It is
 | 
						|
/// expected that a later pass of GVN will catch the interesting/hard cases.
 | 
						|
class EarlyCSELegacyPass : public FunctionPass {
 | 
						|
public:
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  EarlyCSELegacyPass() : FunctionPass(ID) {
 | 
						|
    initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnFunction(Function &F) override {
 | 
						|
    if (skipOptnoneFunction(F))
 | 
						|
      return false;
 | 
						|
 | 
						|
    auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 | 
						|
    auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
 | 
						|
    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
    auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
 | 
						|
 | 
						|
    EarlyCSE CSE(F, TLI, TTI, DT, AC);
 | 
						|
 | 
						|
    return CSE.run();
 | 
						|
  }
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.addRequired<AssumptionCacheTracker>();
 | 
						|
    AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
    AU.addRequired<TargetLibraryInfoWrapperPass>();
 | 
						|
    AU.addRequired<TargetTransformInfoWrapperPass>();
 | 
						|
    AU.setPreservesCFG();
 | 
						|
  }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
char EarlyCSELegacyPass::ID = 0;
 | 
						|
 | 
						|
FunctionPass *llvm::createEarlyCSEPass() { return new EarlyCSELegacyPass(); }
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false,
 | 
						|
                      false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false)
 |