mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64381 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			893 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			893 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- RegAllocBigBlock.cpp - A register allocator for large basic blocks -===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the RABigBlock class
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// This register allocator is derived from RegAllocLocal.cpp. Like it, this
 | 
						|
// allocator works on one basic block at a time, oblivious to others.
 | 
						|
// However, the algorithm used here is suited for long blocks of
 | 
						|
// instructions - registers are spilled by greedily choosing those holding
 | 
						|
// values that will not be needed for the longest amount of time. This works
 | 
						|
// particularly well for blocks with 10 or more times as many instructions
 | 
						|
// as machine registers, but can be used for general code.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// TODO: - automagically invoke linearscan for (groups of) small BBs?
 | 
						|
//       - break ties when picking regs? (probably not worth it in a
 | 
						|
//         JIT context)
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "regalloc"
 | 
						|
#include "llvm/BasicBlock.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/LiveVariables.h"
 | 
						|
#include "llvm/CodeGen/RegAllocRegistry.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/ADT/IndexedMap.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumStores, "Number of stores added");
 | 
						|
STATISTIC(NumLoads , "Number of loads added");
 | 
						|
STATISTIC(NumFolded, "Number of loads/stores folded into instructions");
 | 
						|
 | 
						|
static RegisterRegAlloc
 | 
						|
  bigBlockRegAlloc("bigblock", "Big-block register allocator",
 | 
						|
                createBigBlockRegisterAllocator);
 | 
						|
 | 
						|
namespace {
 | 
						|
/// VRegKeyInfo - Defines magic values required to use VirtRegs as DenseMap
 | 
						|
/// keys.
 | 
						|
  struct VRegKeyInfo {
 | 
						|
    static inline unsigned getEmptyKey() { return -1U; }
 | 
						|
    static inline unsigned getTombstoneKey() { return -2U; }
 | 
						|
    static bool isEqual(unsigned LHS, unsigned RHS) { return LHS == RHS; }
 | 
						|
    static unsigned getHashValue(const unsigned &Key) { return Key; }
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
/// This register allocator is derived from RegAllocLocal.cpp. Like it, this
 | 
						|
/// allocator works on one basic block at a time, oblivious to others.
 | 
						|
/// However, the algorithm used here is suited for long blocks of
 | 
						|
/// instructions - registers are spilled by greedily choosing those holding
 | 
						|
/// values that will not be needed for the longest amount of time. This works
 | 
						|
/// particularly well for blocks with 10 or more times as many instructions
 | 
						|
/// as machine registers, but can be used for general code.
 | 
						|
///
 | 
						|
/// TODO: - automagically invoke linearscan for (groups of) small BBs?
 | 
						|
///       - break ties when picking regs? (probably not worth it in a
 | 
						|
///         JIT context)
 | 
						|
///
 | 
						|
  class VISIBILITY_HIDDEN RABigBlock : public MachineFunctionPass {
 | 
						|
  public:
 | 
						|
    static char ID;
 | 
						|
    RABigBlock() : MachineFunctionPass(&ID) {}
 | 
						|
  private:
 | 
						|
    /// TM - For getting at TargetMachine info 
 | 
						|
    ///
 | 
						|
    const TargetMachine *TM;
 | 
						|
    
 | 
						|
    /// MF - Our generic MachineFunction pointer
 | 
						|
    ///
 | 
						|
    MachineFunction *MF;
 | 
						|
    
 | 
						|
    /// RegInfo - For dealing with machine register info (aliases, folds
 | 
						|
    /// etc)
 | 
						|
    const TargetRegisterInfo *RegInfo;
 | 
						|
 | 
						|
    typedef SmallVector<unsigned, 2> VRegTimes;
 | 
						|
 | 
						|
    /// VRegReadTable - maps VRegs in a BB to the set of times they are read
 | 
						|
    ///
 | 
						|
    DenseMap<unsigned, VRegTimes*, VRegKeyInfo> VRegReadTable;
 | 
						|
 | 
						|
    /// VRegReadIdx - keeps track of the "current time" in terms of
 | 
						|
    /// positions in VRegReadTable
 | 
						|
    DenseMap<unsigned, unsigned , VRegKeyInfo> VRegReadIdx;
 | 
						|
 | 
						|
    /// StackSlotForVirtReg - Maps virtual regs to the frame index where these
 | 
						|
    /// values are spilled.
 | 
						|
    IndexedMap<unsigned, VirtReg2IndexFunctor> StackSlotForVirtReg;
 | 
						|
 | 
						|
    /// Virt2PhysRegMap - This map contains entries for each virtual register
 | 
						|
    /// that is currently available in a physical register.
 | 
						|
    IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap;
 | 
						|
 | 
						|
    /// PhysRegsUsed - This array is effectively a map, containing entries for
 | 
						|
    /// each physical register that currently has a value (ie, it is in
 | 
						|
    /// Virt2PhysRegMap).  The value mapped to is the virtual register
 | 
						|
    /// corresponding to the physical register (the inverse of the
 | 
						|
    /// Virt2PhysRegMap), or 0.  The value is set to 0 if this register is pinned
 | 
						|
    /// because it is used by a future instruction, and to -2 if it is not
 | 
						|
    /// allocatable.  If the entry for a physical register is -1, then the
 | 
						|
    /// physical register is "not in the map".
 | 
						|
    ///
 | 
						|
    std::vector<int> PhysRegsUsed;
 | 
						|
 | 
						|
    /// VirtRegModified - This bitset contains information about which virtual
 | 
						|
    /// registers need to be spilled back to memory when their registers are
 | 
						|
    /// scavenged.  If a virtual register has simply been rematerialized, there
 | 
						|
    /// is no reason to spill it to memory when we need the register back.
 | 
						|
    ///
 | 
						|
    std::vector<int> VirtRegModified;
 | 
						|
 | 
						|
    /// MBBLastInsnTime - the number of the the last instruction in MBB
 | 
						|
    ///
 | 
						|
    int MBBLastInsnTime;
 | 
						|
 | 
						|
    /// MBBCurTime - the number of the the instruction being currently processed
 | 
						|
    ///
 | 
						|
    int MBBCurTime;
 | 
						|
 | 
						|
    unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) {
 | 
						|
      return Virt2PhysRegMap[VirtReg];
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned &getVirt2StackSlot(unsigned VirtReg) {
 | 
						|
      return StackSlotForVirtReg[VirtReg];
 | 
						|
    }
 | 
						|
 | 
						|
    /// markVirtRegModified - Lets us flip bits in the VirtRegModified bitset
 | 
						|
    ///
 | 
						|
    void markVirtRegModified(unsigned Reg, bool Val = true) {
 | 
						|
      assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
 | 
						|
      Reg -= TargetRegisterInfo::FirstVirtualRegister;
 | 
						|
      if (VirtRegModified.size() <= Reg)
 | 
						|
        VirtRegModified.resize(Reg+1);
 | 
						|
      VirtRegModified[Reg] = Val;
 | 
						|
    }
 | 
						|
    
 | 
						|
    /// isVirtRegModified - Lets us query the VirtRegModified bitset
 | 
						|
    ///
 | 
						|
    bool isVirtRegModified(unsigned Reg) const {
 | 
						|
      assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
 | 
						|
      assert(Reg - TargetRegisterInfo::FirstVirtualRegister < VirtRegModified.size()
 | 
						|
             && "Illegal virtual register!");
 | 
						|
      return VirtRegModified[Reg - TargetRegisterInfo::FirstVirtualRegister];
 | 
						|
    }
 | 
						|
 | 
						|
  public:
 | 
						|
    /// getPassName - returns the BigBlock allocator's name
 | 
						|
    ///
 | 
						|
    virtual const char *getPassName() const {
 | 
						|
      return "BigBlock Register Allocator";
 | 
						|
    }
 | 
						|
 | 
						|
    /// getAnalaysisUsage - declares the required analyses
 | 
						|
    ///
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addRequiredID(PHIEliminationID);
 | 
						|
      AU.addRequiredID(TwoAddressInstructionPassID);
 | 
						|
      MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    /// runOnMachineFunction - Register allocate the whole function
 | 
						|
    ///
 | 
						|
    bool runOnMachineFunction(MachineFunction &Fn);
 | 
						|
 | 
						|
    /// AllocateBasicBlock - Register allocate the specified basic block.
 | 
						|
    ///
 | 
						|
    void AllocateBasicBlock(MachineBasicBlock &MBB);
 | 
						|
 | 
						|
    /// FillVRegReadTable - Fill out the table of vreg read times given a BB
 | 
						|
    ///
 | 
						|
    void FillVRegReadTable(MachineBasicBlock &MBB);
 | 
						|
    
 | 
						|
    /// areRegsEqual - This method returns true if the specified registers are
 | 
						|
    /// related to each other.  To do this, it checks to see if they are equal
 | 
						|
    /// or if the first register is in the alias set of the second register.
 | 
						|
    ///
 | 
						|
    bool areRegsEqual(unsigned R1, unsigned R2) const {
 | 
						|
      if (R1 == R2) return true;
 | 
						|
      for (const unsigned *AliasSet = RegInfo->getAliasSet(R2);
 | 
						|
           *AliasSet; ++AliasSet) {
 | 
						|
        if (*AliasSet == R1) return true;
 | 
						|
      }
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    /// getStackSpaceFor - This returns the frame index of the specified virtual
 | 
						|
    /// register on the stack, allocating space if necessary.
 | 
						|
    int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
 | 
						|
 | 
						|
    /// removePhysReg - This method marks the specified physical register as no
 | 
						|
    /// longer being in use.
 | 
						|
    ///
 | 
						|
    void removePhysReg(unsigned PhysReg);
 | 
						|
 | 
						|
    /// spillVirtReg - This method spills the value specified by PhysReg into
 | 
						|
    /// the virtual register slot specified by VirtReg.  It then updates the RA
 | 
						|
    /// data structures to indicate the fact that PhysReg is now available.
 | 
						|
    ///
 | 
						|
    void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
 | 
						|
                      unsigned VirtReg, unsigned PhysReg);
 | 
						|
 | 
						|
    /// spillPhysReg - This method spills the specified physical register into
 | 
						|
    /// the virtual register slot associated with it.  If OnlyVirtRegs is set to
 | 
						|
    /// true, then the request is ignored if the physical register does not
 | 
						|
    /// contain a virtual register.
 | 
						|
    ///
 | 
						|
    void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
 | 
						|
                      unsigned PhysReg, bool OnlyVirtRegs = false);
 | 
						|
 | 
						|
    /// assignVirtToPhysReg - This method updates local state so that we know
 | 
						|
    /// that PhysReg is the proper container for VirtReg now.  The physical
 | 
						|
    /// register must not be used for anything else when this is called.
 | 
						|
    ///
 | 
						|
    void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);
 | 
						|
 | 
						|
    /// isPhysRegAvailable - Return true if the specified physical register is
 | 
						|
    /// free and available for use.  This also includes checking to see if
 | 
						|
    /// aliased registers are all free...
 | 
						|
    ///
 | 
						|
    bool isPhysRegAvailable(unsigned PhysReg) const;
 | 
						|
 | 
						|
    /// getFreeReg - Look to see if there is a free register available in the
 | 
						|
    /// specified register class.  If not, return 0.
 | 
						|
    ///
 | 
						|
    unsigned getFreeReg(const TargetRegisterClass *RC);
 | 
						|
 | 
						|
    /// chooseReg - Pick a physical register to hold the specified
 | 
						|
    /// virtual register by choosing the one which will be read furthest
 | 
						|
    /// in the future.
 | 
						|
    ///
 | 
						|
    unsigned chooseReg(MachineBasicBlock &MBB, MachineInstr *MI,
 | 
						|
                    unsigned VirtReg);
 | 
						|
 | 
						|
    /// reloadVirtReg - This method transforms the specified specified virtual
 | 
						|
    /// register use to refer to a physical register.  This method may do this
 | 
						|
    /// in one of several ways: if the register is available in a physical
 | 
						|
    /// register already, it uses that physical register.  If the value is not
 | 
						|
    /// in a physical register, and if there are physical registers available,
 | 
						|
    /// it loads it into a register.  If register pressure is high, and it is
 | 
						|
    /// possible, it tries to fold the load of the virtual register into the
 | 
						|
    /// instruction itself.  It avoids doing this if register pressure is low to
 | 
						|
    /// improve the chance that subsequent instructions can use the reloaded
 | 
						|
    /// value.  This method returns the modified instruction.
 | 
						|
    ///
 | 
						|
    MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
 | 
						|
                                unsigned OpNum);
 | 
						|
 | 
						|
  };
 | 
						|
  char RABigBlock::ID = 0;
 | 
						|
}
 | 
						|
 | 
						|
/// getStackSpaceFor - This allocates space for the specified virtual register
 | 
						|
/// to be held on the stack.
 | 
						|
int RABigBlock::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
 | 
						|
  // Find the location Reg would belong...
 | 
						|
  int FrameIdx = getVirt2StackSlot(VirtReg);
 | 
						|
 | 
						|
  if (FrameIdx)
 | 
						|
    return FrameIdx - 1;          // Already has space allocated?
 | 
						|
 | 
						|
  // Allocate a new stack object for this spill location...
 | 
						|
  FrameIdx = MF->getFrameInfo()->CreateStackObject(RC->getSize(),
 | 
						|
                                                       RC->getAlignment());
 | 
						|
 | 
						|
  // Assign the slot...
 | 
						|
  getVirt2StackSlot(VirtReg) = FrameIdx + 1;
 | 
						|
  return FrameIdx;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// removePhysReg - This method marks the specified physical register as no
 | 
						|
/// longer being in use.
 | 
						|
///
 | 
						|
void RABigBlock::removePhysReg(unsigned PhysReg) {
 | 
						|
  PhysRegsUsed[PhysReg] = -1;      // PhyReg no longer used
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// spillVirtReg - This method spills the value specified by PhysReg into the
 | 
						|
/// virtual register slot specified by VirtReg.  It then updates the RA data
 | 
						|
/// structures to indicate the fact that PhysReg is now available.
 | 
						|
///
 | 
						|
void RABigBlock::spillVirtReg(MachineBasicBlock &MBB,
 | 
						|
                           MachineBasicBlock::iterator I,
 | 
						|
                           unsigned VirtReg, unsigned PhysReg) {
 | 
						|
  assert(VirtReg && "Spilling a physical register is illegal!"
 | 
						|
         " Must not have appropriate kill for the register or use exists beyond"
 | 
						|
         " the intended one.");
 | 
						|
  DOUT << "  Spilling register " << RegInfo->getName(PhysReg)
 | 
						|
       << " containing %reg" << VirtReg;
 | 
						|
  
 | 
						|
  const TargetInstrInfo* TII = MBB.getParent()->getTarget().getInstrInfo();
 | 
						|
  
 | 
						|
  if (!isVirtRegModified(VirtReg))
 | 
						|
    DOUT << " which has not been modified, so no store necessary!";
 | 
						|
 | 
						|
  // Otherwise, there is a virtual register corresponding to this physical
 | 
						|
  // register.  We only need to spill it into its stack slot if it has been
 | 
						|
  // modified.
 | 
						|
  if (isVirtRegModified(VirtReg)) {
 | 
						|
    const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
 | 
						|
    int FrameIndex = getStackSpaceFor(VirtReg, RC);
 | 
						|
    DOUT << " to stack slot #" << FrameIndex;
 | 
						|
    TII->storeRegToStackSlot(MBB, I, PhysReg, true, FrameIndex, RC);
 | 
						|
    ++NumStores;   // Update statistics
 | 
						|
  }
 | 
						|
 | 
						|
  getVirt2PhysRegMapSlot(VirtReg) = 0;   // VirtReg no longer available
 | 
						|
 | 
						|
  DOUT << "\n";
 | 
						|
  removePhysReg(PhysReg);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// spillPhysReg - This method spills the specified physical register into the
 | 
						|
/// virtual register slot associated with it.  If OnlyVirtRegs is set to true,
 | 
						|
/// then the request is ignored if the physical register does not contain a
 | 
						|
/// virtual register.
 | 
						|
///
 | 
						|
void RABigBlock::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
 | 
						|
                           unsigned PhysReg, bool OnlyVirtRegs) {
 | 
						|
  if (PhysRegsUsed[PhysReg] != -1) {            // Only spill it if it's used!
 | 
						|
    assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!");
 | 
						|
    if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs)
 | 
						|
      spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg);
 | 
						|
  } else {
 | 
						|
    // If the selected register aliases any other registers, we must make
 | 
						|
    // sure that one of the aliases isn't alive.
 | 
						|
    for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
 | 
						|
         *AliasSet; ++AliasSet)
 | 
						|
      if (PhysRegsUsed[*AliasSet] != -1 &&     // Spill aliased register.
 | 
						|
          PhysRegsUsed[*AliasSet] != -2)       // If allocatable.
 | 
						|
        if (PhysRegsUsed[*AliasSet])
 | 
						|
          spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// assignVirtToPhysReg - This method updates local state so that we know
 | 
						|
/// that PhysReg is the proper container for VirtReg now.  The physical
 | 
						|
/// register must not be used for anything else when this is called.
 | 
						|
///
 | 
						|
void RABigBlock::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
 | 
						|
  assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!");
 | 
						|
  // Update information to note the fact that this register was just used, and
 | 
						|
  // it holds VirtReg.
 | 
						|
  PhysRegsUsed[PhysReg] = VirtReg;
 | 
						|
  getVirt2PhysRegMapSlot(VirtReg) = PhysReg;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// isPhysRegAvailable - Return true if the specified physical register is free
 | 
						|
/// and available for use.  This also includes checking to see if aliased
 | 
						|
/// registers are all free...
 | 
						|
///
 | 
						|
bool RABigBlock::isPhysRegAvailable(unsigned PhysReg) const {
 | 
						|
  if (PhysRegsUsed[PhysReg] != -1) return false;
 | 
						|
 | 
						|
  // If the selected register aliases any other allocated registers, it is
 | 
						|
  // not free!
 | 
						|
  for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
 | 
						|
       *AliasSet; ++AliasSet)
 | 
						|
    if (PhysRegsUsed[*AliasSet] >= 0) // Aliased register in use?
 | 
						|
      return false;                    // Can't use this reg then.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
  
 | 
						|
/// getFreeReg - Look to see if there is a free register available in the
 | 
						|
/// specified register class.  If not, return 0.
 | 
						|
///
 | 
						|
unsigned RABigBlock::getFreeReg(const TargetRegisterClass *RC) {
 | 
						|
  // Get iterators defining the range of registers that are valid to allocate in
 | 
						|
  // this class, which also specifies the preferred allocation order.
 | 
						|
  TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF);
 | 
						|
  TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF);
 | 
						|
 | 
						|
  for (; RI != RE; ++RI)
 | 
						|
    if (isPhysRegAvailable(*RI)) {       // Is reg unused?
 | 
						|
      assert(*RI != 0 && "Cannot use register!");
 | 
						|
      return *RI; // Found an unused register!
 | 
						|
    }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// chooseReg - Pick a physical register to hold the specified
 | 
						|
/// virtual register by choosing the one whose value will be read
 | 
						|
/// furthest in the future.
 | 
						|
///
 | 
						|
unsigned RABigBlock::chooseReg(MachineBasicBlock &MBB, MachineInstr *I,
 | 
						|
                         unsigned VirtReg) {
 | 
						|
  const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
 | 
						|
  // First check to see if we have a free register of the requested type...
 | 
						|
  unsigned PhysReg = getFreeReg(RC);
 | 
						|
 | 
						|
  // If we didn't find an unused register, find the one which will be
 | 
						|
  // read at the most distant point in time.
 | 
						|
  if (PhysReg == 0) {
 | 
						|
    unsigned delay=0, longest_delay=0;
 | 
						|
    VRegTimes* ReadTimes;
 | 
						|
 | 
						|
    unsigned curTime = MBBCurTime;
 | 
						|
 | 
						|
    // for all physical regs in the RC,
 | 
						|
    for(TargetRegisterClass::iterator pReg = RC->begin(); 
 | 
						|
                                      pReg != RC->end();  ++pReg) {
 | 
						|
      // how long until they're read?
 | 
						|
      if(PhysRegsUsed[*pReg]>0) { // ignore non-allocatable regs
 | 
						|
        ReadTimes = VRegReadTable[PhysRegsUsed[*pReg]];
 | 
						|
        if(ReadTimes && !ReadTimes->empty()) {
 | 
						|
            unsigned& pt = VRegReadIdx[PhysRegsUsed[*pReg]];
 | 
						|
            while(pt < ReadTimes->size() && (*ReadTimes)[pt] < curTime) {
 | 
						|
                ++pt;
 | 
						|
            }
 | 
						|
 | 
						|
            if(pt < ReadTimes->size())
 | 
						|
                delay = (*ReadTimes)[pt] - curTime;
 | 
						|
            else
 | 
						|
                delay = MBBLastInsnTime + 1 - curTime;
 | 
						|
        } else {
 | 
						|
            // This register is only defined, but never
 | 
						|
            // read in this MBB. Therefore the next read
 | 
						|
            // happens after the end of this MBB
 | 
						|
            delay = MBBLastInsnTime + 1 - curTime;
 | 
						|
        }
 | 
						|
 | 
						|
        
 | 
						|
        if(delay > longest_delay) {
 | 
						|
          longest_delay = delay;
 | 
						|
          PhysReg = *pReg;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if(PhysReg == 0) { // ok, now we're desperate. We couldn't choose
 | 
						|
                       // a register to spill by looking through the
 | 
						|
                       // read timetable, so now we just spill the
 | 
						|
                       // first allocatable register we find.
 | 
						|
                       
 | 
						|
      // for all physical regs in the RC,
 | 
						|
      for(TargetRegisterClass::iterator pReg = RC->begin(); 
 | 
						|
                                        pReg != RC->end();  ++pReg) {
 | 
						|
        // if we find a register we can spill
 | 
						|
        if(PhysRegsUsed[*pReg]>=-1)
 | 
						|
          PhysReg = *pReg; // choose it to be spilled
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    assert(PhysReg && "couldn't choose a register to spill :( ");
 | 
						|
    // TODO: assert that RC->contains(PhysReg) / handle aliased registers?
 | 
						|
 | 
						|
    // since we needed to look in the table we need to spill this register.
 | 
						|
    spillPhysReg(MBB, I, PhysReg);
 | 
						|
  }
 | 
						|
 | 
						|
  // assign the vreg to our chosen physical register
 | 
						|
  assignVirtToPhysReg(VirtReg, PhysReg);
 | 
						|
  return PhysReg; // and return it
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// reloadVirtReg - This method transforms an instruction with a virtual
 | 
						|
/// register use to one that references a physical register. It does this as
 | 
						|
/// follows:
 | 
						|
///
 | 
						|
///   1) If the register is already in a physical register, it uses it.
 | 
						|
///   2) Otherwise, if there is a free physical register, it uses that.
 | 
						|
///   3) Otherwise, it calls chooseReg() to get the physical register
 | 
						|
///      holding the most distantly needed value, generating a spill in
 | 
						|
///      the process.
 | 
						|
///
 | 
						|
/// This method returns the modified instruction.
 | 
						|
MachineInstr *RABigBlock::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
 | 
						|
                                     unsigned OpNum) {
 | 
						|
  unsigned VirtReg = MI->getOperand(OpNum).getReg();
 | 
						|
  const TargetInstrInfo* TII = MBB.getParent()->getTarget().getInstrInfo();
 | 
						|
 | 
						|
  // If the virtual register is already available in a physical register,
 | 
						|
  // just update the instruction and return.
 | 
						|
  if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) {
 | 
						|
    MI->getOperand(OpNum).setReg(PR);
 | 
						|
    return MI;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, if we have free physical registers available to hold the
 | 
						|
  // value, use them.
 | 
						|
  const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
 | 
						|
  unsigned PhysReg = getFreeReg(RC);
 | 
						|
  int FrameIndex = getStackSpaceFor(VirtReg, RC);
 | 
						|
 | 
						|
  if (PhysReg) {   // we have a free register, so use it.
 | 
						|
    assignVirtToPhysReg(VirtReg, PhysReg);
 | 
						|
  } else {  // no free registers available.
 | 
						|
    // try to fold the spill into the instruction
 | 
						|
    SmallVector<unsigned, 1> Ops;
 | 
						|
    Ops.push_back(OpNum);
 | 
						|
    if(MachineInstr* FMI = TII->foldMemoryOperand(*MF, MI, Ops, FrameIndex)) {
 | 
						|
      ++NumFolded;
 | 
						|
      FMI->copyKillDeadInfo(MI);
 | 
						|
      return MBB.insert(MBB.erase(MI), FMI);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // determine which of the physical registers we'll kill off, since we
 | 
						|
    // couldn't fold.
 | 
						|
    PhysReg = chooseReg(MBB, MI, VirtReg);
 | 
						|
  }
 | 
						|
 | 
						|
  // this virtual register is now unmodified (since we just reloaded it)
 | 
						|
  markVirtRegModified(VirtReg, false);
 | 
						|
 | 
						|
  DOUT << "  Reloading %reg" << VirtReg << " into "
 | 
						|
       << RegInfo->getName(PhysReg) << "\n";
 | 
						|
 | 
						|
  // Add move instruction(s)
 | 
						|
  TII->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC);
 | 
						|
  ++NumLoads;    // Update statistics
 | 
						|
 | 
						|
  MF->getRegInfo().setPhysRegUsed(PhysReg);
 | 
						|
  MI->getOperand(OpNum).setReg(PhysReg);  // Assign the input register
 | 
						|
  return MI;
 | 
						|
}
 | 
						|
 | 
						|
/// Fill out the vreg read timetable. Since ReadTime increases
 | 
						|
/// monotonically, the individual readtime sets will be sorted
 | 
						|
/// in ascending order.
 | 
						|
void RABigBlock::FillVRegReadTable(MachineBasicBlock &MBB) {
 | 
						|
  // loop over each instruction
 | 
						|
  MachineBasicBlock::iterator MII;
 | 
						|
  unsigned ReadTime;
 | 
						|
  
 | 
						|
  for(ReadTime=0, MII = MBB.begin(); MII != MBB.end(); ++ReadTime, ++MII) {
 | 
						|
    MachineInstr *MI = MII;
 | 
						|
    
 | 
						|
    for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
 | 
						|
      MachineOperand& MO = MI->getOperand(i);
 | 
						|
      // look for vreg reads..
 | 
						|
      if (MO.isReg() && !MO.isDef() && MO.getReg() &&
 | 
						|
          TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
 | 
						|
          // ..and add them to the read table.
 | 
						|
          VRegTimes* &Times = VRegReadTable[MO.getReg()];
 | 
						|
          if(!VRegReadTable[MO.getReg()]) {
 | 
						|
              Times = new VRegTimes;
 | 
						|
              VRegReadIdx[MO.getReg()] = 0;
 | 
						|
          }
 | 
						|
        Times->push_back(ReadTime);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  }  
 | 
						|
 | 
						|
  MBBLastInsnTime = ReadTime;
 | 
						|
 | 
						|
  for(DenseMap<unsigned, VRegTimes*, VRegKeyInfo>::iterator Reads = VRegReadTable.begin();
 | 
						|
      Reads != VRegReadTable.end(); ++Reads) {
 | 
						|
      if(Reads->second) {
 | 
						|
          DOUT << "Reads[" << Reads->first << "]=" << Reads->second->size() << "\n";
 | 
						|
      }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// isReadModWriteImplicitKill - True if this is an implicit kill for a
 | 
						|
/// read/mod/write register, i.e. update partial register.
 | 
						|
static bool isReadModWriteImplicitKill(MachineInstr *MI, unsigned Reg) {
 | 
						|
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
    MachineOperand& MO = MI->getOperand(i);
 | 
						|
    if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() &&
 | 
						|
        MO.isDef() && !MO.isDead())
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isReadModWriteImplicitDef - True if this is an implicit def for a
 | 
						|
/// read/mod/write register, i.e. update partial register.
 | 
						|
static bool isReadModWriteImplicitDef(MachineInstr *MI, unsigned Reg) {
 | 
						|
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
    MachineOperand& MO = MI->getOperand(i);
 | 
						|
    if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() &&
 | 
						|
        !MO.isDef() && MO.isKill())
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void RABigBlock::AllocateBasicBlock(MachineBasicBlock &MBB) {
 | 
						|
  // loop over each instruction
 | 
						|
  MachineBasicBlock::iterator MII = MBB.begin();
 | 
						|
  const TargetInstrInfo &TII = *TM->getInstrInfo();
 | 
						|
  
 | 
						|
  DEBUG(const BasicBlock *LBB = MBB.getBasicBlock();
 | 
						|
        if (LBB) DOUT << "\nStarting RegAlloc of BB: " << LBB->getName());
 | 
						|
 | 
						|
  // If this is the first basic block in the machine function, add live-in
 | 
						|
  // registers as active.
 | 
						|
  if (&MBB == &*MF->begin()) {
 | 
						|
    for (MachineRegisterInfo::livein_iterator
 | 
						|
         I = MF->getRegInfo().livein_begin(),
 | 
						|
         E = MF->getRegInfo().livein_end(); I != E; ++I) {
 | 
						|
      unsigned Reg = I->first;
 | 
						|
      MF->getRegInfo().setPhysRegUsed(Reg);
 | 
						|
      PhysRegsUsed[Reg] = 0;            // It is free and reserved now
 | 
						|
      for (const unsigned *AliasSet = RegInfo->getSubRegisters(Reg);
 | 
						|
           *AliasSet; ++AliasSet) {
 | 
						|
        if (PhysRegsUsed[*AliasSet] != -2) {
 | 
						|
          PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now
 | 
						|
          MF->getRegInfo().setPhysRegUsed(*AliasSet);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }    
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Otherwise, sequentially allocate each instruction in the MBB.
 | 
						|
  MBBCurTime = -1;
 | 
						|
  while (MII != MBB.end()) {
 | 
						|
    MachineInstr *MI = MII++;
 | 
						|
    MBBCurTime++;
 | 
						|
    const TargetInstrDesc &TID = MI->getDesc();
 | 
						|
    DEBUG(DOUT << "\nTime=" << MBBCurTime << " Starting RegAlloc of: " << *MI;
 | 
						|
          DOUT << "  Regs have values: ";
 | 
						|
          for (unsigned i = 0; i != RegInfo->getNumRegs(); ++i)
 | 
						|
            if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
 | 
						|
               DOUT << "[" << RegInfo->getName(i)
 | 
						|
                    << ",%reg" << PhysRegsUsed[i] << "] ";
 | 
						|
          DOUT << "\n");
 | 
						|
 | 
						|
    SmallVector<unsigned, 8> Kills;
 | 
						|
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
      MachineOperand& MO = MI->getOperand(i);
 | 
						|
      if (MO.isReg() && MO.isKill()) {
 | 
						|
        if (!MO.isImplicit())
 | 
						|
          Kills.push_back(MO.getReg());
 | 
						|
        else if (!isReadModWriteImplicitKill(MI, MO.getReg()))
 | 
						|
          // These are extra physical register kills when a sub-register
 | 
						|
          // is defined (def of a sub-register is a read/mod/write of the
 | 
						|
          // larger registers). Ignore.
 | 
						|
          Kills.push_back(MO.getReg());
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Get the used operands into registers.  This has the potential to spill
 | 
						|
    // incoming values if we are out of registers.  Note that we completely
 | 
						|
    // ignore physical register uses here.  We assume that if an explicit
 | 
						|
    // physical register is referenced by the instruction, that it is guaranteed
 | 
						|
    // to be live-in, or the input is badly hosed.
 | 
						|
    //
 | 
						|
    for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
 | 
						|
      MachineOperand& MO = MI->getOperand(i);
 | 
						|
      // here we are looking for only used operands (never def&use)
 | 
						|
      if (MO.isReg() && !MO.isDef() && MO.getReg() && !MO.isImplicit() &&
 | 
						|
          TargetRegisterInfo::isVirtualRegister(MO.getReg()))
 | 
						|
        MI = reloadVirtReg(MBB, MI, i);
 | 
						|
    }
 | 
						|
 | 
						|
    // If this instruction is the last user of this register, kill the
 | 
						|
    // value, freeing the register being used, so it doesn't need to be
 | 
						|
    // spilled to memory.
 | 
						|
    //
 | 
						|
    for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
 | 
						|
      unsigned VirtReg = Kills[i];
 | 
						|
      unsigned PhysReg = VirtReg;
 | 
						|
      if (TargetRegisterInfo::isVirtualRegister(VirtReg)) {
 | 
						|
        // If the virtual register was never materialized into a register, it
 | 
						|
        // might not be in the map, but it won't hurt to zero it out anyway.
 | 
						|
        unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
 | 
						|
        PhysReg = PhysRegSlot;
 | 
						|
        PhysRegSlot = 0;
 | 
						|
      } else if (PhysRegsUsed[PhysReg] == -2) {
 | 
						|
        // Unallocatable register dead, ignore.
 | 
						|
        continue;
 | 
						|
      } else {
 | 
						|
        assert((!PhysRegsUsed[PhysReg] || PhysRegsUsed[PhysReg] == -1) &&
 | 
						|
               "Silently clearing a virtual register?");
 | 
						|
      }
 | 
						|
 | 
						|
      if (PhysReg) {
 | 
						|
        DOUT << "  Last use of " << RegInfo->getName(PhysReg)
 | 
						|
             << "[%reg" << VirtReg <<"], removing it from live set\n";
 | 
						|
        removePhysReg(PhysReg);
 | 
						|
        for (const unsigned *AliasSet = RegInfo->getSubRegisters(PhysReg);
 | 
						|
             *AliasSet; ++AliasSet) {
 | 
						|
          if (PhysRegsUsed[*AliasSet] != -2) {
 | 
						|
            DOUT  << "  Last use of "
 | 
						|
                  << RegInfo->getName(*AliasSet)
 | 
						|
                  << "[%reg" << VirtReg <<"], removing it from live set\n";
 | 
						|
            removePhysReg(*AliasSet);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Loop over all of the operands of the instruction, spilling registers that
 | 
						|
    // are defined, and marking explicit destinations in the PhysRegsUsed map.
 | 
						|
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
      MachineOperand& MO = MI->getOperand(i);
 | 
						|
      if (MO.isReg() && MO.isDef() && !MO.isImplicit() && MO.getReg() &&
 | 
						|
          TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
 | 
						|
        unsigned Reg = MO.getReg();
 | 
						|
        if (PhysRegsUsed[Reg] == -2) continue;  // Something like ESP.
 | 
						|
        // These are extra physical register defs when a sub-register
 | 
						|
        // is defined (def of a sub-register is a read/mod/write of the
 | 
						|
        // larger registers). Ignore.
 | 
						|
        if (isReadModWriteImplicitDef(MI, MO.getReg())) continue;
 | 
						|
 | 
						|
        MF->getRegInfo().setPhysRegUsed(Reg);
 | 
						|
        spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
 | 
						|
        PhysRegsUsed[Reg] = 0;            // It is free and reserved now
 | 
						|
        for (const unsigned *AliasSet = RegInfo->getSubRegisters(Reg);
 | 
						|
             *AliasSet; ++AliasSet) {
 | 
						|
          if (PhysRegsUsed[*AliasSet] != -2) {
 | 
						|
            PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now
 | 
						|
            MF->getRegInfo().setPhysRegUsed(*AliasSet);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Loop over the implicit defs, spilling them as well.
 | 
						|
    if (TID.getImplicitDefs()) {
 | 
						|
      for (const unsigned *ImplicitDefs = TID.getImplicitDefs();
 | 
						|
           *ImplicitDefs; ++ImplicitDefs) {
 | 
						|
        unsigned Reg = *ImplicitDefs;
 | 
						|
        if (PhysRegsUsed[Reg] != -2) {
 | 
						|
          spillPhysReg(MBB, MI, Reg, true);
 | 
						|
          PhysRegsUsed[Reg] = 0;            // It is free and reserved now
 | 
						|
        }
 | 
						|
        MF->getRegInfo().setPhysRegUsed(Reg);
 | 
						|
        for (const unsigned *AliasSet = RegInfo->getSubRegisters(Reg);
 | 
						|
             *AliasSet; ++AliasSet) {
 | 
						|
          if (PhysRegsUsed[*AliasSet] != -2) {
 | 
						|
            PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now
 | 
						|
            MF->getRegInfo().setPhysRegUsed(*AliasSet);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    SmallVector<unsigned, 8> DeadDefs;
 | 
						|
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
      MachineOperand& MO = MI->getOperand(i);
 | 
						|
      if (MO.isReg() && MO.isDead())
 | 
						|
        DeadDefs.push_back(MO.getReg());
 | 
						|
    }
 | 
						|
 | 
						|
    // Okay, we have allocated all of the source operands and spilled any values
 | 
						|
    // that would be destroyed by defs of this instruction.  Loop over the
 | 
						|
    // explicit defs and assign them to a register, spilling incoming values if
 | 
						|
    // we need to scavenge a register.
 | 
						|
    //
 | 
						|
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
      MachineOperand& MO = MI->getOperand(i);
 | 
						|
      if (MO.isReg() && MO.isDef() && MO.getReg() &&
 | 
						|
          TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
 | 
						|
        unsigned DestVirtReg = MO.getReg();
 | 
						|
        unsigned DestPhysReg;
 | 
						|
 | 
						|
        // If DestVirtReg already has a value, use it.
 | 
						|
        if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
 | 
						|
          DestPhysReg = chooseReg(MBB, MI, DestVirtReg);
 | 
						|
        MF->getRegInfo().setPhysRegUsed(DestPhysReg);
 | 
						|
        markVirtRegModified(DestVirtReg);
 | 
						|
        MI->getOperand(i).setReg(DestPhysReg);  // Assign the output register
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If this instruction defines any registers that are immediately dead,
 | 
						|
    // kill them now.
 | 
						|
    //
 | 
						|
    for (unsigned i = 0, e = DeadDefs.size(); i != e; ++i) {
 | 
						|
      unsigned VirtReg = DeadDefs[i];
 | 
						|
      unsigned PhysReg = VirtReg;
 | 
						|
      if (TargetRegisterInfo::isVirtualRegister(VirtReg)) {
 | 
						|
        unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
 | 
						|
        PhysReg = PhysRegSlot;
 | 
						|
        assert(PhysReg != 0);
 | 
						|
        PhysRegSlot = 0;
 | 
						|
      } else if (PhysRegsUsed[PhysReg] == -2) {
 | 
						|
        // Unallocatable register dead, ignore.
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (PhysReg) {
 | 
						|
        DOUT  << "  Register " << RegInfo->getName(PhysReg)
 | 
						|
              << " [%reg" << VirtReg
 | 
						|
              << "] is never used, removing it from live set\n";
 | 
						|
        removePhysReg(PhysReg);
 | 
						|
        for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
 | 
						|
             *AliasSet; ++AliasSet) {
 | 
						|
          if (PhysRegsUsed[*AliasSet] != -2) {
 | 
						|
            DOUT  << "  Register " << RegInfo->getName(*AliasSet)
 | 
						|
                  << " [%reg" << *AliasSet
 | 
						|
                  << "] is never used, removing it from live set\n";
 | 
						|
            removePhysReg(*AliasSet);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Finally, if this is a noop copy instruction, zap it.
 | 
						|
    unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
 | 
						|
    if (TII.isMoveInstr(*MI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
 | 
						|
        SrcReg == DstReg)
 | 
						|
      MBB.erase(MI);
 | 
						|
  }
 | 
						|
 | 
						|
  MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
 | 
						|
 | 
						|
  // Spill all physical registers holding virtual registers now.
 | 
						|
  for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i)
 | 
						|
    if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) {
 | 
						|
      if (unsigned VirtReg = PhysRegsUsed[i])
 | 
						|
        spillVirtReg(MBB, MI, VirtReg, i);
 | 
						|
      else
 | 
						|
        removePhysReg(i);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/// runOnMachineFunction - Register allocate the whole function
 | 
						|
///
 | 
						|
bool RABigBlock::runOnMachineFunction(MachineFunction &Fn) {
 | 
						|
  DOUT << "Machine Function " << "\n";
 | 
						|
  MF = &Fn;
 | 
						|
  TM = &Fn.getTarget();
 | 
						|
  RegInfo = TM->getRegisterInfo();
 | 
						|
 | 
						|
  PhysRegsUsed.assign(RegInfo->getNumRegs(), -1);
 | 
						|
  
 | 
						|
  // At various places we want to efficiently check to see whether a register
 | 
						|
  // is allocatable.  To handle this, we mark all unallocatable registers as
 | 
						|
  // being pinned down, permanently.
 | 
						|
  {
 | 
						|
    BitVector Allocable = RegInfo->getAllocatableSet(Fn);
 | 
						|
    for (unsigned i = 0, e = Allocable.size(); i != e; ++i)
 | 
						|
      if (!Allocable[i])
 | 
						|
        PhysRegsUsed[i] = -2;  // Mark the reg unallocable.
 | 
						|
  }
 | 
						|
 | 
						|
  // initialize the virtual->physical register map to have a 'null'
 | 
						|
  // mapping for all virtual registers
 | 
						|
  Virt2PhysRegMap.grow(MF->getRegInfo().getLastVirtReg());
 | 
						|
  StackSlotForVirtReg.grow(MF->getRegInfo().getLastVirtReg());
 | 
						|
  VirtRegModified.resize(MF->getRegInfo().getLastVirtReg() - 
 | 
						|
                         TargetRegisterInfo::FirstVirtualRegister + 1, 0);
 | 
						|
 | 
						|
  // Loop over all of the basic blocks, eliminating virtual register references
 | 
						|
  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
 | 
						|
       MBB != MBBe; ++MBB) {
 | 
						|
    // fill out the read timetable 
 | 
						|
    FillVRegReadTable(*MBB);
 | 
						|
    // use it to allocate the BB
 | 
						|
    AllocateBasicBlock(*MBB);
 | 
						|
    // clear it
 | 
						|
    VRegReadTable.clear();
 | 
						|
  }
 | 
						|
  
 | 
						|
  StackSlotForVirtReg.clear();
 | 
						|
  PhysRegsUsed.clear();
 | 
						|
  VirtRegModified.clear();
 | 
						|
  Virt2PhysRegMap.clear();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass *llvm::createBigBlockRegisterAllocator() {
 | 
						|
  return new RABigBlock();
 | 
						|
}
 | 
						|
 |