mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	This adds location info for all llvm_unreachable calls (which is a macro now) in !NDEBUG builds. In NDEBUG builds location info and the message is off (it only prints "UREACHABLE executed"). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75640 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1437 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1437 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements a linear scan register allocator.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "regalloc"
 | 
						|
#include "VirtRegMap.h"
 | 
						|
#include "VirtRegRewriter.h"
 | 
						|
#include "Spiller.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | 
						|
#include "llvm/CodeGen/LiveStackAnalysis.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineLoopInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/CodeGen/RegAllocRegistry.h"
 | 
						|
#include "llvm/CodeGen/RegisterCoalescer.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/ADT/EquivalenceClasses.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <set>
 | 
						|
#include <queue>
 | 
						|
#include <memory>
 | 
						|
#include <cmath>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumIters     , "Number of iterations performed");
 | 
						|
STATISTIC(NumBacktracks, "Number of times we had to backtrack");
 | 
						|
STATISTIC(NumCoalesce,   "Number of copies coalesced");
 | 
						|
STATISTIC(NumDowngrade,  "Number of registers downgraded");
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
NewHeuristic("new-spilling-heuristic",
 | 
						|
             cl::desc("Use new spilling heuristic"),
 | 
						|
             cl::init(false), cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
PreSplitIntervals("pre-alloc-split",
 | 
						|
                  cl::desc("Pre-register allocation live interval splitting"),
 | 
						|
                  cl::init(false), cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
NewSpillFramework("new-spill-framework",
 | 
						|
                  cl::desc("New spilling framework"),
 | 
						|
                  cl::init(false), cl::Hidden);
 | 
						|
 | 
						|
static RegisterRegAlloc
 | 
						|
linearscanRegAlloc("linearscan", "linear scan register allocator",
 | 
						|
                   createLinearScanRegisterAllocator);
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct VISIBILITY_HIDDEN RALinScan : public MachineFunctionPass {
 | 
						|
    static char ID;
 | 
						|
    RALinScan() : MachineFunctionPass(&ID) {}
 | 
						|
 | 
						|
    typedef std::pair<LiveInterval*, LiveInterval::iterator> IntervalPtr;
 | 
						|
    typedef SmallVector<IntervalPtr, 32> IntervalPtrs;
 | 
						|
  private:
 | 
						|
    /// RelatedRegClasses - This structure is built the first time a function is
 | 
						|
    /// compiled, and keeps track of which register classes have registers that
 | 
						|
    /// belong to multiple classes or have aliases that are in other classes.
 | 
						|
    EquivalenceClasses<const TargetRegisterClass*> RelatedRegClasses;
 | 
						|
    DenseMap<unsigned, const TargetRegisterClass*> OneClassForEachPhysReg;
 | 
						|
 | 
						|
    // NextReloadMap - For each register in the map, it maps to the another
 | 
						|
    // register which is defined by a reload from the same stack slot and
 | 
						|
    // both reloads are in the same basic block.
 | 
						|
    DenseMap<unsigned, unsigned> NextReloadMap;
 | 
						|
 | 
						|
    // DowngradedRegs - A set of registers which are being "downgraded", i.e.
 | 
						|
    // un-favored for allocation.
 | 
						|
    SmallSet<unsigned, 8> DowngradedRegs;
 | 
						|
 | 
						|
    // DowngradeMap - A map from virtual registers to physical registers being
 | 
						|
    // downgraded for the virtual registers.
 | 
						|
    DenseMap<unsigned, unsigned> DowngradeMap;
 | 
						|
 | 
						|
    MachineFunction* mf_;
 | 
						|
    MachineRegisterInfo* mri_;
 | 
						|
    const TargetMachine* tm_;
 | 
						|
    const TargetRegisterInfo* tri_;
 | 
						|
    const TargetInstrInfo* tii_;
 | 
						|
    BitVector allocatableRegs_;
 | 
						|
    LiveIntervals* li_;
 | 
						|
    LiveStacks* ls_;
 | 
						|
    const MachineLoopInfo *loopInfo;
 | 
						|
 | 
						|
    /// handled_ - Intervals are added to the handled_ set in the order of their
 | 
						|
    /// start value.  This is uses for backtracking.
 | 
						|
    std::vector<LiveInterval*> handled_;
 | 
						|
 | 
						|
    /// fixed_ - Intervals that correspond to machine registers.
 | 
						|
    ///
 | 
						|
    IntervalPtrs fixed_;
 | 
						|
 | 
						|
    /// active_ - Intervals that are currently being processed, and which have a
 | 
						|
    /// live range active for the current point.
 | 
						|
    IntervalPtrs active_;
 | 
						|
 | 
						|
    /// inactive_ - Intervals that are currently being processed, but which have
 | 
						|
    /// a hold at the current point.
 | 
						|
    IntervalPtrs inactive_;
 | 
						|
 | 
						|
    typedef std::priority_queue<LiveInterval*,
 | 
						|
                                SmallVector<LiveInterval*, 64>,
 | 
						|
                                greater_ptr<LiveInterval> > IntervalHeap;
 | 
						|
    IntervalHeap unhandled_;
 | 
						|
 | 
						|
    /// regUse_ - Tracks register usage.
 | 
						|
    SmallVector<unsigned, 32> regUse_;
 | 
						|
    SmallVector<unsigned, 32> regUseBackUp_;
 | 
						|
 | 
						|
    /// vrm_ - Tracks register assignments.
 | 
						|
    VirtRegMap* vrm_;
 | 
						|
 | 
						|
    std::auto_ptr<VirtRegRewriter> rewriter_;
 | 
						|
 | 
						|
    std::auto_ptr<Spiller> spiller_;
 | 
						|
 | 
						|
  public:
 | 
						|
    virtual const char* getPassName() const {
 | 
						|
      return "Linear Scan Register Allocator";
 | 
						|
    }
 | 
						|
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addRequired<LiveIntervals>();
 | 
						|
      if (StrongPHIElim)
 | 
						|
        AU.addRequiredID(StrongPHIEliminationID);
 | 
						|
      // Make sure PassManager knows which analyses to make available
 | 
						|
      // to coalescing and which analyses coalescing invalidates.
 | 
						|
      AU.addRequiredTransitive<RegisterCoalescer>();
 | 
						|
      if (PreSplitIntervals)
 | 
						|
        AU.addRequiredID(PreAllocSplittingID);
 | 
						|
      AU.addRequired<LiveStacks>();
 | 
						|
      AU.addPreserved<LiveStacks>();
 | 
						|
      AU.addRequired<MachineLoopInfo>();
 | 
						|
      AU.addPreserved<MachineLoopInfo>();
 | 
						|
      AU.addRequired<VirtRegMap>();
 | 
						|
      AU.addPreserved<VirtRegMap>();
 | 
						|
      AU.addPreservedID(MachineDominatorsID);
 | 
						|
      MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
 | 
						|
    /// runOnMachineFunction - register allocate the whole function
 | 
						|
    bool runOnMachineFunction(MachineFunction&);
 | 
						|
 | 
						|
  private:
 | 
						|
    /// linearScan - the linear scan algorithm
 | 
						|
    void linearScan();
 | 
						|
 | 
						|
    /// initIntervalSets - initialize the interval sets.
 | 
						|
    ///
 | 
						|
    void initIntervalSets();
 | 
						|
 | 
						|
    /// processActiveIntervals - expire old intervals and move non-overlapping
 | 
						|
    /// ones to the inactive list.
 | 
						|
    void processActiveIntervals(unsigned CurPoint);
 | 
						|
 | 
						|
    /// processInactiveIntervals - expire old intervals and move overlapping
 | 
						|
    /// ones to the active list.
 | 
						|
    void processInactiveIntervals(unsigned CurPoint);
 | 
						|
 | 
						|
    /// hasNextReloadInterval - Return the next liveinterval that's being
 | 
						|
    /// defined by a reload from the same SS as the specified one.
 | 
						|
    LiveInterval *hasNextReloadInterval(LiveInterval *cur);
 | 
						|
 | 
						|
    /// DowngradeRegister - Downgrade a register for allocation.
 | 
						|
    void DowngradeRegister(LiveInterval *li, unsigned Reg);
 | 
						|
 | 
						|
    /// UpgradeRegister - Upgrade a register for allocation.
 | 
						|
    void UpgradeRegister(unsigned Reg);
 | 
						|
 | 
						|
    /// assignRegOrStackSlotAtInterval - assign a register if one
 | 
						|
    /// is available, or spill.
 | 
						|
    void assignRegOrStackSlotAtInterval(LiveInterval* cur);
 | 
						|
 | 
						|
    void updateSpillWeights(std::vector<float> &Weights,
 | 
						|
                            unsigned reg, float weight,
 | 
						|
                            const TargetRegisterClass *RC);
 | 
						|
 | 
						|
    /// findIntervalsToSpill - Determine the intervals to spill for the
 | 
						|
    /// specified interval. It's passed the physical registers whose spill
 | 
						|
    /// weight is the lowest among all the registers whose live intervals
 | 
						|
    /// conflict with the interval.
 | 
						|
    void findIntervalsToSpill(LiveInterval *cur,
 | 
						|
                            std::vector<std::pair<unsigned,float> > &Candidates,
 | 
						|
                            unsigned NumCands,
 | 
						|
                            SmallVector<LiveInterval*, 8> &SpillIntervals);
 | 
						|
 | 
						|
    /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
 | 
						|
    /// try allocate the definition the same register as the source register
 | 
						|
    /// if the register is not defined during live time of the interval. This
 | 
						|
    /// eliminate a copy. This is used to coalesce copies which were not
 | 
						|
    /// coalesced away before allocation either due to dest and src being in
 | 
						|
    /// different register classes or because the coalescer was overly
 | 
						|
    /// conservative.
 | 
						|
    unsigned attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg);
 | 
						|
 | 
						|
    ///
 | 
						|
    /// Register usage / availability tracking helpers.
 | 
						|
    ///
 | 
						|
 | 
						|
    void initRegUses() {
 | 
						|
      regUse_.resize(tri_->getNumRegs(), 0);
 | 
						|
      regUseBackUp_.resize(tri_->getNumRegs(), 0);
 | 
						|
    }
 | 
						|
 | 
						|
    void finalizeRegUses() {
 | 
						|
#ifndef NDEBUG
 | 
						|
      // Verify all the registers are "freed".
 | 
						|
      bool Error = false;
 | 
						|
      for (unsigned i = 0, e = tri_->getNumRegs(); i != e; ++i) {
 | 
						|
        if (regUse_[i] != 0) {
 | 
						|
          cerr << tri_->getName(i) << " is still in use!\n";
 | 
						|
          Error = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (Error)
 | 
						|
        llvm_unreachable(0);
 | 
						|
#endif
 | 
						|
      regUse_.clear();
 | 
						|
      regUseBackUp_.clear();
 | 
						|
    }
 | 
						|
 | 
						|
    void addRegUse(unsigned physReg) {
 | 
						|
      assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
 | 
						|
             "should be physical register!");
 | 
						|
      ++regUse_[physReg];
 | 
						|
      for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as)
 | 
						|
        ++regUse_[*as];
 | 
						|
    }
 | 
						|
 | 
						|
    void delRegUse(unsigned physReg) {
 | 
						|
      assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
 | 
						|
             "should be physical register!");
 | 
						|
      assert(regUse_[physReg] != 0);
 | 
						|
      --regUse_[physReg];
 | 
						|
      for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as) {
 | 
						|
        assert(regUse_[*as] != 0);
 | 
						|
        --regUse_[*as];
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    bool isRegAvail(unsigned physReg) const {
 | 
						|
      assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
 | 
						|
             "should be physical register!");
 | 
						|
      return regUse_[physReg] == 0;
 | 
						|
    }
 | 
						|
 | 
						|
    void backUpRegUses() {
 | 
						|
      regUseBackUp_ = regUse_;
 | 
						|
    }
 | 
						|
 | 
						|
    void restoreRegUses() {
 | 
						|
      regUse_ = regUseBackUp_;
 | 
						|
    }
 | 
						|
 | 
						|
    ///
 | 
						|
    /// Register handling helpers.
 | 
						|
    ///
 | 
						|
 | 
						|
    /// getFreePhysReg - return a free physical register for this virtual
 | 
						|
    /// register interval if we have one, otherwise return 0.
 | 
						|
    unsigned getFreePhysReg(LiveInterval* cur);
 | 
						|
    unsigned getFreePhysReg(LiveInterval* cur,
 | 
						|
                            const TargetRegisterClass *RC,
 | 
						|
                            unsigned MaxInactiveCount,
 | 
						|
                            SmallVector<unsigned, 256> &inactiveCounts,
 | 
						|
                            bool SkipDGRegs);
 | 
						|
 | 
						|
    /// assignVirt2StackSlot - assigns this virtual register to a
 | 
						|
    /// stack slot. returns the stack slot
 | 
						|
    int assignVirt2StackSlot(unsigned virtReg);
 | 
						|
 | 
						|
    void ComputeRelatedRegClasses();
 | 
						|
 | 
						|
    template <typename ItTy>
 | 
						|
    void printIntervals(const char* const str, ItTy i, ItTy e) const {
 | 
						|
      if (str) DOUT << str << " intervals:\n";
 | 
						|
      for (; i != e; ++i) {
 | 
						|
        DOUT << "\t" << *i->first << " -> ";
 | 
						|
        unsigned reg = i->first->reg;
 | 
						|
        if (TargetRegisterInfo::isVirtualRegister(reg)) {
 | 
						|
          reg = vrm_->getPhys(reg);
 | 
						|
        }
 | 
						|
        DOUT << tri_->getName(reg) << '\n';
 | 
						|
      }
 | 
						|
    }
 | 
						|
  };
 | 
						|
  char RALinScan::ID = 0;
 | 
						|
}
 | 
						|
 | 
						|
static RegisterPass<RALinScan>
 | 
						|
X("linearscan-regalloc", "Linear Scan Register Allocator");
 | 
						|
 | 
						|
void RALinScan::ComputeRelatedRegClasses() {
 | 
						|
  // First pass, add all reg classes to the union, and determine at least one
 | 
						|
  // reg class that each register is in.
 | 
						|
  bool HasAliases = false;
 | 
						|
  for (TargetRegisterInfo::regclass_iterator RCI = tri_->regclass_begin(),
 | 
						|
       E = tri_->regclass_end(); RCI != E; ++RCI) {
 | 
						|
    RelatedRegClasses.insert(*RCI);
 | 
						|
    for (TargetRegisterClass::iterator I = (*RCI)->begin(), E = (*RCI)->end();
 | 
						|
         I != E; ++I) {
 | 
						|
      HasAliases = HasAliases || *tri_->getAliasSet(*I) != 0;
 | 
						|
      
 | 
						|
      const TargetRegisterClass *&PRC = OneClassForEachPhysReg[*I];
 | 
						|
      if (PRC) {
 | 
						|
        // Already processed this register.  Just make sure we know that
 | 
						|
        // multiple register classes share a register.
 | 
						|
        RelatedRegClasses.unionSets(PRC, *RCI);
 | 
						|
      } else {
 | 
						|
        PRC = *RCI;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Second pass, now that we know conservatively what register classes each reg
 | 
						|
  // belongs to, add info about aliases.  We don't need to do this for targets
 | 
						|
  // without register aliases.
 | 
						|
  if (HasAliases)
 | 
						|
    for (DenseMap<unsigned, const TargetRegisterClass*>::iterator
 | 
						|
         I = OneClassForEachPhysReg.begin(), E = OneClassForEachPhysReg.end();
 | 
						|
         I != E; ++I)
 | 
						|
      for (const unsigned *AS = tri_->getAliasSet(I->first); *AS; ++AS)
 | 
						|
        RelatedRegClasses.unionSets(I->second, OneClassForEachPhysReg[*AS]);
 | 
						|
}
 | 
						|
 | 
						|
/// attemptTrivialCoalescing - If a simple interval is defined by a copy,
 | 
						|
/// try allocate the definition the same register as the source register
 | 
						|
/// if the register is not defined during live time of the interval. This
 | 
						|
/// eliminate a copy. This is used to coalesce copies which were not
 | 
						|
/// coalesced away before allocation either due to dest and src being in
 | 
						|
/// different register classes or because the coalescer was overly
 | 
						|
/// conservative.
 | 
						|
unsigned RALinScan::attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg) {
 | 
						|
  unsigned Preference = vrm_->getRegAllocPref(cur.reg);
 | 
						|
  if ((Preference && Preference == Reg) || !cur.containsOneValue())
 | 
						|
    return Reg;
 | 
						|
 | 
						|
  VNInfo *vni = cur.begin()->valno;
 | 
						|
  if (!vni->def || vni->isUnused() || !vni->isDefAccurate())
 | 
						|
    return Reg;
 | 
						|
  MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
 | 
						|
  unsigned SrcReg, DstReg, SrcSubReg, DstSubReg, PhysReg;
 | 
						|
  if (!CopyMI ||
 | 
						|
      !tii_->isMoveInstr(*CopyMI, SrcReg, DstReg, SrcSubReg, DstSubReg))
 | 
						|
    return Reg;
 | 
						|
  PhysReg = SrcReg;
 | 
						|
  if (TargetRegisterInfo::isVirtualRegister(SrcReg)) {
 | 
						|
    if (!vrm_->isAssignedReg(SrcReg))
 | 
						|
      return Reg;
 | 
						|
    PhysReg = vrm_->getPhys(SrcReg);
 | 
						|
  }
 | 
						|
  if (Reg == PhysReg)
 | 
						|
    return Reg;
 | 
						|
 | 
						|
  const TargetRegisterClass *RC = mri_->getRegClass(cur.reg);
 | 
						|
  if (!RC->contains(PhysReg))
 | 
						|
    return Reg;
 | 
						|
 | 
						|
  // Try to coalesce.
 | 
						|
  if (!li_->conflictsWithPhysRegDef(cur, *vrm_, PhysReg)) {
 | 
						|
    DOUT << "Coalescing: " << cur << " -> " << tri_->getName(PhysReg)
 | 
						|
         << '\n';
 | 
						|
    vrm_->clearVirt(cur.reg);
 | 
						|
    vrm_->assignVirt2Phys(cur.reg, PhysReg);
 | 
						|
 | 
						|
    // Remove unnecessary kills since a copy does not clobber the register.
 | 
						|
    if (li_->hasInterval(SrcReg)) {
 | 
						|
      LiveInterval &SrcLI = li_->getInterval(SrcReg);
 | 
						|
      for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(cur.reg),
 | 
						|
             E = mri_->reg_end(); I != E; ++I) {
 | 
						|
        MachineOperand &O = I.getOperand();
 | 
						|
        if (!O.isUse() || !O.isKill())
 | 
						|
          continue;
 | 
						|
        MachineInstr *MI = &*I;
 | 
						|
        if (SrcLI.liveAt(li_->getDefIndex(li_->getInstructionIndex(MI))))
 | 
						|
          O.setIsKill(false);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    ++NumCoalesce;
 | 
						|
    return PhysReg;
 | 
						|
  }
 | 
						|
 | 
						|
  return Reg;
 | 
						|
}
 | 
						|
 | 
						|
bool RALinScan::runOnMachineFunction(MachineFunction &fn) {
 | 
						|
  mf_ = &fn;
 | 
						|
  mri_ = &fn.getRegInfo();
 | 
						|
  tm_ = &fn.getTarget();
 | 
						|
  tri_ = tm_->getRegisterInfo();
 | 
						|
  tii_ = tm_->getInstrInfo();
 | 
						|
  allocatableRegs_ = tri_->getAllocatableSet(fn);
 | 
						|
  li_ = &getAnalysis<LiveIntervals>();
 | 
						|
  ls_ = &getAnalysis<LiveStacks>();
 | 
						|
  loopInfo = &getAnalysis<MachineLoopInfo>();
 | 
						|
 | 
						|
  // We don't run the coalescer here because we have no reason to
 | 
						|
  // interact with it.  If the coalescer requires interaction, it
 | 
						|
  // won't do anything.  If it doesn't require interaction, we assume
 | 
						|
  // it was run as a separate pass.
 | 
						|
 | 
						|
  // If this is the first function compiled, compute the related reg classes.
 | 
						|
  if (RelatedRegClasses.empty())
 | 
						|
    ComputeRelatedRegClasses();
 | 
						|
 | 
						|
  // Also resize register usage trackers.
 | 
						|
  initRegUses();
 | 
						|
 | 
						|
  vrm_ = &getAnalysis<VirtRegMap>();
 | 
						|
  if (!rewriter_.get()) rewriter_.reset(createVirtRegRewriter());
 | 
						|
  
 | 
						|
  if (NewSpillFramework) {
 | 
						|
    spiller_.reset(createSpiller(mf_, li_, ls_, vrm_));
 | 
						|
  }
 | 
						|
  
 | 
						|
  initIntervalSets();
 | 
						|
 | 
						|
  linearScan();
 | 
						|
 | 
						|
  // Rewrite spill code and update the PhysRegsUsed set.
 | 
						|
  rewriter_->runOnMachineFunction(*mf_, *vrm_, li_);
 | 
						|
 | 
						|
  assert(unhandled_.empty() && "Unhandled live intervals remain!");
 | 
						|
 | 
						|
  finalizeRegUses();
 | 
						|
 | 
						|
  fixed_.clear();
 | 
						|
  active_.clear();
 | 
						|
  inactive_.clear();
 | 
						|
  handled_.clear();
 | 
						|
  NextReloadMap.clear();
 | 
						|
  DowngradedRegs.clear();
 | 
						|
  DowngradeMap.clear();
 | 
						|
  spiller_.reset(0);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// initIntervalSets - initialize the interval sets.
 | 
						|
///
 | 
						|
void RALinScan::initIntervalSets()
 | 
						|
{
 | 
						|
  assert(unhandled_.empty() && fixed_.empty() &&
 | 
						|
         active_.empty() && inactive_.empty() &&
 | 
						|
         "interval sets should be empty on initialization");
 | 
						|
 | 
						|
  handled_.reserve(li_->getNumIntervals());
 | 
						|
 | 
						|
  for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
 | 
						|
    if (TargetRegisterInfo::isPhysicalRegister(i->second->reg)) {
 | 
						|
      mri_->setPhysRegUsed(i->second->reg);
 | 
						|
      fixed_.push_back(std::make_pair(i->second, i->second->begin()));
 | 
						|
    } else
 | 
						|
      unhandled_.push(i->second);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void RALinScan::linearScan()
 | 
						|
{
 | 
						|
  // linear scan algorithm
 | 
						|
  DOUT << "********** LINEAR SCAN **********\n";
 | 
						|
  DOUT << "********** Function: " << mf_->getFunction()->getName() << '\n';
 | 
						|
 | 
						|
  DEBUG(printIntervals("fixed", fixed_.begin(), fixed_.end()));
 | 
						|
 | 
						|
  while (!unhandled_.empty()) {
 | 
						|
    // pick the interval with the earliest start point
 | 
						|
    LiveInterval* cur = unhandled_.top();
 | 
						|
    unhandled_.pop();
 | 
						|
    ++NumIters;
 | 
						|
    DOUT << "\n*** CURRENT ***: " << *cur << '\n';
 | 
						|
 | 
						|
    if (!cur->empty()) {
 | 
						|
      processActiveIntervals(cur->beginNumber());
 | 
						|
      processInactiveIntervals(cur->beginNumber());
 | 
						|
 | 
						|
      assert(TargetRegisterInfo::isVirtualRegister(cur->reg) &&
 | 
						|
             "Can only allocate virtual registers!");
 | 
						|
    }
 | 
						|
 | 
						|
    // Allocating a virtual register. try to find a free
 | 
						|
    // physical register or spill an interval (possibly this one) in order to
 | 
						|
    // assign it one.
 | 
						|
    assignRegOrStackSlotAtInterval(cur);
 | 
						|
 | 
						|
    DEBUG(printIntervals("active", active_.begin(), active_.end()));
 | 
						|
    DEBUG(printIntervals("inactive", inactive_.begin(), inactive_.end()));
 | 
						|
  }
 | 
						|
 | 
						|
  // Expire any remaining active intervals
 | 
						|
  while (!active_.empty()) {
 | 
						|
    IntervalPtr &IP = active_.back();
 | 
						|
    unsigned reg = IP.first->reg;
 | 
						|
    DOUT << "\tinterval " << *IP.first << " expired\n";
 | 
						|
    assert(TargetRegisterInfo::isVirtualRegister(reg) &&
 | 
						|
           "Can only allocate virtual registers!");
 | 
						|
    reg = vrm_->getPhys(reg);
 | 
						|
    delRegUse(reg);
 | 
						|
    active_.pop_back();
 | 
						|
  }
 | 
						|
 | 
						|
  // Expire any remaining inactive intervals
 | 
						|
  DEBUG(for (IntervalPtrs::reverse_iterator
 | 
						|
               i = inactive_.rbegin(); i != inactive_.rend(); ++i)
 | 
						|
        DOUT << "\tinterval " << *i->first << " expired\n");
 | 
						|
  inactive_.clear();
 | 
						|
 | 
						|
  // Add live-ins to every BB except for entry. Also perform trivial coalescing.
 | 
						|
  MachineFunction::iterator EntryMBB = mf_->begin();
 | 
						|
  SmallVector<MachineBasicBlock*, 8> LiveInMBBs;
 | 
						|
  for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
 | 
						|
    LiveInterval &cur = *i->second;
 | 
						|
    unsigned Reg = 0;
 | 
						|
    bool isPhys = TargetRegisterInfo::isPhysicalRegister(cur.reg);
 | 
						|
    if (isPhys)
 | 
						|
      Reg = cur.reg;
 | 
						|
    else if (vrm_->isAssignedReg(cur.reg))
 | 
						|
      Reg = attemptTrivialCoalescing(cur, vrm_->getPhys(cur.reg));
 | 
						|
    if (!Reg)
 | 
						|
      continue;
 | 
						|
    // Ignore splited live intervals.
 | 
						|
    if (!isPhys && vrm_->getPreSplitReg(cur.reg))
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (LiveInterval::Ranges::const_iterator I = cur.begin(), E = cur.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      const LiveRange &LR = *I;
 | 
						|
      if (li_->findLiveInMBBs(LR.start, LR.end, LiveInMBBs)) {
 | 
						|
        for (unsigned i = 0, e = LiveInMBBs.size(); i != e; ++i)
 | 
						|
          if (LiveInMBBs[i] != EntryMBB) {
 | 
						|
            assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
 | 
						|
                   "Adding a virtual register to livein set?");
 | 
						|
            LiveInMBBs[i]->addLiveIn(Reg);
 | 
						|
          }
 | 
						|
        LiveInMBBs.clear();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DOUT << *vrm_;
 | 
						|
 | 
						|
  // Look for physical registers that end up not being allocated even though
 | 
						|
  // register allocator had to spill other registers in its register class.
 | 
						|
  if (ls_->getNumIntervals() == 0)
 | 
						|
    return;
 | 
						|
  if (!vrm_->FindUnusedRegisters(li_))
 | 
						|
    return;
 | 
						|
}
 | 
						|
 | 
						|
/// processActiveIntervals - expire old intervals and move non-overlapping ones
 | 
						|
/// to the inactive list.
 | 
						|
void RALinScan::processActiveIntervals(unsigned CurPoint)
 | 
						|
{
 | 
						|
  DOUT << "\tprocessing active intervals:\n";
 | 
						|
 | 
						|
  for (unsigned i = 0, e = active_.size(); i != e; ++i) {
 | 
						|
    LiveInterval *Interval = active_[i].first;
 | 
						|
    LiveInterval::iterator IntervalPos = active_[i].second;
 | 
						|
    unsigned reg = Interval->reg;
 | 
						|
 | 
						|
    IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
 | 
						|
 | 
						|
    if (IntervalPos == Interval->end()) {     // Remove expired intervals.
 | 
						|
      DOUT << "\t\tinterval " << *Interval << " expired\n";
 | 
						|
      assert(TargetRegisterInfo::isVirtualRegister(reg) &&
 | 
						|
             "Can only allocate virtual registers!");
 | 
						|
      reg = vrm_->getPhys(reg);
 | 
						|
      delRegUse(reg);
 | 
						|
 | 
						|
      // Pop off the end of the list.
 | 
						|
      active_[i] = active_.back();
 | 
						|
      active_.pop_back();
 | 
						|
      --i; --e;
 | 
						|
 | 
						|
    } else if (IntervalPos->start > CurPoint) {
 | 
						|
      // Move inactive intervals to inactive list.
 | 
						|
      DOUT << "\t\tinterval " << *Interval << " inactive\n";
 | 
						|
      assert(TargetRegisterInfo::isVirtualRegister(reg) &&
 | 
						|
             "Can only allocate virtual registers!");
 | 
						|
      reg = vrm_->getPhys(reg);
 | 
						|
      delRegUse(reg);
 | 
						|
      // add to inactive.
 | 
						|
      inactive_.push_back(std::make_pair(Interval, IntervalPos));
 | 
						|
 | 
						|
      // Pop off the end of the list.
 | 
						|
      active_[i] = active_.back();
 | 
						|
      active_.pop_back();
 | 
						|
      --i; --e;
 | 
						|
    } else {
 | 
						|
      // Otherwise, just update the iterator position.
 | 
						|
      active_[i].second = IntervalPos;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// processInactiveIntervals - expire old intervals and move overlapping
 | 
						|
/// ones to the active list.
 | 
						|
void RALinScan::processInactiveIntervals(unsigned CurPoint)
 | 
						|
{
 | 
						|
  DOUT << "\tprocessing inactive intervals:\n";
 | 
						|
 | 
						|
  for (unsigned i = 0, e = inactive_.size(); i != e; ++i) {
 | 
						|
    LiveInterval *Interval = inactive_[i].first;
 | 
						|
    LiveInterval::iterator IntervalPos = inactive_[i].second;
 | 
						|
    unsigned reg = Interval->reg;
 | 
						|
 | 
						|
    IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
 | 
						|
 | 
						|
    if (IntervalPos == Interval->end()) {       // remove expired intervals.
 | 
						|
      DOUT << "\t\tinterval " << *Interval << " expired\n";
 | 
						|
 | 
						|
      // Pop off the end of the list.
 | 
						|
      inactive_[i] = inactive_.back();
 | 
						|
      inactive_.pop_back();
 | 
						|
      --i; --e;
 | 
						|
    } else if (IntervalPos->start <= CurPoint) {
 | 
						|
      // move re-activated intervals in active list
 | 
						|
      DOUT << "\t\tinterval " << *Interval << " active\n";
 | 
						|
      assert(TargetRegisterInfo::isVirtualRegister(reg) &&
 | 
						|
             "Can only allocate virtual registers!");
 | 
						|
      reg = vrm_->getPhys(reg);
 | 
						|
      addRegUse(reg);
 | 
						|
      // add to active
 | 
						|
      active_.push_back(std::make_pair(Interval, IntervalPos));
 | 
						|
 | 
						|
      // Pop off the end of the list.
 | 
						|
      inactive_[i] = inactive_.back();
 | 
						|
      inactive_.pop_back();
 | 
						|
      --i; --e;
 | 
						|
    } else {
 | 
						|
      // Otherwise, just update the iterator position.
 | 
						|
      inactive_[i].second = IntervalPos;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// updateSpillWeights - updates the spill weights of the specifed physical
 | 
						|
/// register and its weight.
 | 
						|
void RALinScan::updateSpillWeights(std::vector<float> &Weights,
 | 
						|
                                   unsigned reg, float weight,
 | 
						|
                                   const TargetRegisterClass *RC) {
 | 
						|
  SmallSet<unsigned, 4> Processed;
 | 
						|
  SmallSet<unsigned, 4> SuperAdded;
 | 
						|
  SmallVector<unsigned, 4> Supers;
 | 
						|
  Weights[reg] += weight;
 | 
						|
  Processed.insert(reg);
 | 
						|
  for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as) {
 | 
						|
    Weights[*as] += weight;
 | 
						|
    Processed.insert(*as);
 | 
						|
    if (tri_->isSubRegister(*as, reg) &&
 | 
						|
        SuperAdded.insert(*as) &&
 | 
						|
        RC->contains(*as)) {
 | 
						|
      Supers.push_back(*as);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the alias is a super-register, and the super-register is in the
 | 
						|
  // register class we are trying to allocate. Then add the weight to all
 | 
						|
  // sub-registers of the super-register even if they are not aliases.
 | 
						|
  // e.g. allocating for GR32, bh is not used, updating bl spill weight.
 | 
						|
  //      bl should get the same spill weight otherwise it will be choosen
 | 
						|
  //      as a spill candidate since spilling bh doesn't make ebx available.
 | 
						|
  for (unsigned i = 0, e = Supers.size(); i != e; ++i) {
 | 
						|
    for (const unsigned *sr = tri_->getSubRegisters(Supers[i]); *sr; ++sr)
 | 
						|
      if (!Processed.count(*sr))
 | 
						|
        Weights[*sr] += weight;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static
 | 
						|
RALinScan::IntervalPtrs::iterator
 | 
						|
FindIntervalInVector(RALinScan::IntervalPtrs &IP, LiveInterval *LI) {
 | 
						|
  for (RALinScan::IntervalPtrs::iterator I = IP.begin(), E = IP.end();
 | 
						|
       I != E; ++I)
 | 
						|
    if (I->first == LI) return I;
 | 
						|
  return IP.end();
 | 
						|
}
 | 
						|
 | 
						|
static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs &V, unsigned Point){
 | 
						|
  for (unsigned i = 0, e = V.size(); i != e; ++i) {
 | 
						|
    RALinScan::IntervalPtr &IP = V[i];
 | 
						|
    LiveInterval::iterator I = std::upper_bound(IP.first->begin(),
 | 
						|
                                                IP.second, Point);
 | 
						|
    if (I != IP.first->begin()) --I;
 | 
						|
    IP.second = I;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// addStackInterval - Create a LiveInterval for stack if the specified live
 | 
						|
/// interval has been spilled.
 | 
						|
static void addStackInterval(LiveInterval *cur, LiveStacks *ls_,
 | 
						|
                             LiveIntervals *li_,
 | 
						|
                             MachineRegisterInfo* mri_, VirtRegMap &vrm_) {
 | 
						|
  int SS = vrm_.getStackSlot(cur->reg);
 | 
						|
  if (SS == VirtRegMap::NO_STACK_SLOT)
 | 
						|
    return;
 | 
						|
 | 
						|
  const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
 | 
						|
  LiveInterval &SI = ls_->getOrCreateInterval(SS, RC);
 | 
						|
 | 
						|
  VNInfo *VNI;
 | 
						|
  if (SI.hasAtLeastOneValue())
 | 
						|
    VNI = SI.getValNumInfo(0);
 | 
						|
  else
 | 
						|
    VNI = SI.getNextValue(0, 0, false, ls_->getVNInfoAllocator());
 | 
						|
 | 
						|
  LiveInterval &RI = li_->getInterval(cur->reg);
 | 
						|
  // FIXME: This may be overly conservative.
 | 
						|
  SI.MergeRangesInAsValue(RI, VNI);
 | 
						|
}
 | 
						|
 | 
						|
/// getConflictWeight - Return the number of conflicts between cur
 | 
						|
/// live interval and defs and uses of Reg weighted by loop depthes.
 | 
						|
static
 | 
						|
float getConflictWeight(LiveInterval *cur, unsigned Reg, LiveIntervals *li_,
 | 
						|
                        MachineRegisterInfo *mri_,
 | 
						|
                        const MachineLoopInfo *loopInfo) {
 | 
						|
  float Conflicts = 0;
 | 
						|
  for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(Reg),
 | 
						|
         E = mri_->reg_end(); I != E; ++I) {
 | 
						|
    MachineInstr *MI = &*I;
 | 
						|
    if (cur->liveAt(li_->getInstructionIndex(MI))) {
 | 
						|
      unsigned loopDepth = loopInfo->getLoopDepth(MI->getParent());
 | 
						|
      Conflicts += powf(10.0f, (float)loopDepth);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Conflicts;
 | 
						|
}
 | 
						|
 | 
						|
/// findIntervalsToSpill - Determine the intervals to spill for the
 | 
						|
/// specified interval. It's passed the physical registers whose spill
 | 
						|
/// weight is the lowest among all the registers whose live intervals
 | 
						|
/// conflict with the interval.
 | 
						|
void RALinScan::findIntervalsToSpill(LiveInterval *cur,
 | 
						|
                            std::vector<std::pair<unsigned,float> > &Candidates,
 | 
						|
                            unsigned NumCands,
 | 
						|
                            SmallVector<LiveInterval*, 8> &SpillIntervals) {
 | 
						|
  // We have figured out the *best* register to spill. But there are other
 | 
						|
  // registers that are pretty good as well (spill weight within 3%). Spill
 | 
						|
  // the one that has fewest defs and uses that conflict with cur.
 | 
						|
  float Conflicts[3] = { 0.0f, 0.0f, 0.0f };
 | 
						|
  SmallVector<LiveInterval*, 8> SLIs[3];
 | 
						|
 | 
						|
  DOUT << "\tConsidering " << NumCands << " candidates: ";
 | 
						|
  DEBUG(for (unsigned i = 0; i != NumCands; ++i)
 | 
						|
          DOUT << tri_->getName(Candidates[i].first) << " ";
 | 
						|
        DOUT << "\n";);
 | 
						|
  
 | 
						|
  // Calculate the number of conflicts of each candidate.
 | 
						|
  for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) {
 | 
						|
    unsigned Reg = i->first->reg;
 | 
						|
    unsigned PhysReg = vrm_->getPhys(Reg);
 | 
						|
    if (!cur->overlapsFrom(*i->first, i->second))
 | 
						|
      continue;
 | 
						|
    for (unsigned j = 0; j < NumCands; ++j) {
 | 
						|
      unsigned Candidate = Candidates[j].first;
 | 
						|
      if (tri_->regsOverlap(PhysReg, Candidate)) {
 | 
						|
        if (NumCands > 1)
 | 
						|
          Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
 | 
						|
        SLIs[j].push_back(i->first);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end(); ++i){
 | 
						|
    unsigned Reg = i->first->reg;
 | 
						|
    unsigned PhysReg = vrm_->getPhys(Reg);
 | 
						|
    if (!cur->overlapsFrom(*i->first, i->second-1))
 | 
						|
      continue;
 | 
						|
    for (unsigned j = 0; j < NumCands; ++j) {
 | 
						|
      unsigned Candidate = Candidates[j].first;
 | 
						|
      if (tri_->regsOverlap(PhysReg, Candidate)) {
 | 
						|
        if (NumCands > 1)
 | 
						|
          Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
 | 
						|
        SLIs[j].push_back(i->first);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Which is the best candidate?
 | 
						|
  unsigned BestCandidate = 0;
 | 
						|
  float MinConflicts = Conflicts[0];
 | 
						|
  for (unsigned i = 1; i != NumCands; ++i) {
 | 
						|
    if (Conflicts[i] < MinConflicts) {
 | 
						|
      BestCandidate = i;
 | 
						|
      MinConflicts = Conflicts[i];
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  std::copy(SLIs[BestCandidate].begin(), SLIs[BestCandidate].end(),
 | 
						|
            std::back_inserter(SpillIntervals));
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct WeightCompare {
 | 
						|
    typedef std::pair<unsigned, float> RegWeightPair;
 | 
						|
    bool operator()(const RegWeightPair &LHS, const RegWeightPair &RHS) const {
 | 
						|
      return LHS.second < RHS.second;
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
static bool weightsAreClose(float w1, float w2) {
 | 
						|
  if (!NewHeuristic)
 | 
						|
    return false;
 | 
						|
 | 
						|
  float diff = w1 - w2;
 | 
						|
  if (diff <= 0.02f)  // Within 0.02f
 | 
						|
    return true;
 | 
						|
  return (diff / w2) <= 0.05f;  // Within 5%.
 | 
						|
}
 | 
						|
 | 
						|
LiveInterval *RALinScan::hasNextReloadInterval(LiveInterval *cur) {
 | 
						|
  DenseMap<unsigned, unsigned>::iterator I = NextReloadMap.find(cur->reg);
 | 
						|
  if (I == NextReloadMap.end())
 | 
						|
    return 0;
 | 
						|
  return &li_->getInterval(I->second);
 | 
						|
}
 | 
						|
 | 
						|
void RALinScan::DowngradeRegister(LiveInterval *li, unsigned Reg) {
 | 
						|
  bool isNew = DowngradedRegs.insert(Reg);
 | 
						|
  isNew = isNew; // Silence compiler warning.
 | 
						|
  assert(isNew && "Multiple reloads holding the same register?");
 | 
						|
  DowngradeMap.insert(std::make_pair(li->reg, Reg));
 | 
						|
  for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS) {
 | 
						|
    isNew = DowngradedRegs.insert(*AS);
 | 
						|
    isNew = isNew; // Silence compiler warning.
 | 
						|
    assert(isNew && "Multiple reloads holding the same register?");
 | 
						|
    DowngradeMap.insert(std::make_pair(li->reg, *AS));
 | 
						|
  }
 | 
						|
  ++NumDowngrade;
 | 
						|
}
 | 
						|
 | 
						|
void RALinScan::UpgradeRegister(unsigned Reg) {
 | 
						|
  if (Reg) {
 | 
						|
    DowngradedRegs.erase(Reg);
 | 
						|
    for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS)
 | 
						|
      DowngradedRegs.erase(*AS);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct LISorter {
 | 
						|
    bool operator()(LiveInterval* A, LiveInterval* B) {
 | 
						|
      return A->beginNumber() < B->beginNumber();
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// assignRegOrStackSlotAtInterval - assign a register if one is available, or
 | 
						|
/// spill.
 | 
						|
void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur)
 | 
						|
{
 | 
						|
  DOUT << "\tallocating current interval: ";
 | 
						|
 | 
						|
  // This is an implicitly defined live interval, just assign any register.
 | 
						|
  const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
 | 
						|
  if (cur->empty()) {
 | 
						|
    unsigned physReg = vrm_->getRegAllocPref(cur->reg);
 | 
						|
    if (!physReg)
 | 
						|
      physReg = *RC->allocation_order_begin(*mf_);
 | 
						|
    DOUT <<  tri_->getName(physReg) << '\n';
 | 
						|
    // Note the register is not really in use.
 | 
						|
    vrm_->assignVirt2Phys(cur->reg, physReg);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  backUpRegUses();
 | 
						|
 | 
						|
  std::vector<std::pair<unsigned, float> > SpillWeightsToAdd;
 | 
						|
  unsigned StartPosition = cur->beginNumber();
 | 
						|
  const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
 | 
						|
 | 
						|
  // If start of this live interval is defined by a move instruction and its
 | 
						|
  // source is assigned a physical register that is compatible with the target
 | 
						|
  // register class, then we should try to assign it the same register.
 | 
						|
  // This can happen when the move is from a larger register class to a smaller
 | 
						|
  // one, e.g. X86::mov32to32_. These move instructions are not coalescable.
 | 
						|
  if (!vrm_->getRegAllocPref(cur->reg) && cur->hasAtLeastOneValue()) {
 | 
						|
    VNInfo *vni = cur->begin()->valno;
 | 
						|
    if (vni->def && !vni->isUnused() && vni->isDefAccurate()) {
 | 
						|
      MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
 | 
						|
      unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
 | 
						|
      if (CopyMI &&
 | 
						|
          tii_->isMoveInstr(*CopyMI, SrcReg, DstReg, SrcSubReg, DstSubReg)) {
 | 
						|
        unsigned Reg = 0;
 | 
						|
        if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
 | 
						|
          Reg = SrcReg;
 | 
						|
        else if (vrm_->isAssignedReg(SrcReg))
 | 
						|
          Reg = vrm_->getPhys(SrcReg);
 | 
						|
        if (Reg) {
 | 
						|
          if (SrcSubReg)
 | 
						|
            Reg = tri_->getSubReg(Reg, SrcSubReg);
 | 
						|
          if (DstSubReg)
 | 
						|
            Reg = tri_->getMatchingSuperReg(Reg, DstSubReg, RC);
 | 
						|
          if (Reg && allocatableRegs_[Reg] && RC->contains(Reg))
 | 
						|
            mri_->setRegAllocationHint(cur->reg, 0, Reg);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // For every interval in inactive we overlap with, mark the
 | 
						|
  // register as not free and update spill weights.
 | 
						|
  for (IntervalPtrs::const_iterator i = inactive_.begin(),
 | 
						|
         e = inactive_.end(); i != e; ++i) {
 | 
						|
    unsigned Reg = i->first->reg;
 | 
						|
    assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
 | 
						|
           "Can only allocate virtual registers!");
 | 
						|
    const TargetRegisterClass *RegRC = mri_->getRegClass(Reg);
 | 
						|
    // If this is not in a related reg class to the register we're allocating, 
 | 
						|
    // don't check it.
 | 
						|
    if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
 | 
						|
        cur->overlapsFrom(*i->first, i->second-1)) {
 | 
						|
      Reg = vrm_->getPhys(Reg);
 | 
						|
      addRegUse(Reg);
 | 
						|
      SpillWeightsToAdd.push_back(std::make_pair(Reg, i->first->weight));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Speculatively check to see if we can get a register right now.  If not,
 | 
						|
  // we know we won't be able to by adding more constraints.  If so, we can
 | 
						|
  // check to see if it is valid.  Doing an exhaustive search of the fixed_ list
 | 
						|
  // is very bad (it contains all callee clobbered registers for any functions
 | 
						|
  // with a call), so we want to avoid doing that if possible.
 | 
						|
  unsigned physReg = getFreePhysReg(cur);
 | 
						|
  unsigned BestPhysReg = physReg;
 | 
						|
  if (physReg) {
 | 
						|
    // We got a register.  However, if it's in the fixed_ list, we might
 | 
						|
    // conflict with it.  Check to see if we conflict with it or any of its
 | 
						|
    // aliases.
 | 
						|
    SmallSet<unsigned, 8> RegAliases;
 | 
						|
    for (const unsigned *AS = tri_->getAliasSet(physReg); *AS; ++AS)
 | 
						|
      RegAliases.insert(*AS);
 | 
						|
    
 | 
						|
    bool ConflictsWithFixed = false;
 | 
						|
    for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
 | 
						|
      IntervalPtr &IP = fixed_[i];
 | 
						|
      if (physReg == IP.first->reg || RegAliases.count(IP.first->reg)) {
 | 
						|
        // Okay, this reg is on the fixed list.  Check to see if we actually
 | 
						|
        // conflict.
 | 
						|
        LiveInterval *I = IP.first;
 | 
						|
        if (I->endNumber() > StartPosition) {
 | 
						|
          LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
 | 
						|
          IP.second = II;
 | 
						|
          if (II != I->begin() && II->start > StartPosition)
 | 
						|
            --II;
 | 
						|
          if (cur->overlapsFrom(*I, II)) {
 | 
						|
            ConflictsWithFixed = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Okay, the register picked by our speculative getFreePhysReg call turned
 | 
						|
    // out to be in use.  Actually add all of the conflicting fixed registers to
 | 
						|
    // regUse_ so we can do an accurate query.
 | 
						|
    if (ConflictsWithFixed) {
 | 
						|
      // For every interval in fixed we overlap with, mark the register as not
 | 
						|
      // free and update spill weights.
 | 
						|
      for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
 | 
						|
        IntervalPtr &IP = fixed_[i];
 | 
						|
        LiveInterval *I = IP.first;
 | 
						|
 | 
						|
        const TargetRegisterClass *RegRC = OneClassForEachPhysReg[I->reg];
 | 
						|
        if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&       
 | 
						|
            I->endNumber() > StartPosition) {
 | 
						|
          LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
 | 
						|
          IP.second = II;
 | 
						|
          if (II != I->begin() && II->start > StartPosition)
 | 
						|
            --II;
 | 
						|
          if (cur->overlapsFrom(*I, II)) {
 | 
						|
            unsigned reg = I->reg;
 | 
						|
            addRegUse(reg);
 | 
						|
            SpillWeightsToAdd.push_back(std::make_pair(reg, I->weight));
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Using the newly updated regUse_ object, which includes conflicts in the
 | 
						|
      // future, see if there are any registers available.
 | 
						|
      physReg = getFreePhysReg(cur);
 | 
						|
    }
 | 
						|
  }
 | 
						|
    
 | 
						|
  // Restore the physical register tracker, removing information about the
 | 
						|
  // future.
 | 
						|
  restoreRegUses();
 | 
						|
  
 | 
						|
  // If we find a free register, we are done: assign this virtual to
 | 
						|
  // the free physical register and add this interval to the active
 | 
						|
  // list.
 | 
						|
  if (physReg) {
 | 
						|
    DOUT <<  tri_->getName(physReg) << '\n';
 | 
						|
    vrm_->assignVirt2Phys(cur->reg, physReg);
 | 
						|
    addRegUse(physReg);
 | 
						|
    active_.push_back(std::make_pair(cur, cur->begin()));
 | 
						|
    handled_.push_back(cur);
 | 
						|
 | 
						|
    // "Upgrade" the physical register since it has been allocated.
 | 
						|
    UpgradeRegister(physReg);
 | 
						|
    if (LiveInterval *NextReloadLI = hasNextReloadInterval(cur)) {
 | 
						|
      // "Downgrade" physReg to try to keep physReg from being allocated until
 | 
						|
      // the next reload from the same SS is allocated. 
 | 
						|
      mri_->setRegAllocationHint(NextReloadLI->reg, 0, physReg);
 | 
						|
      DowngradeRegister(cur, physReg);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  DOUT << "no free registers\n";
 | 
						|
 | 
						|
  // Compile the spill weights into an array that is better for scanning.
 | 
						|
  std::vector<float> SpillWeights(tri_->getNumRegs(), 0.0f);
 | 
						|
  for (std::vector<std::pair<unsigned, float> >::iterator
 | 
						|
       I = SpillWeightsToAdd.begin(), E = SpillWeightsToAdd.end(); I != E; ++I)
 | 
						|
    updateSpillWeights(SpillWeights, I->first, I->second, RC);
 | 
						|
  
 | 
						|
  // for each interval in active, update spill weights.
 | 
						|
  for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end();
 | 
						|
       i != e; ++i) {
 | 
						|
    unsigned reg = i->first->reg;
 | 
						|
    assert(TargetRegisterInfo::isVirtualRegister(reg) &&
 | 
						|
           "Can only allocate virtual registers!");
 | 
						|
    reg = vrm_->getPhys(reg);
 | 
						|
    updateSpillWeights(SpillWeights, reg, i->first->weight, RC);
 | 
						|
  }
 | 
						|
 
 | 
						|
  DOUT << "\tassigning stack slot at interval "<< *cur << ":\n";
 | 
						|
 | 
						|
  // Find a register to spill.
 | 
						|
  float minWeight = HUGE_VALF;
 | 
						|
  unsigned minReg = 0;
 | 
						|
 | 
						|
  bool Found = false;
 | 
						|
  std::vector<std::pair<unsigned,float> > RegsWeights;
 | 
						|
  if (!minReg || SpillWeights[minReg] == HUGE_VALF)
 | 
						|
    for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_),
 | 
						|
           e = RC->allocation_order_end(*mf_); i != e; ++i) {
 | 
						|
      unsigned reg = *i;
 | 
						|
      float regWeight = SpillWeights[reg];
 | 
						|
      if (minWeight > regWeight)
 | 
						|
        Found = true;
 | 
						|
      RegsWeights.push_back(std::make_pair(reg, regWeight));
 | 
						|
    }
 | 
						|
  
 | 
						|
  // If we didn't find a register that is spillable, try aliases?
 | 
						|
  if (!Found) {
 | 
						|
    for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_),
 | 
						|
           e = RC->allocation_order_end(*mf_); i != e; ++i) {
 | 
						|
      unsigned reg = *i;
 | 
						|
      // No need to worry about if the alias register size < regsize of RC.
 | 
						|
      // We are going to spill all registers that alias it anyway.
 | 
						|
      for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as)
 | 
						|
        RegsWeights.push_back(std::make_pair(*as, SpillWeights[*as]));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Sort all potential spill candidates by weight.
 | 
						|
  std::sort(RegsWeights.begin(), RegsWeights.end(), WeightCompare());
 | 
						|
  minReg = RegsWeights[0].first;
 | 
						|
  minWeight = RegsWeights[0].second;
 | 
						|
  if (minWeight == HUGE_VALF) {
 | 
						|
    // All registers must have inf weight. Just grab one!
 | 
						|
    minReg = BestPhysReg ? BestPhysReg : *RC->allocation_order_begin(*mf_);
 | 
						|
    if (cur->weight == HUGE_VALF ||
 | 
						|
        li_->getApproximateInstructionCount(*cur) == 0) {
 | 
						|
      // Spill a physical register around defs and uses.
 | 
						|
      if (li_->spillPhysRegAroundRegDefsUses(*cur, minReg, *vrm_)) {
 | 
						|
        // spillPhysRegAroundRegDefsUses may have invalidated iterator stored
 | 
						|
        // in fixed_. Reset them.
 | 
						|
        for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
 | 
						|
          IntervalPtr &IP = fixed_[i];
 | 
						|
          LiveInterval *I = IP.first;
 | 
						|
          if (I->reg == minReg || tri_->isSubRegister(minReg, I->reg))
 | 
						|
            IP.second = I->advanceTo(I->begin(), StartPosition);
 | 
						|
        }
 | 
						|
 | 
						|
        DowngradedRegs.clear();
 | 
						|
        assignRegOrStackSlotAtInterval(cur);
 | 
						|
      } else {
 | 
						|
        llvm_report_error("Ran out of registers during register allocation!");
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Find up to 3 registers to consider as spill candidates.
 | 
						|
  unsigned LastCandidate = RegsWeights.size() >= 3 ? 3 : 1;
 | 
						|
  while (LastCandidate > 1) {
 | 
						|
    if (weightsAreClose(RegsWeights[LastCandidate-1].second, minWeight))
 | 
						|
      break;
 | 
						|
    --LastCandidate;
 | 
						|
  }
 | 
						|
 | 
						|
  DOUT << "\t\tregister(s) with min weight(s): ";
 | 
						|
  DEBUG(for (unsigned i = 0; i != LastCandidate; ++i)
 | 
						|
          DOUT << tri_->getName(RegsWeights[i].first)
 | 
						|
               << " (" << RegsWeights[i].second << ")\n");
 | 
						|
 | 
						|
  // If the current has the minimum weight, we need to spill it and
 | 
						|
  // add any added intervals back to unhandled, and restart
 | 
						|
  // linearscan.
 | 
						|
  if (cur->weight != HUGE_VALF && cur->weight <= minWeight) {
 | 
						|
    DOUT << "\t\t\tspilling(c): " << *cur << '\n';
 | 
						|
    SmallVector<LiveInterval*, 8> spillIs;
 | 
						|
    std::vector<LiveInterval*> added;
 | 
						|
    
 | 
						|
    if (!NewSpillFramework) {
 | 
						|
      added = li_->addIntervalsForSpills(*cur, spillIs, loopInfo, *vrm_);
 | 
						|
    } else {
 | 
						|
      added = spiller_->spill(cur); 
 | 
						|
    }
 | 
						|
 | 
						|
    std::sort(added.begin(), added.end(), LISorter());
 | 
						|
    addStackInterval(cur, ls_, li_, mri_, *vrm_);
 | 
						|
    if (added.empty())
 | 
						|
      return;  // Early exit if all spills were folded.
 | 
						|
 | 
						|
    // Merge added with unhandled.  Note that we have already sorted
 | 
						|
    // intervals returned by addIntervalsForSpills by their starting
 | 
						|
    // point.
 | 
						|
    // This also update the NextReloadMap. That is, it adds mapping from a
 | 
						|
    // register defined by a reload from SS to the next reload from SS in the
 | 
						|
    // same basic block.
 | 
						|
    MachineBasicBlock *LastReloadMBB = 0;
 | 
						|
    LiveInterval *LastReload = 0;
 | 
						|
    int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
 | 
						|
    for (unsigned i = 0, e = added.size(); i != e; ++i) {
 | 
						|
      LiveInterval *ReloadLi = added[i];
 | 
						|
      if (ReloadLi->weight == HUGE_VALF &&
 | 
						|
          li_->getApproximateInstructionCount(*ReloadLi) == 0) {
 | 
						|
        unsigned ReloadIdx = ReloadLi->beginNumber();
 | 
						|
        MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
 | 
						|
        int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
 | 
						|
        if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
 | 
						|
          // Last reload of same SS is in the same MBB. We want to try to
 | 
						|
          // allocate both reloads the same register and make sure the reg
 | 
						|
          // isn't clobbered in between if at all possible.
 | 
						|
          assert(LastReload->beginNumber() < ReloadIdx);
 | 
						|
          NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
 | 
						|
        }
 | 
						|
        LastReloadMBB = ReloadMBB;
 | 
						|
        LastReload = ReloadLi;
 | 
						|
        LastReloadSS = ReloadSS;
 | 
						|
      }
 | 
						|
      unhandled_.push(ReloadLi);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  ++NumBacktracks;
 | 
						|
 | 
						|
  // Push the current interval back to unhandled since we are going
 | 
						|
  // to re-run at least this iteration. Since we didn't modify it it
 | 
						|
  // should go back right in the front of the list
 | 
						|
  unhandled_.push(cur);
 | 
						|
 | 
						|
  assert(TargetRegisterInfo::isPhysicalRegister(minReg) &&
 | 
						|
         "did not choose a register to spill?");
 | 
						|
 | 
						|
  // We spill all intervals aliasing the register with
 | 
						|
  // minimum weight, rollback to the interval with the earliest
 | 
						|
  // start point and let the linear scan algorithm run again
 | 
						|
  SmallVector<LiveInterval*, 8> spillIs;
 | 
						|
 | 
						|
  // Determine which intervals have to be spilled.
 | 
						|
  findIntervalsToSpill(cur, RegsWeights, LastCandidate, spillIs);
 | 
						|
 | 
						|
  // Set of spilled vregs (used later to rollback properly)
 | 
						|
  SmallSet<unsigned, 8> spilled;
 | 
						|
 | 
						|
  // The earliest start of a Spilled interval indicates up to where
 | 
						|
  // in handled we need to roll back
 | 
						|
  
 | 
						|
  LiveInterval *earliestStartInterval = cur;
 | 
						|
 | 
						|
  // Spill live intervals of virtual regs mapped to the physical register we
 | 
						|
  // want to clear (and its aliases).  We only spill those that overlap with the
 | 
						|
  // current interval as the rest do not affect its allocation. we also keep
 | 
						|
  // track of the earliest start of all spilled live intervals since this will
 | 
						|
  // mark our rollback point.
 | 
						|
  std::vector<LiveInterval*> added;
 | 
						|
  while (!spillIs.empty()) {
 | 
						|
    LiveInterval *sli = spillIs.back();
 | 
						|
    spillIs.pop_back();
 | 
						|
    DOUT << "\t\t\tspilling(a): " << *sli << '\n';
 | 
						|
    earliestStartInterval =
 | 
						|
      (earliestStartInterval->beginNumber() < sli->beginNumber()) ?
 | 
						|
         earliestStartInterval : sli;
 | 
						|
       
 | 
						|
    std::vector<LiveInterval*> newIs;
 | 
						|
    if (!NewSpillFramework) {
 | 
						|
      newIs = li_->addIntervalsForSpills(*sli, spillIs, loopInfo, *vrm_);
 | 
						|
    } else {
 | 
						|
      newIs = spiller_->spill(sli);
 | 
						|
    }
 | 
						|
    addStackInterval(sli, ls_, li_, mri_, *vrm_);
 | 
						|
    std::copy(newIs.begin(), newIs.end(), std::back_inserter(added));
 | 
						|
    spilled.insert(sli->reg);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned earliestStart = earliestStartInterval->beginNumber();
 | 
						|
 | 
						|
  DOUT << "\t\trolling back to: " << earliestStart << '\n';
 | 
						|
 | 
						|
  // Scan handled in reverse order up to the earliest start of a
 | 
						|
  // spilled live interval and undo each one, restoring the state of
 | 
						|
  // unhandled.
 | 
						|
  while (!handled_.empty()) {
 | 
						|
    LiveInterval* i = handled_.back();
 | 
						|
    // If this interval starts before t we are done.
 | 
						|
    if (i->beginNumber() < earliestStart)
 | 
						|
      break;
 | 
						|
    DOUT << "\t\t\tundo changes for: " << *i << '\n';
 | 
						|
    handled_.pop_back();
 | 
						|
 | 
						|
    // When undoing a live interval allocation we must know if it is active or
 | 
						|
    // inactive to properly update regUse_ and the VirtRegMap.
 | 
						|
    IntervalPtrs::iterator it;
 | 
						|
    if ((it = FindIntervalInVector(active_, i)) != active_.end()) {
 | 
						|
      active_.erase(it);
 | 
						|
      assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
 | 
						|
      if (!spilled.count(i->reg))
 | 
						|
        unhandled_.push(i);
 | 
						|
      delRegUse(vrm_->getPhys(i->reg));
 | 
						|
      vrm_->clearVirt(i->reg);
 | 
						|
    } else if ((it = FindIntervalInVector(inactive_, i)) != inactive_.end()) {
 | 
						|
      inactive_.erase(it);
 | 
						|
      assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
 | 
						|
      if (!spilled.count(i->reg))
 | 
						|
        unhandled_.push(i);
 | 
						|
      vrm_->clearVirt(i->reg);
 | 
						|
    } else {
 | 
						|
      assert(TargetRegisterInfo::isVirtualRegister(i->reg) &&
 | 
						|
             "Can only allocate virtual registers!");
 | 
						|
      vrm_->clearVirt(i->reg);
 | 
						|
      unhandled_.push(i);
 | 
						|
    }
 | 
						|
 | 
						|
    DenseMap<unsigned, unsigned>::iterator ii = DowngradeMap.find(i->reg);
 | 
						|
    if (ii == DowngradeMap.end())
 | 
						|
      // It interval has a preference, it must be defined by a copy. Clear the
 | 
						|
      // preference now since the source interval allocation may have been
 | 
						|
      // undone as well.
 | 
						|
      mri_->setRegAllocationHint(i->reg, 0, 0);
 | 
						|
    else {
 | 
						|
      UpgradeRegister(ii->second);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Rewind the iterators in the active, inactive, and fixed lists back to the
 | 
						|
  // point we reverted to.
 | 
						|
  RevertVectorIteratorsTo(active_, earliestStart);
 | 
						|
  RevertVectorIteratorsTo(inactive_, earliestStart);
 | 
						|
  RevertVectorIteratorsTo(fixed_, earliestStart);
 | 
						|
 | 
						|
  // Scan the rest and undo each interval that expired after t and
 | 
						|
  // insert it in active (the next iteration of the algorithm will
 | 
						|
  // put it in inactive if required)
 | 
						|
  for (unsigned i = 0, e = handled_.size(); i != e; ++i) {
 | 
						|
    LiveInterval *HI = handled_[i];
 | 
						|
    if (!HI->expiredAt(earliestStart) &&
 | 
						|
        HI->expiredAt(cur->beginNumber())) {
 | 
						|
      DOUT << "\t\t\tundo changes for: " << *HI << '\n';
 | 
						|
      active_.push_back(std::make_pair(HI, HI->begin()));
 | 
						|
      assert(!TargetRegisterInfo::isPhysicalRegister(HI->reg));
 | 
						|
      addRegUse(vrm_->getPhys(HI->reg));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Merge added with unhandled.
 | 
						|
  // This also update the NextReloadMap. That is, it adds mapping from a
 | 
						|
  // register defined by a reload from SS to the next reload from SS in the
 | 
						|
  // same basic block.
 | 
						|
  MachineBasicBlock *LastReloadMBB = 0;
 | 
						|
  LiveInterval *LastReload = 0;
 | 
						|
  int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
 | 
						|
  std::sort(added.begin(), added.end(), LISorter());
 | 
						|
  for (unsigned i = 0, e = added.size(); i != e; ++i) {
 | 
						|
    LiveInterval *ReloadLi = added[i];
 | 
						|
    if (ReloadLi->weight == HUGE_VALF &&
 | 
						|
        li_->getApproximateInstructionCount(*ReloadLi) == 0) {
 | 
						|
      unsigned ReloadIdx = ReloadLi->beginNumber();
 | 
						|
      MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
 | 
						|
      int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
 | 
						|
      if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
 | 
						|
        // Last reload of same SS is in the same MBB. We want to try to
 | 
						|
        // allocate both reloads the same register and make sure the reg
 | 
						|
        // isn't clobbered in between if at all possible.
 | 
						|
        assert(LastReload->beginNumber() < ReloadIdx);
 | 
						|
        NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
 | 
						|
      }
 | 
						|
      LastReloadMBB = ReloadMBB;
 | 
						|
      LastReload = ReloadLi;
 | 
						|
      LastReloadSS = ReloadSS;
 | 
						|
    }
 | 
						|
    unhandled_.push(ReloadLi);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
unsigned RALinScan::getFreePhysReg(LiveInterval* cur,
 | 
						|
                                   const TargetRegisterClass *RC,
 | 
						|
                                   unsigned MaxInactiveCount,
 | 
						|
                                   SmallVector<unsigned, 256> &inactiveCounts,
 | 
						|
                                   bool SkipDGRegs) {
 | 
						|
  unsigned FreeReg = 0;
 | 
						|
  unsigned FreeRegInactiveCount = 0;
 | 
						|
 | 
						|
  std::pair<unsigned, unsigned> Hint = mri_->getRegAllocationHint(cur->reg);
 | 
						|
  // Resolve second part of the hint (if possible) given the current allocation.
 | 
						|
  unsigned physReg = Hint.second;
 | 
						|
  if (physReg &&
 | 
						|
      TargetRegisterInfo::isVirtualRegister(physReg) && vrm_->hasPhys(physReg))
 | 
						|
    physReg = vrm_->getPhys(physReg);
 | 
						|
 | 
						|
  TargetRegisterClass::iterator I, E;
 | 
						|
  tie(I, E) = tri_->getAllocationOrder(RC, Hint.first, physReg, *mf_);
 | 
						|
  assert(I != E && "No allocatable register in this register class!");
 | 
						|
 | 
						|
  // Scan for the first available register.
 | 
						|
  for (; I != E; ++I) {
 | 
						|
    unsigned Reg = *I;
 | 
						|
    // Ignore "downgraded" registers.
 | 
						|
    if (SkipDGRegs && DowngradedRegs.count(Reg))
 | 
						|
      continue;
 | 
						|
    if (isRegAvail(Reg)) {
 | 
						|
      FreeReg = Reg;
 | 
						|
      if (FreeReg < inactiveCounts.size())
 | 
						|
        FreeRegInactiveCount = inactiveCounts[FreeReg];
 | 
						|
      else
 | 
						|
        FreeRegInactiveCount = 0;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If there are no free regs, or if this reg has the max inactive count,
 | 
						|
  // return this register.
 | 
						|
  if (FreeReg == 0 || FreeRegInactiveCount == MaxInactiveCount)
 | 
						|
    return FreeReg;
 | 
						|
 
 | 
						|
  // Continue scanning the registers, looking for the one with the highest
 | 
						|
  // inactive count.  Alkis found that this reduced register pressure very
 | 
						|
  // slightly on X86 (in rev 1.94 of this file), though this should probably be
 | 
						|
  // reevaluated now.
 | 
						|
  for (; I != E; ++I) {
 | 
						|
    unsigned Reg = *I;
 | 
						|
    // Ignore "downgraded" registers.
 | 
						|
    if (SkipDGRegs && DowngradedRegs.count(Reg))
 | 
						|
      continue;
 | 
						|
    if (isRegAvail(Reg) && Reg < inactiveCounts.size() &&
 | 
						|
        FreeRegInactiveCount < inactiveCounts[Reg]) {
 | 
						|
      FreeReg = Reg;
 | 
						|
      FreeRegInactiveCount = inactiveCounts[Reg];
 | 
						|
      if (FreeRegInactiveCount == MaxInactiveCount)
 | 
						|
        break;    // We found the one with the max inactive count.
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return FreeReg;
 | 
						|
}
 | 
						|
 | 
						|
/// getFreePhysReg - return a free physical register for this virtual register
 | 
						|
/// interval if we have one, otherwise return 0.
 | 
						|
unsigned RALinScan::getFreePhysReg(LiveInterval *cur) {
 | 
						|
  SmallVector<unsigned, 256> inactiveCounts;
 | 
						|
  unsigned MaxInactiveCount = 0;
 | 
						|
  
 | 
						|
  const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
 | 
						|
  const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
 | 
						|
 
 | 
						|
  for (IntervalPtrs::iterator i = inactive_.begin(), e = inactive_.end();
 | 
						|
       i != e; ++i) {
 | 
						|
    unsigned reg = i->first->reg;
 | 
						|
    assert(TargetRegisterInfo::isVirtualRegister(reg) &&
 | 
						|
           "Can only allocate virtual registers!");
 | 
						|
 | 
						|
    // If this is not in a related reg class to the register we're allocating, 
 | 
						|
    // don't check it.
 | 
						|
    const TargetRegisterClass *RegRC = mri_->getRegClass(reg);
 | 
						|
    if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader) {
 | 
						|
      reg = vrm_->getPhys(reg);
 | 
						|
      if (inactiveCounts.size() <= reg)
 | 
						|
        inactiveCounts.resize(reg+1);
 | 
						|
      ++inactiveCounts[reg];
 | 
						|
      MaxInactiveCount = std::max(MaxInactiveCount, inactiveCounts[reg]);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If copy coalescer has assigned a "preferred" register, check if it's
 | 
						|
  // available first.
 | 
						|
  unsigned Preference = vrm_->getRegAllocPref(cur->reg);
 | 
						|
  if (Preference) {
 | 
						|
    DOUT << "(preferred: " << tri_->getName(Preference) << ") ";
 | 
						|
    if (isRegAvail(Preference) && 
 | 
						|
        RC->contains(Preference))
 | 
						|
      return Preference;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!DowngradedRegs.empty()) {
 | 
						|
    unsigned FreeReg = getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts,
 | 
						|
                                      true);
 | 
						|
    if (FreeReg)
 | 
						|
      return FreeReg;
 | 
						|
  }
 | 
						|
  return getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts, false);
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass* llvm::createLinearScanRegisterAllocator() {
 | 
						|
  return new RALinScan();
 | 
						|
}
 |