mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73346 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			500 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			500 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- llvm/CodeGen/VirtRegMap.h - Virtual Register Map -*- C++ -*--------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements a virtual register map. This maps virtual registers to
 | 
						|
// physical registers and virtual registers to stack slots. It is created and
 | 
						|
// updated by a register allocator and then used by a machine code rewriter that
 | 
						|
// adds spill code and rewrites virtual into physical register references.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_CODEGEN_VIRTREGMAP_H
 | 
						|
#define LLVM_CODEGEN_VIRTREGMAP_H
 | 
						|
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
#include "llvm/ADT/BitVector.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/IndexedMap.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Support/Streams.h"
 | 
						|
#include <map>
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  class LiveIntervals;
 | 
						|
  class MachineInstr;
 | 
						|
  class MachineFunction;
 | 
						|
  class MachineRegisterInfo;
 | 
						|
  class TargetInstrInfo;
 | 
						|
  class TargetRegisterInfo;
 | 
						|
 | 
						|
  class VirtRegMap : public MachineFunctionPass {
 | 
						|
  public:
 | 
						|
    enum {
 | 
						|
      NO_PHYS_REG = 0,
 | 
						|
      NO_STACK_SLOT = (1L << 30)-1,
 | 
						|
      MAX_STACK_SLOT = (1L << 18)-1
 | 
						|
    };
 | 
						|
 | 
						|
    enum ModRef { isRef = 1, isMod = 2, isModRef = 3 };
 | 
						|
    typedef std::multimap<MachineInstr*,
 | 
						|
                          std::pair<unsigned, ModRef> > MI2VirtMapTy;
 | 
						|
 | 
						|
  private:
 | 
						|
    MachineRegisterInfo *MRI;
 | 
						|
    const TargetInstrInfo *TII;
 | 
						|
    const TargetRegisterInfo *TRI;
 | 
						|
    MachineFunction *MF;
 | 
						|
 | 
						|
    DenseMap<const TargetRegisterClass*, BitVector> allocatableRCRegs;
 | 
						|
 | 
						|
    /// Virt2PhysMap - This is a virtual to physical register
 | 
						|
    /// mapping. Each virtual register is required to have an entry in
 | 
						|
    /// it; even spilled virtual registers (the register mapped to a
 | 
						|
    /// spilled register is the temporary used to load it from the
 | 
						|
    /// stack).
 | 
						|
    IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysMap;
 | 
						|
 | 
						|
    /// Virt2StackSlotMap - This is virtual register to stack slot
 | 
						|
    /// mapping. Each spilled virtual register has an entry in it
 | 
						|
    /// which corresponds to the stack slot this register is spilled
 | 
						|
    /// at.
 | 
						|
    IndexedMap<int, VirtReg2IndexFunctor> Virt2StackSlotMap;
 | 
						|
 | 
						|
    /// Virt2ReMatIdMap - This is virtual register to rematerialization id
 | 
						|
    /// mapping. Each spilled virtual register that should be remat'd has an
 | 
						|
    /// entry in it which corresponds to the remat id.
 | 
						|
    IndexedMap<int, VirtReg2IndexFunctor> Virt2ReMatIdMap;
 | 
						|
 | 
						|
    /// Virt2SplitMap - This is virtual register to splitted virtual register
 | 
						|
    /// mapping.
 | 
						|
    IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2SplitMap;
 | 
						|
 | 
						|
    /// Virt2SplitKillMap - This is splitted virtual register to its last use
 | 
						|
    /// (kill) index mapping.
 | 
						|
    IndexedMap<unsigned> Virt2SplitKillMap;
 | 
						|
 | 
						|
    /// ReMatMap - This is virtual register to re-materialized instruction
 | 
						|
    /// mapping. Each virtual register whose definition is going to be
 | 
						|
    /// re-materialized has an entry in it.
 | 
						|
    IndexedMap<MachineInstr*, VirtReg2IndexFunctor> ReMatMap;
 | 
						|
 | 
						|
    /// MI2VirtMap - This is MachineInstr to virtual register
 | 
						|
    /// mapping. In the case of memory spill code being folded into
 | 
						|
    /// instructions, we need to know which virtual register was
 | 
						|
    /// read/written by this instruction.
 | 
						|
    MI2VirtMapTy MI2VirtMap;
 | 
						|
 | 
						|
    /// SpillPt2VirtMap - This records the virtual registers which should
 | 
						|
    /// be spilled right after the MachineInstr due to live interval
 | 
						|
    /// splitting.
 | 
						|
    std::map<MachineInstr*, std::vector<std::pair<unsigned,bool> > >
 | 
						|
    SpillPt2VirtMap;
 | 
						|
 | 
						|
    /// RestorePt2VirtMap - This records the virtual registers which should
 | 
						|
    /// be restored right before the MachineInstr due to live interval
 | 
						|
    /// splitting.
 | 
						|
    std::map<MachineInstr*, std::vector<unsigned> > RestorePt2VirtMap;
 | 
						|
 | 
						|
    /// EmergencySpillMap - This records the physical registers that should
 | 
						|
    /// be spilled / restored around the MachineInstr since the register
 | 
						|
    /// allocator has run out of registers.
 | 
						|
    std::map<MachineInstr*, std::vector<unsigned> > EmergencySpillMap;
 | 
						|
 | 
						|
    /// EmergencySpillSlots - This records emergency spill slots used to
 | 
						|
    /// spill physical registers when the register allocator runs out of
 | 
						|
    /// registers. Ideally only one stack slot is used per function per
 | 
						|
    /// register class.
 | 
						|
    std::map<const TargetRegisterClass*, int> EmergencySpillSlots;
 | 
						|
 | 
						|
    /// ReMatId - Instead of assigning a stack slot to a to be rematerialized
 | 
						|
    /// virtual register, an unique id is being assigned. This keeps track of
 | 
						|
    /// the highest id used so far. Note, this starts at (1<<18) to avoid
 | 
						|
    /// conflicts with stack slot numbers.
 | 
						|
    int ReMatId;
 | 
						|
 | 
						|
    /// LowSpillSlot, HighSpillSlot - Lowest and highest spill slot indexes.
 | 
						|
    int LowSpillSlot, HighSpillSlot;
 | 
						|
 | 
						|
    /// SpillSlotToUsesMap - Records uses for each register spill slot.
 | 
						|
    SmallVector<SmallPtrSet<MachineInstr*, 4>, 8> SpillSlotToUsesMap;
 | 
						|
 | 
						|
    /// ImplicitDefed - One bit for each virtual register. If set it indicates
 | 
						|
    /// the register is implicitly defined.
 | 
						|
    BitVector ImplicitDefed;
 | 
						|
 | 
						|
    /// UnusedRegs - A list of physical registers that have not been used.
 | 
						|
    BitVector UnusedRegs;
 | 
						|
 | 
						|
    VirtRegMap(const VirtRegMap&);     // DO NOT IMPLEMENT
 | 
						|
    void operator=(const VirtRegMap&); // DO NOT IMPLEMENT
 | 
						|
 | 
						|
  public:
 | 
						|
    static char ID;
 | 
						|
    VirtRegMap() : MachineFunctionPass(&ID), Virt2PhysMap(NO_PHYS_REG),
 | 
						|
                   Virt2StackSlotMap(NO_STACK_SLOT), 
 | 
						|
                   Virt2ReMatIdMap(NO_STACK_SLOT), Virt2SplitMap(0),
 | 
						|
                   Virt2SplitKillMap(0), ReMatMap(NULL),
 | 
						|
                   ReMatId(MAX_STACK_SLOT+1),
 | 
						|
                   LowSpillSlot(NO_STACK_SLOT), HighSpillSlot(NO_STACK_SLOT) { }
 | 
						|
    virtual bool runOnMachineFunction(MachineFunction &MF);
 | 
						|
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.setPreservesAll();
 | 
						|
      MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
 | 
						|
    void grow();
 | 
						|
 | 
						|
    /// @brief returns true if the specified virtual register is
 | 
						|
    /// mapped to a physical register
 | 
						|
    bool hasPhys(unsigned virtReg) const {
 | 
						|
      return getPhys(virtReg) != NO_PHYS_REG;
 | 
						|
    }
 | 
						|
 | 
						|
    /// @brief returns the physical register mapped to the specified
 | 
						|
    /// virtual register
 | 
						|
    unsigned getPhys(unsigned virtReg) const {
 | 
						|
      assert(TargetRegisterInfo::isVirtualRegister(virtReg));
 | 
						|
      return Virt2PhysMap[virtReg];
 | 
						|
    }
 | 
						|
 | 
						|
    /// @brief creates a mapping for the specified virtual register to
 | 
						|
    /// the specified physical register
 | 
						|
    void assignVirt2Phys(unsigned virtReg, unsigned physReg) {
 | 
						|
      assert(TargetRegisterInfo::isVirtualRegister(virtReg) &&
 | 
						|
             TargetRegisterInfo::isPhysicalRegister(physReg));
 | 
						|
      assert(Virt2PhysMap[virtReg] == NO_PHYS_REG &&
 | 
						|
             "attempt to assign physical register to already mapped "
 | 
						|
             "virtual register");
 | 
						|
      Virt2PhysMap[virtReg] = physReg;
 | 
						|
    }
 | 
						|
 | 
						|
    /// @brief clears the specified virtual register's, physical
 | 
						|
    /// register mapping
 | 
						|
    void clearVirt(unsigned virtReg) {
 | 
						|
      assert(TargetRegisterInfo::isVirtualRegister(virtReg));
 | 
						|
      assert(Virt2PhysMap[virtReg] != NO_PHYS_REG &&
 | 
						|
             "attempt to clear a not assigned virtual register");
 | 
						|
      Virt2PhysMap[virtReg] = NO_PHYS_REG;
 | 
						|
    }
 | 
						|
 | 
						|
    /// @brief clears all virtual to physical register mappings
 | 
						|
    void clearAllVirt() {
 | 
						|
      Virt2PhysMap.clear();
 | 
						|
      grow();
 | 
						|
    }
 | 
						|
 | 
						|
    /// @brief returns the register allocation preference.
 | 
						|
    unsigned getRegAllocPref(unsigned virtReg);
 | 
						|
 | 
						|
    /// @brief records virtReg is a split live interval from SReg.
 | 
						|
    void setIsSplitFromReg(unsigned virtReg, unsigned SReg) {
 | 
						|
      Virt2SplitMap[virtReg] = SReg;
 | 
						|
    }
 | 
						|
 | 
						|
    /// @brief returns the live interval virtReg is split from.
 | 
						|
    unsigned getPreSplitReg(unsigned virtReg) {
 | 
						|
      return Virt2SplitMap[virtReg];
 | 
						|
    }
 | 
						|
 | 
						|
    /// @brief returns true if the specified virtual register is not
 | 
						|
    /// mapped to a stack slot or rematerialized.
 | 
						|
    bool isAssignedReg(unsigned virtReg) const {
 | 
						|
      if (getStackSlot(virtReg) == NO_STACK_SLOT &&
 | 
						|
          getReMatId(virtReg) == NO_STACK_SLOT)
 | 
						|
        return true;
 | 
						|
      // Split register can be assigned a physical register as well as a
 | 
						|
      // stack slot or remat id.
 | 
						|
      return (Virt2SplitMap[virtReg] && Virt2PhysMap[virtReg] != NO_PHYS_REG);
 | 
						|
    }
 | 
						|
 | 
						|
    /// @brief returns the stack slot mapped to the specified virtual
 | 
						|
    /// register
 | 
						|
    int getStackSlot(unsigned virtReg) const {
 | 
						|
      assert(TargetRegisterInfo::isVirtualRegister(virtReg));
 | 
						|
      return Virt2StackSlotMap[virtReg];
 | 
						|
    }
 | 
						|
 | 
						|
    /// @brief returns the rematerialization id mapped to the specified virtual
 | 
						|
    /// register
 | 
						|
    int getReMatId(unsigned virtReg) const {
 | 
						|
      assert(TargetRegisterInfo::isVirtualRegister(virtReg));
 | 
						|
      return Virt2ReMatIdMap[virtReg];
 | 
						|
    }
 | 
						|
 | 
						|
    /// @brief create a mapping for the specifed virtual register to
 | 
						|
    /// the next available stack slot
 | 
						|
    int assignVirt2StackSlot(unsigned virtReg);
 | 
						|
    /// @brief create a mapping for the specified virtual register to
 | 
						|
    /// the specified stack slot
 | 
						|
    void assignVirt2StackSlot(unsigned virtReg, int frameIndex);
 | 
						|
 | 
						|
    /// @brief assign an unique re-materialization id to the specified
 | 
						|
    /// virtual register.
 | 
						|
    int assignVirtReMatId(unsigned virtReg);
 | 
						|
    /// @brief assign an unique re-materialization id to the specified
 | 
						|
    /// virtual register.
 | 
						|
    void assignVirtReMatId(unsigned virtReg, int id);
 | 
						|
 | 
						|
    /// @brief returns true if the specified virtual register is being
 | 
						|
    /// re-materialized.
 | 
						|
    bool isReMaterialized(unsigned virtReg) const {
 | 
						|
      return ReMatMap[virtReg] != NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    /// @brief returns the original machine instruction being re-issued
 | 
						|
    /// to re-materialize the specified virtual register.
 | 
						|
    MachineInstr *getReMaterializedMI(unsigned virtReg) const {
 | 
						|
      return ReMatMap[virtReg];
 | 
						|
    }
 | 
						|
 | 
						|
    /// @brief records the specified virtual register will be
 | 
						|
    /// re-materialized and the original instruction which will be re-issed
 | 
						|
    /// for this purpose.  If parameter all is true, then all uses of the
 | 
						|
    /// registers are rematerialized and it's safe to delete the definition.
 | 
						|
    void setVirtIsReMaterialized(unsigned virtReg, MachineInstr *def) {
 | 
						|
      ReMatMap[virtReg] = def;
 | 
						|
    }
 | 
						|
 | 
						|
    /// @brief record the last use (kill) of a split virtual register.
 | 
						|
    void addKillPoint(unsigned virtReg, unsigned index) {
 | 
						|
      Virt2SplitKillMap[virtReg] = index;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned getKillPoint(unsigned virtReg) const {
 | 
						|
      return Virt2SplitKillMap[virtReg];
 | 
						|
    }
 | 
						|
 | 
						|
    /// @brief remove the last use (kill) of a split virtual register.
 | 
						|
    void removeKillPoint(unsigned virtReg) {
 | 
						|
      Virt2SplitKillMap[virtReg] = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /// @brief returns true if the specified MachineInstr is a spill point.
 | 
						|
    bool isSpillPt(MachineInstr *Pt) const {
 | 
						|
      return SpillPt2VirtMap.find(Pt) != SpillPt2VirtMap.end();
 | 
						|
    }
 | 
						|
 | 
						|
    /// @brief returns the virtual registers that should be spilled due to
 | 
						|
    /// splitting right after the specified MachineInstr.
 | 
						|
    std::vector<std::pair<unsigned,bool> > &getSpillPtSpills(MachineInstr *Pt) {
 | 
						|
      return SpillPt2VirtMap[Pt];
 | 
						|
    }
 | 
						|
 | 
						|
    /// @brief records the specified MachineInstr as a spill point for virtReg.
 | 
						|
    void addSpillPoint(unsigned virtReg, bool isKill, MachineInstr *Pt) {
 | 
						|
      std::map<MachineInstr*, std::vector<std::pair<unsigned,bool> > >::iterator
 | 
						|
        I = SpillPt2VirtMap.find(Pt);
 | 
						|
      if (I != SpillPt2VirtMap.end())
 | 
						|
        I->second.push_back(std::make_pair(virtReg, isKill));
 | 
						|
      else {
 | 
						|
        std::vector<std::pair<unsigned,bool> > Virts;
 | 
						|
        Virts.push_back(std::make_pair(virtReg, isKill));
 | 
						|
        SpillPt2VirtMap.insert(std::make_pair(Pt, Virts));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /// @brief - transfer spill point information from one instruction to
 | 
						|
    /// another.
 | 
						|
    void transferSpillPts(MachineInstr *Old, MachineInstr *New) {
 | 
						|
      std::map<MachineInstr*, std::vector<std::pair<unsigned,bool> > >::iterator
 | 
						|
        I = SpillPt2VirtMap.find(Old);
 | 
						|
      if (I == SpillPt2VirtMap.end())
 | 
						|
        return;
 | 
						|
      while (!I->second.empty()) {
 | 
						|
        unsigned virtReg = I->second.back().first;
 | 
						|
        bool isKill = I->second.back().second;
 | 
						|
        I->second.pop_back();
 | 
						|
        addSpillPoint(virtReg, isKill, New);
 | 
						|
      }
 | 
						|
      SpillPt2VirtMap.erase(I);
 | 
						|
    }
 | 
						|
 | 
						|
    /// @brief returns true if the specified MachineInstr is a restore point.
 | 
						|
    bool isRestorePt(MachineInstr *Pt) const {
 | 
						|
      return RestorePt2VirtMap.find(Pt) != RestorePt2VirtMap.end();
 | 
						|
    }
 | 
						|
 | 
						|
    /// @brief returns the virtual registers that should be restoreed due to
 | 
						|
    /// splitting right after the specified MachineInstr.
 | 
						|
    std::vector<unsigned> &getRestorePtRestores(MachineInstr *Pt) {
 | 
						|
      return RestorePt2VirtMap[Pt];
 | 
						|
    }
 | 
						|
 | 
						|
    /// @brief records the specified MachineInstr as a restore point for virtReg.
 | 
						|
    void addRestorePoint(unsigned virtReg, MachineInstr *Pt) {
 | 
						|
      std::map<MachineInstr*, std::vector<unsigned> >::iterator I =
 | 
						|
        RestorePt2VirtMap.find(Pt);
 | 
						|
      if (I != RestorePt2VirtMap.end())
 | 
						|
        I->second.push_back(virtReg);
 | 
						|
      else {
 | 
						|
        std::vector<unsigned> Virts;
 | 
						|
        Virts.push_back(virtReg);
 | 
						|
        RestorePt2VirtMap.insert(std::make_pair(Pt, Virts));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /// @brief - transfer restore point information from one instruction to
 | 
						|
    /// another.
 | 
						|
    void transferRestorePts(MachineInstr *Old, MachineInstr *New) {
 | 
						|
      std::map<MachineInstr*, std::vector<unsigned> >::iterator I =
 | 
						|
        RestorePt2VirtMap.find(Old);
 | 
						|
      if (I == RestorePt2VirtMap.end())
 | 
						|
        return;
 | 
						|
      while (!I->second.empty()) {
 | 
						|
        unsigned virtReg = I->second.back();
 | 
						|
        I->second.pop_back();
 | 
						|
        addRestorePoint(virtReg, New);
 | 
						|
      }
 | 
						|
      RestorePt2VirtMap.erase(I);
 | 
						|
    }
 | 
						|
 | 
						|
    /// @brief records that the specified physical register must be spilled
 | 
						|
    /// around the specified machine instr.
 | 
						|
    void addEmergencySpill(unsigned PhysReg, MachineInstr *MI) {
 | 
						|
      if (EmergencySpillMap.find(MI) != EmergencySpillMap.end())
 | 
						|
        EmergencySpillMap[MI].push_back(PhysReg);
 | 
						|
      else {
 | 
						|
        std::vector<unsigned> PhysRegs;
 | 
						|
        PhysRegs.push_back(PhysReg);
 | 
						|
        EmergencySpillMap.insert(std::make_pair(MI, PhysRegs));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /// @brief returns true if one or more physical registers must be spilled
 | 
						|
    /// around the specified instruction.
 | 
						|
    bool hasEmergencySpills(MachineInstr *MI) const {
 | 
						|
      return EmergencySpillMap.find(MI) != EmergencySpillMap.end();
 | 
						|
    }
 | 
						|
 | 
						|
    /// @brief returns the physical registers to be spilled and restored around
 | 
						|
    /// the instruction.
 | 
						|
    std::vector<unsigned> &getEmergencySpills(MachineInstr *MI) {
 | 
						|
      return EmergencySpillMap[MI];
 | 
						|
    }
 | 
						|
 | 
						|
    /// @brief - transfer emergency spill information from one instruction to
 | 
						|
    /// another.
 | 
						|
    void transferEmergencySpills(MachineInstr *Old, MachineInstr *New) {
 | 
						|
      std::map<MachineInstr*,std::vector<unsigned> >::iterator I =
 | 
						|
        EmergencySpillMap.find(Old);
 | 
						|
      if (I == EmergencySpillMap.end())
 | 
						|
        return;
 | 
						|
      while (!I->second.empty()) {
 | 
						|
        unsigned virtReg = I->second.back();
 | 
						|
        I->second.pop_back();
 | 
						|
        addEmergencySpill(virtReg, New);
 | 
						|
      }
 | 
						|
      EmergencySpillMap.erase(I);
 | 
						|
    }
 | 
						|
 | 
						|
    /// @brief return or get a emergency spill slot for the register class.
 | 
						|
    int getEmergencySpillSlot(const TargetRegisterClass *RC);
 | 
						|
 | 
						|
    /// @brief Return lowest spill slot index.
 | 
						|
    int getLowSpillSlot() const {
 | 
						|
      return LowSpillSlot;
 | 
						|
    }
 | 
						|
 | 
						|
    /// @brief Return highest spill slot index.
 | 
						|
    int getHighSpillSlot() const {
 | 
						|
      return HighSpillSlot;
 | 
						|
    }
 | 
						|
 | 
						|
    /// @brief Records a spill slot use.
 | 
						|
    void addSpillSlotUse(int FrameIndex, MachineInstr *MI);
 | 
						|
 | 
						|
    /// @brief Returns true if spill slot has been used.
 | 
						|
    bool isSpillSlotUsed(int FrameIndex) const {
 | 
						|
      assert(FrameIndex >= 0 && "Spill slot index should not be negative!");
 | 
						|
      return !SpillSlotToUsesMap[FrameIndex-LowSpillSlot].empty();
 | 
						|
    }
 | 
						|
 | 
						|
    /// @brief Mark the specified register as being implicitly defined.
 | 
						|
    void setIsImplicitlyDefined(unsigned VirtReg) {
 | 
						|
      ImplicitDefed.set(VirtReg-TargetRegisterInfo::FirstVirtualRegister);
 | 
						|
    }
 | 
						|
 | 
						|
    /// @brief Returns true if the virtual register is implicitly defined.
 | 
						|
    bool isImplicitlyDefined(unsigned VirtReg) const {
 | 
						|
      return ImplicitDefed[VirtReg-TargetRegisterInfo::FirstVirtualRegister];
 | 
						|
    }
 | 
						|
 | 
						|
    /// @brief Updates information about the specified virtual register's value
 | 
						|
    /// folded into newMI machine instruction.
 | 
						|
    void virtFolded(unsigned VirtReg, MachineInstr *OldMI, MachineInstr *NewMI,
 | 
						|
                    ModRef MRInfo);
 | 
						|
 | 
						|
    /// @brief Updates information about the specified virtual register's value
 | 
						|
    /// folded into the specified machine instruction.
 | 
						|
    void virtFolded(unsigned VirtReg, MachineInstr *MI, ModRef MRInfo);
 | 
						|
 | 
						|
    /// @brief returns the virtual registers' values folded in memory
 | 
						|
    /// operands of this instruction
 | 
						|
    std::pair<MI2VirtMapTy::const_iterator, MI2VirtMapTy::const_iterator>
 | 
						|
    getFoldedVirts(MachineInstr* MI) const {
 | 
						|
      return MI2VirtMap.equal_range(MI);
 | 
						|
    }
 | 
						|
    
 | 
						|
    /// RemoveMachineInstrFromMaps - MI is being erased, remove it from the
 | 
						|
    /// the folded instruction map and spill point map.
 | 
						|
    void RemoveMachineInstrFromMaps(MachineInstr *MI);
 | 
						|
 | 
						|
    /// FindUnusedRegisters - Gather a list of allocatable registers that
 | 
						|
    /// have not been allocated to any virtual register.
 | 
						|
    bool FindUnusedRegisters(LiveIntervals* LIs);
 | 
						|
 | 
						|
    /// HasUnusedRegisters - Return true if there are any allocatable registers
 | 
						|
    /// that have not been allocated to any virtual register.
 | 
						|
    bool HasUnusedRegisters() const {
 | 
						|
      return !UnusedRegs.none();
 | 
						|
    }
 | 
						|
 | 
						|
    /// setRegisterUsed - Remember the physical register is now used.
 | 
						|
    void setRegisterUsed(unsigned Reg) {
 | 
						|
      UnusedRegs.reset(Reg);
 | 
						|
    }
 | 
						|
 | 
						|
    /// isRegisterUnused - Return true if the physical register has not been
 | 
						|
    /// used.
 | 
						|
    bool isRegisterUnused(unsigned Reg) const {
 | 
						|
      return UnusedRegs[Reg];
 | 
						|
    }
 | 
						|
 | 
						|
    /// getFirstUnusedRegister - Return the first physical register that has not
 | 
						|
    /// been used.
 | 
						|
    unsigned getFirstUnusedRegister(const TargetRegisterClass *RC) {
 | 
						|
      int Reg = UnusedRegs.find_first();
 | 
						|
      while (Reg != -1) {
 | 
						|
        if (allocatableRCRegs[RC][Reg])
 | 
						|
          return (unsigned)Reg;
 | 
						|
        Reg = UnusedRegs.find_next(Reg);
 | 
						|
      }
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    void print(std::ostream &OS, const Module* M = 0) const;
 | 
						|
    void print(std::ostream *OS) const { if (OS) print(*OS); }
 | 
						|
    void dump() const;
 | 
						|
  };
 | 
						|
 | 
						|
  inline std::ostream *operator<<(std::ostream *OS, const VirtRegMap &VRM) {
 | 
						|
    VRM.print(OS);
 | 
						|
    return OS;
 | 
						|
  }
 | 
						|
  inline std::ostream &operator<<(std::ostream &OS, const VirtRegMap &VRM) {
 | 
						|
    VRM.print(OS);
 | 
						|
    return OS;
 | 
						|
  }
 | 
						|
} // End llvm namespace
 | 
						|
 | 
						|
#endif
 |