mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	may access memory, but they don't carry a MachineMemOperand. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83449 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2527 lines
		
	
	
		
			93 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2527 lines
		
	
	
		
			93 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file declares the SDNode class and derived classes, which are used to
 | 
						|
// represent the nodes and operations present in a SelectionDAG.  These nodes
 | 
						|
// and operations are machine code level operations, with some similarities to
 | 
						|
// the GCC RTL representation.
 | 
						|
//
 | 
						|
// Clients should include the SelectionDAG.h file instead of this file directly.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
 | 
						|
#define LLVM_CODEGEN_SELECTIONDAGNODES_H
 | 
						|
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/ADT/FoldingSet.h"
 | 
						|
#include "llvm/ADT/GraphTraits.h"
 | 
						|
#include "llvm/ADT/ilist_node.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/CodeGen/ValueTypes.h"
 | 
						|
#include "llvm/CodeGen/MachineMemOperand.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/DataTypes.h"
 | 
						|
#include "llvm/Support/DebugLoc.h"
 | 
						|
#include <cassert>
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
class SelectionDAG;
 | 
						|
class GlobalValue;
 | 
						|
class MachineBasicBlock;
 | 
						|
class MachineConstantPoolValue;
 | 
						|
class SDNode;
 | 
						|
class Value;
 | 
						|
template <typename T> struct DenseMapInfo;
 | 
						|
template <typename T> struct simplify_type;
 | 
						|
template <typename T> struct ilist_traits;
 | 
						|
 | 
						|
/// SDVTList - This represents a list of ValueType's that has been intern'd by
 | 
						|
/// a SelectionDAG.  Instances of this simple value class are returned by
 | 
						|
/// SelectionDAG::getVTList(...).
 | 
						|
///
 | 
						|
struct SDVTList {
 | 
						|
  const EVT *VTs;
 | 
						|
  unsigned int NumVTs;
 | 
						|
};
 | 
						|
 | 
						|
/// ISD namespace - This namespace contains an enum which represents all of the
 | 
						|
/// SelectionDAG node types and value types.
 | 
						|
///
 | 
						|
namespace ISD {
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  /// ISD::NodeType enum - This enum defines the target-independent operators
 | 
						|
  /// for a SelectionDAG.
 | 
						|
  ///
 | 
						|
  /// Targets may also define target-dependent operator codes for SDNodes. For
 | 
						|
  /// example, on x86, these are the enum values in the X86ISD namespace.
 | 
						|
  /// Targets should aim to use target-independent operators to model their
 | 
						|
  /// instruction sets as much as possible, and only use target-dependent
 | 
						|
  /// operators when they have special requirements.
 | 
						|
  ///
 | 
						|
  /// Finally, during and after selection proper, SNodes may use special
 | 
						|
  /// operator codes that correspond directly with MachineInstr opcodes. These
 | 
						|
  /// are used to represent selected instructions. See the isMachineOpcode()
 | 
						|
  /// and getMachineOpcode() member functions of SDNode.
 | 
						|
  ///
 | 
						|
  enum NodeType {
 | 
						|
    // DELETED_NODE - This is an illegal value that is used to catch
 | 
						|
    // errors.  This opcode is not a legal opcode for any node.
 | 
						|
    DELETED_NODE,
 | 
						|
 | 
						|
    // EntryToken - This is the marker used to indicate the start of the region.
 | 
						|
    EntryToken,
 | 
						|
 | 
						|
    // TokenFactor - This node takes multiple tokens as input and produces a
 | 
						|
    // single token result.  This is used to represent the fact that the operand
 | 
						|
    // operators are independent of each other.
 | 
						|
    TokenFactor,
 | 
						|
 | 
						|
    // AssertSext, AssertZext - These nodes record if a register contains a
 | 
						|
    // value that has already been zero or sign extended from a narrower type.
 | 
						|
    // These nodes take two operands.  The first is the node that has already
 | 
						|
    // been extended, and the second is a value type node indicating the width
 | 
						|
    // of the extension
 | 
						|
    AssertSext, AssertZext,
 | 
						|
 | 
						|
    // Various leaf nodes.
 | 
						|
    BasicBlock, VALUETYPE, CONDCODE, Register,
 | 
						|
    Constant, ConstantFP,
 | 
						|
    GlobalAddress, GlobalTLSAddress, FrameIndex,
 | 
						|
    JumpTable, ConstantPool, ExternalSymbol,
 | 
						|
 | 
						|
    // The address of the GOT
 | 
						|
    GLOBAL_OFFSET_TABLE,
 | 
						|
 | 
						|
    // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
 | 
						|
    // llvm.returnaddress on the DAG.  These nodes take one operand, the index
 | 
						|
    // of the frame or return address to return.  An index of zero corresponds
 | 
						|
    // to the current function's frame or return address, an index of one to the
 | 
						|
    // parent's frame or return address, and so on.
 | 
						|
    FRAMEADDR, RETURNADDR,
 | 
						|
 | 
						|
    // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
 | 
						|
    // first (possible) on-stack argument. This is needed for correct stack
 | 
						|
    // adjustment during unwind.
 | 
						|
    FRAME_TO_ARGS_OFFSET,
 | 
						|
 | 
						|
    // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
 | 
						|
    // address of the exception block on entry to an landing pad block.
 | 
						|
    EXCEPTIONADDR,
 | 
						|
 | 
						|
    // RESULT, OUTCHAIN = LSDAADDR(INCHAIN) - This node represents the
 | 
						|
    // address of the Language Specific Data Area for the enclosing function.
 | 
						|
    LSDAADDR,
 | 
						|
 | 
						|
    // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
 | 
						|
    // the selection index of the exception thrown.
 | 
						|
    EHSELECTION,
 | 
						|
 | 
						|
    // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
 | 
						|
    // 'eh_return' gcc dwarf builtin, which is used to return from
 | 
						|
    // exception. The general meaning is: adjust stack by OFFSET and pass
 | 
						|
    // execution to HANDLER. Many platform-related details also :)
 | 
						|
    EH_RETURN,
 | 
						|
 | 
						|
    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
 | 
						|
    // simplification of the constant.
 | 
						|
    TargetConstant,
 | 
						|
    TargetConstantFP,
 | 
						|
 | 
						|
    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
 | 
						|
    // anything else with this node, and this is valid in the target-specific
 | 
						|
    // dag, turning into a GlobalAddress operand.
 | 
						|
    TargetGlobalAddress,
 | 
						|
    TargetGlobalTLSAddress,
 | 
						|
    TargetFrameIndex,
 | 
						|
    TargetJumpTable,
 | 
						|
    TargetConstantPool,
 | 
						|
    TargetExternalSymbol,
 | 
						|
 | 
						|
    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
 | 
						|
    /// This node represents a target intrinsic function with no side effects.
 | 
						|
    /// The first operand is the ID number of the intrinsic from the
 | 
						|
    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
 | 
						|
    /// node has returns the result of the intrinsic.
 | 
						|
    INTRINSIC_WO_CHAIN,
 | 
						|
 | 
						|
    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
 | 
						|
    /// This node represents a target intrinsic function with side effects that
 | 
						|
    /// returns a result.  The first operand is a chain pointer.  The second is
 | 
						|
    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
 | 
						|
    /// operands to the intrinsic follow.  The node has two results, the result
 | 
						|
    /// of the intrinsic and an output chain.
 | 
						|
    INTRINSIC_W_CHAIN,
 | 
						|
 | 
						|
    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
 | 
						|
    /// This node represents a target intrinsic function with side effects that
 | 
						|
    /// does not return a result.  The first operand is a chain pointer.  The
 | 
						|
    /// second is the ID number of the intrinsic from the llvm::Intrinsic
 | 
						|
    /// namespace.  The operands to the intrinsic follow.
 | 
						|
    INTRINSIC_VOID,
 | 
						|
 | 
						|
    // CopyToReg - This node has three operands: a chain, a register number to
 | 
						|
    // set to this value, and a value.
 | 
						|
    CopyToReg,
 | 
						|
 | 
						|
    // CopyFromReg - This node indicates that the input value is a virtual or
 | 
						|
    // physical register that is defined outside of the scope of this
 | 
						|
    // SelectionDAG.  The register is available from the RegisterSDNode object.
 | 
						|
    CopyFromReg,
 | 
						|
 | 
						|
    // UNDEF - An undefined node
 | 
						|
    UNDEF,
 | 
						|
 | 
						|
    // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
 | 
						|
    // a Constant, which is required to be operand #1) half of the integer or
 | 
						|
    // float value specified as operand #0.  This is only for use before
 | 
						|
    // legalization, for values that will be broken into multiple registers.
 | 
						|
    EXTRACT_ELEMENT,
 | 
						|
 | 
						|
    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
 | 
						|
    // two values of the same integer value type, this produces a value twice as
 | 
						|
    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
 | 
						|
    BUILD_PAIR,
 | 
						|
 | 
						|
    // MERGE_VALUES - This node takes multiple discrete operands and returns
 | 
						|
    // them all as its individual results.  This nodes has exactly the same
 | 
						|
    // number of inputs and outputs. This node is useful for some pieces of the
 | 
						|
    // code generator that want to think about a single node with multiple
 | 
						|
    // results, not multiple nodes.
 | 
						|
    MERGE_VALUES,
 | 
						|
 | 
						|
    // Simple integer binary arithmetic operators.
 | 
						|
    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
 | 
						|
 | 
						|
    // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
 | 
						|
    // a signed/unsigned value of type i[2*N], and return the full value as
 | 
						|
    // two results, each of type iN.
 | 
						|
    SMUL_LOHI, UMUL_LOHI,
 | 
						|
 | 
						|
    // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
 | 
						|
    // remainder result.
 | 
						|
    SDIVREM, UDIVREM,
 | 
						|
 | 
						|
    // CARRY_FALSE - This node is used when folding other nodes,
 | 
						|
    // like ADDC/SUBC, which indicate the carry result is always false.
 | 
						|
    CARRY_FALSE,
 | 
						|
 | 
						|
    // Carry-setting nodes for multiple precision addition and subtraction.
 | 
						|
    // These nodes take two operands of the same value type, and produce two
 | 
						|
    // results.  The first result is the normal add or sub result, the second
 | 
						|
    // result is the carry flag result.
 | 
						|
    ADDC, SUBC,
 | 
						|
 | 
						|
    // Carry-using nodes for multiple precision addition and subtraction.  These
 | 
						|
    // nodes take three operands: The first two are the normal lhs and rhs to
 | 
						|
    // the add or sub, and the third is the input carry flag.  These nodes
 | 
						|
    // produce two results; the normal result of the add or sub, and the output
 | 
						|
    // carry flag.  These nodes both read and write a carry flag to allow them
 | 
						|
    // to them to be chained together for add and sub of arbitrarily large
 | 
						|
    // values.
 | 
						|
    ADDE, SUBE,
 | 
						|
 | 
						|
    // RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
 | 
						|
    // These nodes take two operands: the normal LHS and RHS to the add. They
 | 
						|
    // produce two results: the normal result of the add, and a boolean that
 | 
						|
    // indicates if an overflow occured (*not* a flag, because it may be stored
 | 
						|
    // to memory, etc.).  If the type of the boolean is not i1 then the high
 | 
						|
    // bits conform to getBooleanContents.
 | 
						|
    // These nodes are generated from the llvm.[su]add.with.overflow intrinsics.
 | 
						|
    SADDO, UADDO,
 | 
						|
 | 
						|
    // Same for subtraction
 | 
						|
    SSUBO, USUBO,
 | 
						|
 | 
						|
    // Same for multiplication
 | 
						|
    SMULO, UMULO,
 | 
						|
 | 
						|
    // Simple binary floating point operators.
 | 
						|
    FADD, FSUB, FMUL, FDIV, FREM,
 | 
						|
 | 
						|
    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
 | 
						|
    // DAG node does not require that X and Y have the same type, just that they
 | 
						|
    // are both floating point.  X and the result must have the same type.
 | 
						|
    // FCOPYSIGN(f32, f64) is allowed.
 | 
						|
    FCOPYSIGN,
 | 
						|
 | 
						|
    // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
 | 
						|
    // value as an integer 0/1 value.
 | 
						|
    FGETSIGN,
 | 
						|
 | 
						|
    /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the
 | 
						|
    /// specified, possibly variable, elements.  The number of elements is
 | 
						|
    /// required to be a power of two.  The types of the operands must all be
 | 
						|
    /// the same and must match the vector element type, except that integer
 | 
						|
    /// types are allowed to be larger than the element type, in which case
 | 
						|
    /// the operands are implicitly truncated.
 | 
						|
    BUILD_VECTOR,
 | 
						|
 | 
						|
    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
 | 
						|
    /// at IDX replaced with VAL.  If the type of VAL is larger than the vector
 | 
						|
    /// element type then VAL is truncated before replacement.
 | 
						|
    INSERT_VECTOR_ELT,
 | 
						|
 | 
						|
    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
 | 
						|
    /// identified by the (potentially variable) element number IDX.  If the
 | 
						|
    /// return type is an integer type larger than the element type of the
 | 
						|
    /// vector, the result is extended to the width of the return type.
 | 
						|
    EXTRACT_VECTOR_ELT,
 | 
						|
 | 
						|
    /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
 | 
						|
    /// vector type with the same length and element type, this produces a
 | 
						|
    /// concatenated vector result value, with length equal to the sum of the
 | 
						|
    /// lengths of the input vectors.
 | 
						|
    CONCAT_VECTORS,
 | 
						|
 | 
						|
    /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
 | 
						|
    /// vector value) starting with the (potentially variable) element number
 | 
						|
    /// IDX, which must be a multiple of the result vector length.
 | 
						|
    EXTRACT_SUBVECTOR,
 | 
						|
 | 
						|
    /// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as 
 | 
						|
    /// VEC1/VEC2.  A VECTOR_SHUFFLE node also contains an array of constant int
 | 
						|
    /// values that indicate which value (or undef) each result element will
 | 
						|
    /// get.  These constant ints are accessible through the 
 | 
						|
    /// ShuffleVectorSDNode class.  This is quite similar to the Altivec 
 | 
						|
    /// 'vperm' instruction, except that the indices must be constants and are
 | 
						|
    /// in terms of the element size of VEC1/VEC2, not in terms of bytes.
 | 
						|
    VECTOR_SHUFFLE,
 | 
						|
 | 
						|
    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
 | 
						|
    /// scalar value into element 0 of the resultant vector type.  The top
 | 
						|
    /// elements 1 to N-1 of the N-element vector are undefined.  The type
 | 
						|
    /// of the operand must match the vector element type, except when they
 | 
						|
    /// are integer types.  In this case the operand is allowed to be wider
 | 
						|
    /// than the vector element type, and is implicitly truncated to it.
 | 
						|
    SCALAR_TO_VECTOR,
 | 
						|
 | 
						|
    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
 | 
						|
    // an unsigned/signed value of type i[2*N], then return the top part.
 | 
						|
    MULHU, MULHS,
 | 
						|
 | 
						|
    // Bitwise operators - logical and, logical or, logical xor, shift left,
 | 
						|
    // shift right algebraic (shift in sign bits), shift right logical (shift in
 | 
						|
    // zeroes), rotate left, rotate right, and byteswap.
 | 
						|
    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
 | 
						|
 | 
						|
    // Counting operators
 | 
						|
    CTTZ, CTLZ, CTPOP,
 | 
						|
 | 
						|
    // Select(COND, TRUEVAL, FALSEVAL).  If the type of the boolean COND is not
 | 
						|
    // i1 then the high bits must conform to getBooleanContents.
 | 
						|
    SELECT,
 | 
						|
 | 
						|
    // Select with condition operator - This selects between a true value and
 | 
						|
    // a false value (ops #2 and #3) based on the boolean result of comparing
 | 
						|
    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
 | 
						|
    // condition code in op #4, a CondCodeSDNode.
 | 
						|
    SELECT_CC,
 | 
						|
 | 
						|
    // SetCC operator - This evaluates to a true value iff the condition is
 | 
						|
    // true.  If the result value type is not i1 then the high bits conform
 | 
						|
    // to getBooleanContents.  The operands to this are the left and right
 | 
						|
    // operands to compare (ops #0, and #1) and the condition code to compare
 | 
						|
    // them with (op #2) as a CondCodeSDNode.
 | 
						|
    SETCC,
 | 
						|
 | 
						|
    // RESULT = VSETCC(LHS, RHS, COND) operator - This evaluates to a vector of
 | 
						|
    // integer elements with all bits of the result elements set to true if the
 | 
						|
    // comparison is true or all cleared if the comparison is false.  The
 | 
						|
    // operands to this are the left and right operands to compare (LHS/RHS) and
 | 
						|
    // the condition code to compare them with (COND) as a CondCodeSDNode.
 | 
						|
    VSETCC,
 | 
						|
 | 
						|
    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
 | 
						|
    // integer shift operations, just like ADD/SUB_PARTS.  The operation
 | 
						|
    // ordering is:
 | 
						|
    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
 | 
						|
    SHL_PARTS, SRA_PARTS, SRL_PARTS,
 | 
						|
 | 
						|
    // Conversion operators.  These are all single input single output
 | 
						|
    // operations.  For all of these, the result type must be strictly
 | 
						|
    // wider or narrower (depending on the operation) than the source
 | 
						|
    // type.
 | 
						|
 | 
						|
    // SIGN_EXTEND - Used for integer types, replicating the sign bit
 | 
						|
    // into new bits.
 | 
						|
    SIGN_EXTEND,
 | 
						|
 | 
						|
    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
 | 
						|
    ZERO_EXTEND,
 | 
						|
 | 
						|
    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
 | 
						|
    ANY_EXTEND,
 | 
						|
 | 
						|
    // TRUNCATE - Completely drop the high bits.
 | 
						|
    TRUNCATE,
 | 
						|
 | 
						|
    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
 | 
						|
    // depends on the first letter) to floating point.
 | 
						|
    SINT_TO_FP,
 | 
						|
    UINT_TO_FP,
 | 
						|
 | 
						|
    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
 | 
						|
    // sign extend a small value in a large integer register (e.g. sign
 | 
						|
    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
 | 
						|
    // with the 7th bit).  The size of the smaller type is indicated by the 1th
 | 
						|
    // operand, a ValueType node.
 | 
						|
    SIGN_EXTEND_INREG,
 | 
						|
 | 
						|
    /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
 | 
						|
    /// integer.
 | 
						|
    FP_TO_SINT,
 | 
						|
    FP_TO_UINT,
 | 
						|
 | 
						|
    /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
 | 
						|
    /// down to the precision of the destination VT.  TRUNC is a flag, which is
 | 
						|
    /// always an integer that is zero or one.  If TRUNC is 0, this is a
 | 
						|
    /// normal rounding, if it is 1, this FP_ROUND is known to not change the
 | 
						|
    /// value of Y.
 | 
						|
    ///
 | 
						|
    /// The TRUNC = 1 case is used in cases where we know that the value will
 | 
						|
    /// not be modified by the node, because Y is not using any of the extra
 | 
						|
    /// precision of source type.  This allows certain transformations like
 | 
						|
    /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
 | 
						|
    /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
 | 
						|
    FP_ROUND,
 | 
						|
 | 
						|
    // FLT_ROUNDS_ - Returns current rounding mode:
 | 
						|
    // -1 Undefined
 | 
						|
    //  0 Round to 0
 | 
						|
    //  1 Round to nearest
 | 
						|
    //  2 Round to +inf
 | 
						|
    //  3 Round to -inf
 | 
						|
    FLT_ROUNDS_,
 | 
						|
 | 
						|
    /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
 | 
						|
    /// rounds it to a floating point value.  It then promotes it and returns it
 | 
						|
    /// in a register of the same size.  This operation effectively just
 | 
						|
    /// discards excess precision.  The type to round down to is specified by
 | 
						|
    /// the VT operand, a VTSDNode.
 | 
						|
    FP_ROUND_INREG,
 | 
						|
 | 
						|
    /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
 | 
						|
    FP_EXTEND,
 | 
						|
 | 
						|
    // BIT_CONVERT - Theis operator converts between integer and FP values, as
 | 
						|
    // if one was stored to memory as integer and the other was loaded from the
 | 
						|
    // same address (or equivalently for vector format conversions, etc).  The
 | 
						|
    // source and result are required to have the same bit size (e.g.
 | 
						|
    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
 | 
						|
    // conversions, but that is a noop, deleted by getNode().
 | 
						|
    BIT_CONVERT,
 | 
						|
 | 
						|
    // CONVERT_RNDSAT - This operator is used to support various conversions
 | 
						|
    // between various types (float, signed, unsigned and vectors of those
 | 
						|
    // types) with rounding and saturation. NOTE: Avoid using this operator as
 | 
						|
    // most target don't support it and the operator might be removed in the
 | 
						|
    // future. It takes the following arguments:
 | 
						|
    //   0) value
 | 
						|
    //   1) dest type (type to convert to)
 | 
						|
    //   2) src type (type to convert from)
 | 
						|
    //   3) rounding imm
 | 
						|
    //   4) saturation imm
 | 
						|
    //   5) ISD::CvtCode indicating the type of conversion to do
 | 
						|
    CONVERT_RNDSAT,
 | 
						|
 | 
						|
    // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
 | 
						|
    // FLOG, FLOG2, FLOG10, FEXP, FEXP2,
 | 
						|
    // FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary floating
 | 
						|
    // point operations. These are inspired by libm.
 | 
						|
    FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
 | 
						|
    FLOG, FLOG2, FLOG10, FEXP, FEXP2,
 | 
						|
    FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR,
 | 
						|
 | 
						|
    // LOAD and STORE have token chains as their first operand, then the same
 | 
						|
    // operands as an LLVM load/store instruction, then an offset node that
 | 
						|
    // is added / subtracted from the base pointer to form the address (for
 | 
						|
    // indexed memory ops).
 | 
						|
    LOAD, STORE,
 | 
						|
 | 
						|
    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
 | 
						|
    // to a specified boundary.  This node always has two return values: a new
 | 
						|
    // stack pointer value and a chain. The first operand is the token chain,
 | 
						|
    // the second is the number of bytes to allocate, and the third is the
 | 
						|
    // alignment boundary.  The size is guaranteed to be a multiple of the stack
 | 
						|
    // alignment, and the alignment is guaranteed to be bigger than the stack
 | 
						|
    // alignment (if required) or 0 to get standard stack alignment.
 | 
						|
    DYNAMIC_STACKALLOC,
 | 
						|
 | 
						|
    // Control flow instructions.  These all have token chains.
 | 
						|
 | 
						|
    // BR - Unconditional branch.  The first operand is the chain
 | 
						|
    // operand, the second is the MBB to branch to.
 | 
						|
    BR,
 | 
						|
 | 
						|
    // BRIND - Indirect branch.  The first operand is the chain, the second
 | 
						|
    // is the value to branch to, which must be of the same type as the target's
 | 
						|
    // pointer type.
 | 
						|
    BRIND,
 | 
						|
 | 
						|
    // BR_JT - Jumptable branch. The first operand is the chain, the second
 | 
						|
    // is the jumptable index, the last one is the jumptable entry index.
 | 
						|
    BR_JT,
 | 
						|
 | 
						|
    // BRCOND - Conditional branch.  The first operand is the chain, the
 | 
						|
    // second is the condition, the third is the block to branch to if the
 | 
						|
    // condition is true.  If the type of the condition is not i1, then the
 | 
						|
    // high bits must conform to getBooleanContents.
 | 
						|
    BRCOND,
 | 
						|
 | 
						|
    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
 | 
						|
    // that the condition is represented as condition code, and two nodes to
 | 
						|
    // compare, rather than as a combined SetCC node.  The operands in order are
 | 
						|
    // chain, cc, lhs, rhs, block to branch to if condition is true.
 | 
						|
    BR_CC,
 | 
						|
 | 
						|
    // INLINEASM - Represents an inline asm block.  This node always has two
 | 
						|
    // return values: a chain and a flag result.  The inputs are as follows:
 | 
						|
    //   Operand #0   : Input chain.
 | 
						|
    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
 | 
						|
    //   Operand #2n+2: A RegisterNode.
 | 
						|
    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
 | 
						|
    //   Operand #last: Optional, an incoming flag.
 | 
						|
    INLINEASM,
 | 
						|
 | 
						|
    // DBG_LABEL, EH_LABEL - Represents a label in mid basic block used to track
 | 
						|
    // locations needed for debug and exception handling tables.  These nodes
 | 
						|
    // take a chain as input and return a chain.
 | 
						|
    DBG_LABEL,
 | 
						|
    EH_LABEL,
 | 
						|
 | 
						|
    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
 | 
						|
    // value, the same type as the pointer type for the system, and an output
 | 
						|
    // chain.
 | 
						|
    STACKSAVE,
 | 
						|
 | 
						|
    // STACKRESTORE has two operands, an input chain and a pointer to restore to
 | 
						|
    // it returns an output chain.
 | 
						|
    STACKRESTORE,
 | 
						|
 | 
						|
    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
 | 
						|
    // a call sequence, and carry arbitrary information that target might want
 | 
						|
    // to know.  The first operand is a chain, the rest are specified by the
 | 
						|
    // target and not touched by the DAG optimizers.
 | 
						|
    // CALLSEQ_START..CALLSEQ_END pairs may not be nested.
 | 
						|
    CALLSEQ_START,  // Beginning of a call sequence
 | 
						|
    CALLSEQ_END,    // End of a call sequence
 | 
						|
 | 
						|
    // VAARG - VAARG has three operands: an input chain, a pointer, and a
 | 
						|
    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
 | 
						|
    VAARG,
 | 
						|
 | 
						|
    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
 | 
						|
    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
 | 
						|
    // source.
 | 
						|
    VACOPY,
 | 
						|
 | 
						|
    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
 | 
						|
    // pointer, and a SRCVALUE.
 | 
						|
    VAEND, VASTART,
 | 
						|
 | 
						|
    // SRCVALUE - This is a node type that holds a Value* that is used to
 | 
						|
    // make reference to a value in the LLVM IR.
 | 
						|
    SRCVALUE,
 | 
						|
 | 
						|
    // PCMARKER - This corresponds to the pcmarker intrinsic.
 | 
						|
    PCMARKER,
 | 
						|
 | 
						|
    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
 | 
						|
    // The only operand is a chain and a value and a chain are produced.  The
 | 
						|
    // value is the contents of the architecture specific cycle counter like
 | 
						|
    // register (or other high accuracy low latency clock source)
 | 
						|
    READCYCLECOUNTER,
 | 
						|
 | 
						|
    // HANDLENODE node - Used as a handle for various purposes.
 | 
						|
    HANDLENODE,
 | 
						|
 | 
						|
    // DBG_STOPPOINT - This node is used to represent a source location for
 | 
						|
    // debug info.  It takes token chain as input, and carries a line number,
 | 
						|
    // column number, and a pointer to a CompileUnit object identifying
 | 
						|
    // the containing compilation unit.  It produces a token chain as output.
 | 
						|
    DBG_STOPPOINT,
 | 
						|
 | 
						|
    // DEBUG_LOC - This node is used to represent source line information
 | 
						|
    // embedded in the code.  It takes a token chain as input, then a line
 | 
						|
    // number, then a column then a file id (provided by MachineModuleInfo.) It
 | 
						|
    // produces a token chain as output.
 | 
						|
    DEBUG_LOC,
 | 
						|
 | 
						|
    // TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
 | 
						|
    // It takes as input a token chain, the pointer to the trampoline,
 | 
						|
    // the pointer to the nested function, the pointer to pass for the
 | 
						|
    // 'nest' parameter, a SRCVALUE for the trampoline and another for
 | 
						|
    // the nested function (allowing targets to access the original
 | 
						|
    // Function*).  It produces the result of the intrinsic and a token
 | 
						|
    // chain as output.
 | 
						|
    TRAMPOLINE,
 | 
						|
 | 
						|
    // TRAP - Trapping instruction
 | 
						|
    TRAP,
 | 
						|
 | 
						|
    // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are
 | 
						|
    // their first operand. The other operands are the address to prefetch,
 | 
						|
    // read / write specifier, and locality specifier.
 | 
						|
    PREFETCH,
 | 
						|
 | 
						|
    // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
 | 
						|
    //                       store-store, device)
 | 
						|
    // This corresponds to the memory.barrier intrinsic.
 | 
						|
    // it takes an input chain, 4 operands to specify the type of barrier, an
 | 
						|
    // operand specifying if the barrier applies to device and uncached memory
 | 
						|
    // and produces an output chain.
 | 
						|
    MEMBARRIER,
 | 
						|
 | 
						|
    // Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
 | 
						|
    // this corresponds to the atomic.lcs intrinsic.
 | 
						|
    // cmp is compared to *ptr, and if equal, swap is stored in *ptr.
 | 
						|
    // the return is always the original value in *ptr
 | 
						|
    ATOMIC_CMP_SWAP,
 | 
						|
 | 
						|
    // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
 | 
						|
    // this corresponds to the atomic.swap intrinsic.
 | 
						|
    // amt is stored to *ptr atomically.
 | 
						|
    // the return is always the original value in *ptr
 | 
						|
    ATOMIC_SWAP,
 | 
						|
 | 
						|
    // Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
 | 
						|
    // this corresponds to the atomic.load.[OpName] intrinsic.
 | 
						|
    // op(*ptr, amt) is stored to *ptr atomically.
 | 
						|
    // the return is always the original value in *ptr
 | 
						|
    ATOMIC_LOAD_ADD,
 | 
						|
    ATOMIC_LOAD_SUB,
 | 
						|
    ATOMIC_LOAD_AND,
 | 
						|
    ATOMIC_LOAD_OR,
 | 
						|
    ATOMIC_LOAD_XOR,
 | 
						|
    ATOMIC_LOAD_NAND,
 | 
						|
    ATOMIC_LOAD_MIN,
 | 
						|
    ATOMIC_LOAD_MAX,
 | 
						|
    ATOMIC_LOAD_UMIN,
 | 
						|
    ATOMIC_LOAD_UMAX,
 | 
						|
 | 
						|
    /// BUILTIN_OP_END - This must be the last enum value in this list.
 | 
						|
    /// The target-specific pre-isel opcode values start here.
 | 
						|
    BUILTIN_OP_END
 | 
						|
  };
 | 
						|
 | 
						|
  /// FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations
 | 
						|
  /// which do not reference a specific memory location should be less than
 | 
						|
  /// this value. Those that do must not be less than this value, and can
 | 
						|
  /// be used with SelectionDAG::getMemIntrinsicNode.
 | 
						|
  static const int FIRST_TARGET_MEMORY_OPCODE = 1 << 14;
 | 
						|
 | 
						|
  /// Node predicates
 | 
						|
 | 
						|
  /// isBuildVectorAllOnes - Return true if the specified node is a
 | 
						|
  /// BUILD_VECTOR where all of the elements are ~0 or undef.
 | 
						|
  bool isBuildVectorAllOnes(const SDNode *N);
 | 
						|
 | 
						|
  /// isBuildVectorAllZeros - Return true if the specified node is a
 | 
						|
  /// BUILD_VECTOR where all of the elements are 0 or undef.
 | 
						|
  bool isBuildVectorAllZeros(const SDNode *N);
 | 
						|
 | 
						|
  /// isScalarToVector - Return true if the specified node is a
 | 
						|
  /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
 | 
						|
  /// element is not an undef.
 | 
						|
  bool isScalarToVector(const SDNode *N);
 | 
						|
 | 
						|
  /// isDebugLabel - Return true if the specified node represents a debug
 | 
						|
  /// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
 | 
						|
  bool isDebugLabel(const SDNode *N);
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  /// MemIndexedMode enum - This enum defines the load / store indexed
 | 
						|
  /// addressing modes.
 | 
						|
  ///
 | 
						|
  /// UNINDEXED    "Normal" load / store. The effective address is already
 | 
						|
  ///              computed and is available in the base pointer. The offset
 | 
						|
  ///              operand is always undefined. In addition to producing a
 | 
						|
  ///              chain, an unindexed load produces one value (result of the
 | 
						|
  ///              load); an unindexed store does not produce a value.
 | 
						|
  ///
 | 
						|
  /// PRE_INC      Similar to the unindexed mode where the effective address is
 | 
						|
  /// PRE_DEC      the value of the base pointer add / subtract the offset.
 | 
						|
  ///              It considers the computation as being folded into the load /
 | 
						|
  ///              store operation (i.e. the load / store does the address
 | 
						|
  ///              computation as well as performing the memory transaction).
 | 
						|
  ///              The base operand is always undefined. In addition to
 | 
						|
  ///              producing a chain, pre-indexed load produces two values
 | 
						|
  ///              (result of the load and the result of the address
 | 
						|
  ///              computation); a pre-indexed store produces one value (result
 | 
						|
  ///              of the address computation).
 | 
						|
  ///
 | 
						|
  /// POST_INC     The effective address is the value of the base pointer. The
 | 
						|
  /// POST_DEC     value of the offset operand is then added to / subtracted
 | 
						|
  ///              from the base after memory transaction. In addition to
 | 
						|
  ///              producing a chain, post-indexed load produces two values
 | 
						|
  ///              (the result of the load and the result of the base +/- offset
 | 
						|
  ///              computation); a post-indexed store produces one value (the
 | 
						|
  ///              the result of the base +/- offset computation).
 | 
						|
  ///
 | 
						|
  enum MemIndexedMode {
 | 
						|
    UNINDEXED = 0,
 | 
						|
    PRE_INC,
 | 
						|
    PRE_DEC,
 | 
						|
    POST_INC,
 | 
						|
    POST_DEC,
 | 
						|
    LAST_INDEXED_MODE
 | 
						|
  };
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  /// LoadExtType enum - This enum defines the three variants of LOADEXT
 | 
						|
  /// (load with extension).
 | 
						|
  ///
 | 
						|
  /// SEXTLOAD loads the integer operand and sign extends it to a larger
 | 
						|
  ///          integer result type.
 | 
						|
  /// ZEXTLOAD loads the integer operand and zero extends it to a larger
 | 
						|
  ///          integer result type.
 | 
						|
  /// EXTLOAD  is used for three things: floating point extending loads,
 | 
						|
  ///          integer extending loads [the top bits are undefined], and vector
 | 
						|
  ///          extending loads [load into low elt].
 | 
						|
  ///
 | 
						|
  enum LoadExtType {
 | 
						|
    NON_EXTLOAD = 0,
 | 
						|
    EXTLOAD,
 | 
						|
    SEXTLOAD,
 | 
						|
    ZEXTLOAD,
 | 
						|
    LAST_LOADEXT_TYPE
 | 
						|
  };
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
 | 
						|
  /// below work out, when considering SETFALSE (something that never exists
 | 
						|
  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
 | 
						|
  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
 | 
						|
  /// to.  If the "N" column is 1, the result of the comparison is undefined if
 | 
						|
  /// the input is a NAN.
 | 
						|
  ///
 | 
						|
  /// All of these (except for the 'always folded ops') should be handled for
 | 
						|
  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
 | 
						|
  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
 | 
						|
  ///
 | 
						|
  /// Note that these are laid out in a specific order to allow bit-twiddling
 | 
						|
  /// to transform conditions.
 | 
						|
  enum CondCode {
 | 
						|
    // Opcode          N U L G E       Intuitive operation
 | 
						|
    SETFALSE,      //    0 0 0 0       Always false (always folded)
 | 
						|
    SETOEQ,        //    0 0 0 1       True if ordered and equal
 | 
						|
    SETOGT,        //    0 0 1 0       True if ordered and greater than
 | 
						|
    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
 | 
						|
    SETOLT,        //    0 1 0 0       True if ordered and less than
 | 
						|
    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
 | 
						|
    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
 | 
						|
    SETO,          //    0 1 1 1       True if ordered (no nans)
 | 
						|
    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
 | 
						|
    SETUEQ,        //    1 0 0 1       True if unordered or equal
 | 
						|
    SETUGT,        //    1 0 1 0       True if unordered or greater than
 | 
						|
    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
 | 
						|
    SETULT,        //    1 1 0 0       True if unordered or less than
 | 
						|
    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
 | 
						|
    SETUNE,        //    1 1 1 0       True if unordered or not equal
 | 
						|
    SETTRUE,       //    1 1 1 1       Always true (always folded)
 | 
						|
    // Don't care operations: undefined if the input is a nan.
 | 
						|
    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
 | 
						|
    SETEQ,         //  1 X 0 0 1       True if equal
 | 
						|
    SETGT,         //  1 X 0 1 0       True if greater than
 | 
						|
    SETGE,         //  1 X 0 1 1       True if greater than or equal
 | 
						|
    SETLT,         //  1 X 1 0 0       True if less than
 | 
						|
    SETLE,         //  1 X 1 0 1       True if less than or equal
 | 
						|
    SETNE,         //  1 X 1 1 0       True if not equal
 | 
						|
    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
 | 
						|
 | 
						|
    SETCC_INVALID       // Marker value.
 | 
						|
  };
 | 
						|
 | 
						|
  /// isSignedIntSetCC - Return true if this is a setcc instruction that
 | 
						|
  /// performs a signed comparison when used with integer operands.
 | 
						|
  inline bool isSignedIntSetCC(CondCode Code) {
 | 
						|
    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
 | 
						|
  }
 | 
						|
 | 
						|
  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
 | 
						|
  /// performs an unsigned comparison when used with integer operands.
 | 
						|
  inline bool isUnsignedIntSetCC(CondCode Code) {
 | 
						|
    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
 | 
						|
  }
 | 
						|
 | 
						|
  /// isTrueWhenEqual - Return true if the specified condition returns true if
 | 
						|
  /// the two operands to the condition are equal.  Note that if one of the two
 | 
						|
  /// operands is a NaN, this value is meaningless.
 | 
						|
  inline bool isTrueWhenEqual(CondCode Cond) {
 | 
						|
    return ((int)Cond & 1) != 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getUnorderedFlavor - This function returns 0 if the condition is always
 | 
						|
  /// false if an operand is a NaN, 1 if the condition is always true if the
 | 
						|
  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
 | 
						|
  /// NaN.
 | 
						|
  inline unsigned getUnorderedFlavor(CondCode Cond) {
 | 
						|
    return ((int)Cond >> 3) & 3;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
 | 
						|
  /// 'op' is a valid SetCC operation.
 | 
						|
  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
 | 
						|
 | 
						|
  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
 | 
						|
  /// when given the operation for (X op Y).
 | 
						|
  CondCode getSetCCSwappedOperands(CondCode Operation);
 | 
						|
 | 
						|
  /// getSetCCOrOperation - Return the result of a logical OR between different
 | 
						|
  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
 | 
						|
  /// function returns SETCC_INVALID if it is not possible to represent the
 | 
						|
  /// resultant comparison.
 | 
						|
  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
 | 
						|
 | 
						|
  /// getSetCCAndOperation - Return the result of a logical AND between
 | 
						|
  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
 | 
						|
  /// function returns SETCC_INVALID if it is not possible to represent the
 | 
						|
  /// resultant comparison.
 | 
						|
  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  /// CvtCode enum - This enum defines the various converts CONVERT_RNDSAT
 | 
						|
  /// supports.
 | 
						|
  enum CvtCode {
 | 
						|
    CVT_FF,     // Float from Float
 | 
						|
    CVT_FS,     // Float from Signed
 | 
						|
    CVT_FU,     // Float from Unsigned
 | 
						|
    CVT_SF,     // Signed from Float
 | 
						|
    CVT_UF,     // Unsigned from Float
 | 
						|
    CVT_SS,     // Signed from Signed
 | 
						|
    CVT_SU,     // Signed from Unsigned
 | 
						|
    CVT_US,     // Unsigned from Signed
 | 
						|
    CVT_UU,     // Unsigned from Unsigned
 | 
						|
    CVT_INVALID // Marker - Invalid opcode
 | 
						|
  };
 | 
						|
}  // end llvm::ISD namespace
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// SDValue - Unlike LLVM values, Selection DAG nodes may return multiple
 | 
						|
/// values as the result of a computation.  Many nodes return multiple values,
 | 
						|
/// from loads (which define a token and a return value) to ADDC (which returns
 | 
						|
/// a result and a carry value), to calls (which may return an arbitrary number
 | 
						|
/// of values).
 | 
						|
///
 | 
						|
/// As such, each use of a SelectionDAG computation must indicate the node that
 | 
						|
/// computes it as well as which return value to use from that node.  This pair
 | 
						|
/// of information is represented with the SDValue value type.
 | 
						|
///
 | 
						|
class SDValue {
 | 
						|
  SDNode *Node;       // The node defining the value we are using.
 | 
						|
  unsigned ResNo;     // Which return value of the node we are using.
 | 
						|
public:
 | 
						|
  SDValue() : Node(0), ResNo(0) {}
 | 
						|
  SDValue(SDNode *node, unsigned resno) : Node(node), ResNo(resno) {}
 | 
						|
 | 
						|
  /// get the index which selects a specific result in the SDNode
 | 
						|
  unsigned getResNo() const { return ResNo; }
 | 
						|
 | 
						|
  /// get the SDNode which holds the desired result
 | 
						|
  SDNode *getNode() const { return Node; }
 | 
						|
 | 
						|
  /// set the SDNode
 | 
						|
  void setNode(SDNode *N) { Node = N; }
 | 
						|
 | 
						|
  bool operator==(const SDValue &O) const {
 | 
						|
    return Node == O.Node && ResNo == O.ResNo;
 | 
						|
  }
 | 
						|
  bool operator!=(const SDValue &O) const {
 | 
						|
    return !operator==(O);
 | 
						|
  }
 | 
						|
  bool operator<(const SDValue &O) const {
 | 
						|
    return Node < O.Node || (Node == O.Node && ResNo < O.ResNo);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue getValue(unsigned R) const {
 | 
						|
    return SDValue(Node, R);
 | 
						|
  }
 | 
						|
 | 
						|
  // isOperandOf - Return true if this node is an operand of N.
 | 
						|
  bool isOperandOf(SDNode *N) const;
 | 
						|
 | 
						|
  /// getValueType - Return the ValueType of the referenced return value.
 | 
						|
  ///
 | 
						|
  inline EVT getValueType() const;
 | 
						|
 | 
						|
  /// getValueSizeInBits - Returns the size of the value in bits.
 | 
						|
  ///
 | 
						|
  unsigned getValueSizeInBits() const {
 | 
						|
    return getValueType().getSizeInBits();
 | 
						|
  }
 | 
						|
 | 
						|
  // Forwarding methods - These forward to the corresponding methods in SDNode.
 | 
						|
  inline unsigned getOpcode() const;
 | 
						|
  inline unsigned getNumOperands() const;
 | 
						|
  inline const SDValue &getOperand(unsigned i) const;
 | 
						|
  inline uint64_t getConstantOperandVal(unsigned i) const;
 | 
						|
  inline bool isTargetMemoryOpcode() const;
 | 
						|
  inline bool isTargetOpcode() const;
 | 
						|
  inline bool isMachineOpcode() const;
 | 
						|
  inline unsigned getMachineOpcode() const;
 | 
						|
  inline const DebugLoc getDebugLoc() const;
 | 
						|
 | 
						|
 | 
						|
  /// reachesChainWithoutSideEffects - Return true if this operand (which must
 | 
						|
  /// be a chain) reaches the specified operand without crossing any
 | 
						|
  /// side-effecting instructions.  In practice, this looks through token
 | 
						|
  /// factors and non-volatile loads.  In order to remain efficient, this only
 | 
						|
  /// looks a couple of nodes in, it does not do an exhaustive search.
 | 
						|
  bool reachesChainWithoutSideEffects(SDValue Dest,
 | 
						|
                                      unsigned Depth = 2) const;
 | 
						|
 | 
						|
  /// use_empty - Return true if there are no nodes using value ResNo
 | 
						|
  /// of Node.
 | 
						|
  ///
 | 
						|
  inline bool use_empty() const;
 | 
						|
 | 
						|
  /// hasOneUse - Return true if there is exactly one node using value
 | 
						|
  /// ResNo of Node.
 | 
						|
  ///
 | 
						|
  inline bool hasOneUse() const;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
template<> struct DenseMapInfo<SDValue> {
 | 
						|
  static inline SDValue getEmptyKey() {
 | 
						|
    return SDValue((SDNode*)-1, -1U);
 | 
						|
  }
 | 
						|
  static inline SDValue getTombstoneKey() {
 | 
						|
    return SDValue((SDNode*)-1, 0);
 | 
						|
  }
 | 
						|
  static unsigned getHashValue(const SDValue &Val) {
 | 
						|
    return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
 | 
						|
            (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
 | 
						|
  }
 | 
						|
  static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
 | 
						|
    return LHS == RHS;
 | 
						|
  }
 | 
						|
  static bool isPod() { return true; }
 | 
						|
};
 | 
						|
 | 
						|
/// simplify_type specializations - Allow casting operators to work directly on
 | 
						|
/// SDValues as if they were SDNode*'s.
 | 
						|
template<> struct simplify_type<SDValue> {
 | 
						|
  typedef SDNode* SimpleType;
 | 
						|
  static SimpleType getSimplifiedValue(const SDValue &Val) {
 | 
						|
    return static_cast<SimpleType>(Val.getNode());
 | 
						|
  }
 | 
						|
};
 | 
						|
template<> struct simplify_type<const SDValue> {
 | 
						|
  typedef SDNode* SimpleType;
 | 
						|
  static SimpleType getSimplifiedValue(const SDValue &Val) {
 | 
						|
    return static_cast<SimpleType>(Val.getNode());
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// SDUse - Represents a use of a SDNode. This class holds an SDValue,
 | 
						|
/// which records the SDNode being used and the result number, a
 | 
						|
/// pointer to the SDNode using the value, and Next and Prev pointers,
 | 
						|
/// which link together all the uses of an SDNode.
 | 
						|
///
 | 
						|
class SDUse {
 | 
						|
  /// Val - The value being used.
 | 
						|
  SDValue Val;
 | 
						|
  /// User - The user of this value.
 | 
						|
  SDNode *User;
 | 
						|
  /// Prev, Next - Pointers to the uses list of the SDNode referred by
 | 
						|
  /// this operand.
 | 
						|
  SDUse **Prev, *Next;
 | 
						|
 | 
						|
  SDUse(const SDUse &U);          // Do not implement
 | 
						|
  void operator=(const SDUse &U); // Do not implement
 | 
						|
 | 
						|
public:
 | 
						|
  SDUse() : Val(), User(NULL), Prev(NULL), Next(NULL) {}
 | 
						|
 | 
						|
  /// Normally SDUse will just implicitly convert to an SDValue that it holds.
 | 
						|
  operator const SDValue&() const { return Val; }
 | 
						|
 | 
						|
  /// If implicit conversion to SDValue doesn't work, the get() method returns
 | 
						|
  /// the SDValue.
 | 
						|
  const SDValue &get() const { return Val; }
 | 
						|
 | 
						|
  /// getUser - This returns the SDNode that contains this Use.
 | 
						|
  SDNode *getUser() { return User; }
 | 
						|
 | 
						|
  /// getNext - Get the next SDUse in the use list.
 | 
						|
  SDUse *getNext() const { return Next; }
 | 
						|
 | 
						|
  /// getNode - Convenience function for get().getNode().
 | 
						|
  SDNode *getNode() const { return Val.getNode(); }
 | 
						|
  /// getResNo - Convenience function for get().getResNo().
 | 
						|
  unsigned getResNo() const { return Val.getResNo(); }
 | 
						|
  /// getValueType - Convenience function for get().getValueType().
 | 
						|
  EVT getValueType() const { return Val.getValueType(); }
 | 
						|
 | 
						|
  /// operator== - Convenience function for get().operator==
 | 
						|
  bool operator==(const SDValue &V) const {
 | 
						|
    return Val == V;
 | 
						|
  }
 | 
						|
 | 
						|
  /// operator!= - Convenience function for get().operator!=
 | 
						|
  bool operator!=(const SDValue &V) const {
 | 
						|
    return Val != V;
 | 
						|
  }
 | 
						|
 | 
						|
  /// operator< - Convenience function for get().operator<
 | 
						|
  bool operator<(const SDValue &V) const {
 | 
						|
    return Val < V;
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  friend class SelectionDAG;
 | 
						|
  friend class SDNode;
 | 
						|
 | 
						|
  void setUser(SDNode *p) { User = p; }
 | 
						|
 | 
						|
  /// set - Remove this use from its existing use list, assign it the
 | 
						|
  /// given value, and add it to the new value's node's use list.
 | 
						|
  inline void set(const SDValue &V);
 | 
						|
  /// setInitial - like set, but only supports initializing a newly-allocated
 | 
						|
  /// SDUse with a non-null value.
 | 
						|
  inline void setInitial(const SDValue &V);
 | 
						|
  /// setNode - like set, but only sets the Node portion of the value,
 | 
						|
  /// leaving the ResNo portion unmodified.
 | 
						|
  inline void setNode(SDNode *N);
 | 
						|
 | 
						|
  void addToList(SDUse **List) {
 | 
						|
    Next = *List;
 | 
						|
    if (Next) Next->Prev = &Next;
 | 
						|
    Prev = List;
 | 
						|
    *List = this;
 | 
						|
  }
 | 
						|
 | 
						|
  void removeFromList() {
 | 
						|
    *Prev = Next;
 | 
						|
    if (Next) Next->Prev = Prev;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// simplify_type specializations - Allow casting operators to work directly on
 | 
						|
/// SDValues as if they were SDNode*'s.
 | 
						|
template<> struct simplify_type<SDUse> {
 | 
						|
  typedef SDNode* SimpleType;
 | 
						|
  static SimpleType getSimplifiedValue(const SDUse &Val) {
 | 
						|
    return static_cast<SimpleType>(Val.getNode());
 | 
						|
  }
 | 
						|
};
 | 
						|
template<> struct simplify_type<const SDUse> {
 | 
						|
  typedef SDNode* SimpleType;
 | 
						|
  static SimpleType getSimplifiedValue(const SDUse &Val) {
 | 
						|
    return static_cast<SimpleType>(Val.getNode());
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/// SDNode - Represents one node in the SelectionDAG.
 | 
						|
///
 | 
						|
class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
 | 
						|
private:
 | 
						|
  /// NodeType - The operation that this node performs.
 | 
						|
  ///
 | 
						|
  int16_t NodeType;
 | 
						|
 | 
						|
  /// OperandsNeedDelete - This is true if OperandList was new[]'d.  If true,
 | 
						|
  /// then they will be delete[]'d when the node is destroyed.
 | 
						|
  uint16_t OperandsNeedDelete : 1;
 | 
						|
 | 
						|
protected:
 | 
						|
  /// SubclassData - This member is defined by this class, but is not used for
 | 
						|
  /// anything.  Subclasses can use it to hold whatever state they find useful.
 | 
						|
  /// This field is initialized to zero by the ctor.
 | 
						|
  uint16_t SubclassData : 15;
 | 
						|
 | 
						|
private:
 | 
						|
  /// NodeId - Unique id per SDNode in the DAG.
 | 
						|
  int NodeId;
 | 
						|
 | 
						|
  /// OperandList - The values that are used by this operation.
 | 
						|
  ///
 | 
						|
  SDUse *OperandList;
 | 
						|
 | 
						|
  /// ValueList - The types of the values this node defines.  SDNode's may
 | 
						|
  /// define multiple values simultaneously.
 | 
						|
  const EVT *ValueList;
 | 
						|
 | 
						|
  /// UseList - List of uses for this SDNode.
 | 
						|
  SDUse *UseList;
 | 
						|
 | 
						|
  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
 | 
						|
  unsigned short NumOperands, NumValues;
 | 
						|
 | 
						|
  /// debugLoc - source line information.
 | 
						|
  DebugLoc debugLoc;
 | 
						|
 | 
						|
  /// getValueTypeList - Return a pointer to the specified value type.
 | 
						|
  static const EVT *getValueTypeList(EVT VT);
 | 
						|
 | 
						|
  friend class SelectionDAG;
 | 
						|
  friend struct ilist_traits<SDNode>;
 | 
						|
 | 
						|
public:
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  //  Accessors
 | 
						|
  //
 | 
						|
 | 
						|
  /// getOpcode - Return the SelectionDAG opcode value for this node. For
 | 
						|
  /// pre-isel nodes (those for which isMachineOpcode returns false), these
 | 
						|
  /// are the opcode values in the ISD and <target>ISD namespaces. For
 | 
						|
  /// post-isel opcodes, see getMachineOpcode.
 | 
						|
  unsigned getOpcode()  const { return (unsigned short)NodeType; }
 | 
						|
 | 
						|
  /// isTargetOpcode - Test if this node has a target-specific opcode (in the
 | 
						|
  /// \<target\>ISD namespace).
 | 
						|
  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
 | 
						|
 | 
						|
  /// isTargetMemoryOpcode - Test if this node has a target-specific 
 | 
						|
  /// memory-referencing opcode (in the \<target\>ISD namespace and
 | 
						|
  /// greater than FIRST_TARGET_MEMORY_OPCODE).
 | 
						|
  bool isTargetMemoryOpcode() const {
 | 
						|
    return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
 | 
						|
  }
 | 
						|
 | 
						|
  /// isMachineOpcode - Test if this node has a post-isel opcode, directly
 | 
						|
  /// corresponding to a MachineInstr opcode.
 | 
						|
  bool isMachineOpcode() const { return NodeType < 0; }
 | 
						|
 | 
						|
  /// getMachineOpcode - This may only be called if isMachineOpcode returns
 | 
						|
  /// true. It returns the MachineInstr opcode value that the node's opcode
 | 
						|
  /// corresponds to.
 | 
						|
  unsigned getMachineOpcode() const {
 | 
						|
    assert(isMachineOpcode() && "Not a MachineInstr opcode!");
 | 
						|
    return ~NodeType;
 | 
						|
  }
 | 
						|
 | 
						|
  /// use_empty - Return true if there are no uses of this node.
 | 
						|
  ///
 | 
						|
  bool use_empty() const { return UseList == NULL; }
 | 
						|
 | 
						|
  /// hasOneUse - Return true if there is exactly one use of this node.
 | 
						|
  ///
 | 
						|
  bool hasOneUse() const {
 | 
						|
    return !use_empty() && next(use_begin()) == use_end();
 | 
						|
  }
 | 
						|
 | 
						|
  /// use_size - Return the number of uses of this node. This method takes
 | 
						|
  /// time proportional to the number of uses.
 | 
						|
  ///
 | 
						|
  size_t use_size() const { return std::distance(use_begin(), use_end()); }
 | 
						|
 | 
						|
  /// getNodeId - Return the unique node id.
 | 
						|
  ///
 | 
						|
  int getNodeId() const { return NodeId; }
 | 
						|
 | 
						|
  /// setNodeId - Set unique node id.
 | 
						|
  void setNodeId(int Id) { NodeId = Id; }
 | 
						|
 | 
						|
  /// getDebugLoc - Return the source location info.
 | 
						|
  const DebugLoc getDebugLoc() const { return debugLoc; }
 | 
						|
 | 
						|
  /// setDebugLoc - Set source location info.  Try to avoid this, putting
 | 
						|
  /// it in the constructor is preferable.
 | 
						|
  void setDebugLoc(const DebugLoc dl) { debugLoc = dl; }
 | 
						|
 | 
						|
  /// use_iterator - This class provides iterator support for SDUse
 | 
						|
  /// operands that use a specific SDNode.
 | 
						|
  class use_iterator
 | 
						|
    : public std::iterator<std::forward_iterator_tag, SDUse, ptrdiff_t> {
 | 
						|
    SDUse *Op;
 | 
						|
    explicit use_iterator(SDUse *op) : Op(op) {
 | 
						|
    }
 | 
						|
    friend class SDNode;
 | 
						|
  public:
 | 
						|
    typedef std::iterator<std::forward_iterator_tag,
 | 
						|
                          SDUse, ptrdiff_t>::reference reference;
 | 
						|
    typedef std::iterator<std::forward_iterator_tag,
 | 
						|
                          SDUse, ptrdiff_t>::pointer pointer;
 | 
						|
 | 
						|
    use_iterator(const use_iterator &I) : Op(I.Op) {}
 | 
						|
    use_iterator() : Op(0) {}
 | 
						|
 | 
						|
    bool operator==(const use_iterator &x) const {
 | 
						|
      return Op == x.Op;
 | 
						|
    }
 | 
						|
    bool operator!=(const use_iterator &x) const {
 | 
						|
      return !operator==(x);
 | 
						|
    }
 | 
						|
 | 
						|
    /// atEnd - return true if this iterator is at the end of uses list.
 | 
						|
    bool atEnd() const { return Op == 0; }
 | 
						|
 | 
						|
    // Iterator traversal: forward iteration only.
 | 
						|
    use_iterator &operator++() {          // Preincrement
 | 
						|
      assert(Op && "Cannot increment end iterator!");
 | 
						|
      Op = Op->getNext();
 | 
						|
      return *this;
 | 
						|
    }
 | 
						|
 | 
						|
    use_iterator operator++(int) {        // Postincrement
 | 
						|
      use_iterator tmp = *this; ++*this; return tmp;
 | 
						|
    }
 | 
						|
 | 
						|
    /// Retrieve a pointer to the current user node.
 | 
						|
    SDNode *operator*() const {
 | 
						|
      assert(Op && "Cannot dereference end iterator!");
 | 
						|
      return Op->getUser();
 | 
						|
    }
 | 
						|
 | 
						|
    SDNode *operator->() const { return operator*(); }
 | 
						|
 | 
						|
    SDUse &getUse() const { return *Op; }
 | 
						|
 | 
						|
    /// getOperandNo - Retrieve the operand # of this use in its user.
 | 
						|
    ///
 | 
						|
    unsigned getOperandNo() const {
 | 
						|
      assert(Op && "Cannot dereference end iterator!");
 | 
						|
      return (unsigned)(Op - Op->getUser()->OperandList);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// use_begin/use_end - Provide iteration support to walk over all uses
 | 
						|
  /// of an SDNode.
 | 
						|
 | 
						|
  use_iterator use_begin() const {
 | 
						|
    return use_iterator(UseList);
 | 
						|
  }
 | 
						|
 | 
						|
  static use_iterator use_end() { return use_iterator(0); }
 | 
						|
 | 
						|
 | 
						|
  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
 | 
						|
  /// indicated value.  This method ignores uses of other values defined by this
 | 
						|
  /// operation.
 | 
						|
  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
 | 
						|
 | 
						|
  /// hasAnyUseOfValue - Return true if there are any use of the indicated
 | 
						|
  /// value. This method ignores uses of other values defined by this operation.
 | 
						|
  bool hasAnyUseOfValue(unsigned Value) const;
 | 
						|
 | 
						|
  /// isOnlyUserOf - Return true if this node is the only use of N.
 | 
						|
  ///
 | 
						|
  bool isOnlyUserOf(SDNode *N) const;
 | 
						|
 | 
						|
  /// isOperandOf - Return true if this node is an operand of N.
 | 
						|
  ///
 | 
						|
  bool isOperandOf(SDNode *N) const;
 | 
						|
 | 
						|
  /// isPredecessorOf - Return true if this node is a predecessor of N. This
 | 
						|
  /// node is either an operand of N or it can be reached by recursively
 | 
						|
  /// traversing up the operands.
 | 
						|
  /// NOTE: this is an expensive method. Use it carefully.
 | 
						|
  bool isPredecessorOf(SDNode *N) const;
 | 
						|
 | 
						|
  /// getNumOperands - Return the number of values used by this operation.
 | 
						|
  ///
 | 
						|
  unsigned getNumOperands() const { return NumOperands; }
 | 
						|
 | 
						|
  /// getConstantOperandVal - Helper method returns the integer value of a
 | 
						|
  /// ConstantSDNode operand.
 | 
						|
  uint64_t getConstantOperandVal(unsigned Num) const;
 | 
						|
 | 
						|
  const SDValue &getOperand(unsigned Num) const {
 | 
						|
    assert(Num < NumOperands && "Invalid child # of SDNode!");
 | 
						|
    return OperandList[Num];
 | 
						|
  }
 | 
						|
 | 
						|
  typedef SDUse* op_iterator;
 | 
						|
  op_iterator op_begin() const { return OperandList; }
 | 
						|
  op_iterator op_end() const { return OperandList+NumOperands; }
 | 
						|
 | 
						|
  SDVTList getVTList() const {
 | 
						|
    SDVTList X = { ValueList, NumValues };
 | 
						|
    return X;
 | 
						|
  };
 | 
						|
 | 
						|
  /// getFlaggedNode - If this node has a flag operand, return the node
 | 
						|
  /// to which the flag operand points. Otherwise return NULL.
 | 
						|
  SDNode *getFlaggedNode() const {
 | 
						|
    if (getNumOperands() != 0 &&
 | 
						|
      getOperand(getNumOperands()-1).getValueType().getSimpleVT() == MVT::Flag)
 | 
						|
      return getOperand(getNumOperands()-1).getNode();
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a pseudo op, like copyfromreg, look to see if there is a
 | 
						|
  // real target node flagged to it.  If so, return the target node.
 | 
						|
  const SDNode *getFlaggedMachineNode() const {
 | 
						|
    const SDNode *FoundNode = this;
 | 
						|
 | 
						|
    // Climb up flag edges until a machine-opcode node is found, or the
 | 
						|
    // end of the chain is reached.
 | 
						|
    while (!FoundNode->isMachineOpcode()) {
 | 
						|
      const SDNode *N = FoundNode->getFlaggedNode();
 | 
						|
      if (!N) break;
 | 
						|
      FoundNode = N;
 | 
						|
    }
 | 
						|
 | 
						|
    return FoundNode;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getNumValues - Return the number of values defined/returned by this
 | 
						|
  /// operator.
 | 
						|
  ///
 | 
						|
  unsigned getNumValues() const { return NumValues; }
 | 
						|
 | 
						|
  /// getValueType - Return the type of a specified result.
 | 
						|
  ///
 | 
						|
  EVT getValueType(unsigned ResNo) const {
 | 
						|
    assert(ResNo < NumValues && "Illegal result number!");
 | 
						|
    return ValueList[ResNo];
 | 
						|
  }
 | 
						|
 | 
						|
  /// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType(ResNo)).
 | 
						|
  ///
 | 
						|
  unsigned getValueSizeInBits(unsigned ResNo) const {
 | 
						|
    return getValueType(ResNo).getSizeInBits();
 | 
						|
  }
 | 
						|
 | 
						|
  typedef const EVT* value_iterator;
 | 
						|
  value_iterator value_begin() const { return ValueList; }
 | 
						|
  value_iterator value_end() const { return ValueList+NumValues; }
 | 
						|
 | 
						|
  /// getOperationName - Return the opcode of this operation for printing.
 | 
						|
  ///
 | 
						|
  std::string getOperationName(const SelectionDAG *G = 0) const;
 | 
						|
  static const char* getIndexedModeName(ISD::MemIndexedMode AM);
 | 
						|
  void print_types(raw_ostream &OS, const SelectionDAG *G) const;
 | 
						|
  void print_details(raw_ostream &OS, const SelectionDAG *G) const;
 | 
						|
  void print(raw_ostream &OS, const SelectionDAG *G = 0) const;
 | 
						|
  void printr(raw_ostream &OS, const SelectionDAG *G = 0) const;
 | 
						|
  void dump() const;
 | 
						|
  void dumpr() const;
 | 
						|
  void dump(const SelectionDAG *G) const;
 | 
						|
  void dumpr(const SelectionDAG *G) const;
 | 
						|
 | 
						|
  static bool classof(const SDNode *) { return true; }
 | 
						|
 | 
						|
  /// Profile - Gather unique data for the node.
 | 
						|
  ///
 | 
						|
  void Profile(FoldingSetNodeID &ID) const;
 | 
						|
 | 
						|
  /// addUse - This method should only be used by the SDUse class.
 | 
						|
  ///
 | 
						|
  void addUse(SDUse &U) { U.addToList(&UseList); }
 | 
						|
 | 
						|
protected:
 | 
						|
  static SDVTList getSDVTList(EVT VT) {
 | 
						|
    SDVTList Ret = { getValueTypeList(VT), 1 };
 | 
						|
    return Ret;
 | 
						|
  }
 | 
						|
 | 
						|
  SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs, const SDValue *Ops,
 | 
						|
         unsigned NumOps)
 | 
						|
    : NodeType(Opc), OperandsNeedDelete(true), SubclassData(0),
 | 
						|
      NodeId(-1),
 | 
						|
      OperandList(NumOps ? new SDUse[NumOps] : 0),
 | 
						|
      ValueList(VTs.VTs), UseList(NULL),
 | 
						|
      NumOperands(NumOps), NumValues(VTs.NumVTs),
 | 
						|
      debugLoc(dl) {
 | 
						|
    for (unsigned i = 0; i != NumOps; ++i) {
 | 
						|
      OperandList[i].setUser(this);
 | 
						|
      OperandList[i].setInitial(Ops[i]);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// This constructor adds no operands itself; operands can be
 | 
						|
  /// set later with InitOperands.
 | 
						|
  SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs)
 | 
						|
    : NodeType(Opc), OperandsNeedDelete(false), SubclassData(0),
 | 
						|
      NodeId(-1), OperandList(0), ValueList(VTs.VTs), UseList(NULL),
 | 
						|
      NumOperands(0), NumValues(VTs.NumVTs),
 | 
						|
      debugLoc(dl) {}
 | 
						|
 | 
						|
  /// InitOperands - Initialize the operands list of this with 1 operand.
 | 
						|
  void InitOperands(SDUse *Ops, const SDValue &Op0) {
 | 
						|
    Ops[0].setUser(this);
 | 
						|
    Ops[0].setInitial(Op0);
 | 
						|
    NumOperands = 1;
 | 
						|
    OperandList = Ops;
 | 
						|
  }
 | 
						|
 | 
						|
  /// InitOperands - Initialize the operands list of this with 2 operands.
 | 
						|
  void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1) {
 | 
						|
    Ops[0].setUser(this);
 | 
						|
    Ops[0].setInitial(Op0);
 | 
						|
    Ops[1].setUser(this);
 | 
						|
    Ops[1].setInitial(Op1);
 | 
						|
    NumOperands = 2;
 | 
						|
    OperandList = Ops;
 | 
						|
  }
 | 
						|
 | 
						|
  /// InitOperands - Initialize the operands list of this with 3 operands.
 | 
						|
  void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
 | 
						|
                    const SDValue &Op2) {
 | 
						|
    Ops[0].setUser(this);
 | 
						|
    Ops[0].setInitial(Op0);
 | 
						|
    Ops[1].setUser(this);
 | 
						|
    Ops[1].setInitial(Op1);
 | 
						|
    Ops[2].setUser(this);
 | 
						|
    Ops[2].setInitial(Op2);
 | 
						|
    NumOperands = 3;
 | 
						|
    OperandList = Ops;
 | 
						|
  }
 | 
						|
 | 
						|
  /// InitOperands - Initialize the operands list of this with 4 operands.
 | 
						|
  void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
 | 
						|
                    const SDValue &Op2, const SDValue &Op3) {
 | 
						|
    Ops[0].setUser(this);
 | 
						|
    Ops[0].setInitial(Op0);
 | 
						|
    Ops[1].setUser(this);
 | 
						|
    Ops[1].setInitial(Op1);
 | 
						|
    Ops[2].setUser(this);
 | 
						|
    Ops[2].setInitial(Op2);
 | 
						|
    Ops[3].setUser(this);
 | 
						|
    Ops[3].setInitial(Op3);
 | 
						|
    NumOperands = 4;
 | 
						|
    OperandList = Ops;
 | 
						|
  }
 | 
						|
 | 
						|
  /// InitOperands - Initialize the operands list of this with N operands.
 | 
						|
  void InitOperands(SDUse *Ops, const SDValue *Vals, unsigned N) {
 | 
						|
    for (unsigned i = 0; i != N; ++i) {
 | 
						|
      Ops[i].setUser(this);
 | 
						|
      Ops[i].setInitial(Vals[i]);
 | 
						|
    }
 | 
						|
    NumOperands = N;
 | 
						|
    OperandList = Ops;
 | 
						|
  }
 | 
						|
 | 
						|
  /// DropOperands - Release the operands and set this node to have
 | 
						|
  /// zero operands.
 | 
						|
  void DropOperands();
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
// Define inline functions from the SDValue class.
 | 
						|
 | 
						|
inline unsigned SDValue::getOpcode() const {
 | 
						|
  return Node->getOpcode();
 | 
						|
}
 | 
						|
inline EVT SDValue::getValueType() const {
 | 
						|
  return Node->getValueType(ResNo);
 | 
						|
}
 | 
						|
inline unsigned SDValue::getNumOperands() const {
 | 
						|
  return Node->getNumOperands();
 | 
						|
}
 | 
						|
inline const SDValue &SDValue::getOperand(unsigned i) const {
 | 
						|
  return Node->getOperand(i);
 | 
						|
}
 | 
						|
inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
 | 
						|
  return Node->getConstantOperandVal(i);
 | 
						|
}
 | 
						|
inline bool SDValue::isTargetOpcode() const {
 | 
						|
  return Node->isTargetOpcode();
 | 
						|
}
 | 
						|
inline bool SDValue::isTargetMemoryOpcode() const {
 | 
						|
  return Node->isTargetMemoryOpcode();
 | 
						|
}
 | 
						|
inline bool SDValue::isMachineOpcode() const {
 | 
						|
  return Node->isMachineOpcode();
 | 
						|
}
 | 
						|
inline unsigned SDValue::getMachineOpcode() const {
 | 
						|
  return Node->getMachineOpcode();
 | 
						|
}
 | 
						|
inline bool SDValue::use_empty() const {
 | 
						|
  return !Node->hasAnyUseOfValue(ResNo);
 | 
						|
}
 | 
						|
inline bool SDValue::hasOneUse() const {
 | 
						|
  return Node->hasNUsesOfValue(1, ResNo);
 | 
						|
}
 | 
						|
inline const DebugLoc SDValue::getDebugLoc() const {
 | 
						|
  return Node->getDebugLoc();
 | 
						|
}
 | 
						|
 | 
						|
// Define inline functions from the SDUse class.
 | 
						|
 | 
						|
inline void SDUse::set(const SDValue &V) {
 | 
						|
  if (Val.getNode()) removeFromList();
 | 
						|
  Val = V;
 | 
						|
  if (V.getNode()) V.getNode()->addUse(*this);
 | 
						|
}
 | 
						|
 | 
						|
inline void SDUse::setInitial(const SDValue &V) {
 | 
						|
  Val = V;
 | 
						|
  V.getNode()->addUse(*this);
 | 
						|
}
 | 
						|
 | 
						|
inline void SDUse::setNode(SDNode *N) {
 | 
						|
  if (Val.getNode()) removeFromList();
 | 
						|
  Val.setNode(N);
 | 
						|
  if (N) N->addUse(*this);
 | 
						|
}
 | 
						|
 | 
						|
/// UnarySDNode - This class is used for single-operand SDNodes.  This is solely
 | 
						|
/// to allow co-allocation of node operands with the node itself.
 | 
						|
class UnarySDNode : public SDNode {
 | 
						|
  SDUse Op;
 | 
						|
public:
 | 
						|
  UnarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X)
 | 
						|
    : SDNode(Opc, dl, VTs) {
 | 
						|
    InitOperands(&Op, X);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// BinarySDNode - This class is used for two-operand SDNodes.  This is solely
 | 
						|
/// to allow co-allocation of node operands with the node itself.
 | 
						|
class BinarySDNode : public SDNode {
 | 
						|
  SDUse Ops[2];
 | 
						|
public:
 | 
						|
  BinarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y)
 | 
						|
    : SDNode(Opc, dl, VTs) {
 | 
						|
    InitOperands(Ops, X, Y);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
 | 
						|
/// to allow co-allocation of node operands with the node itself.
 | 
						|
class TernarySDNode : public SDNode {
 | 
						|
  SDUse Ops[3];
 | 
						|
public:
 | 
						|
  TernarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y,
 | 
						|
                SDValue Z)
 | 
						|
    : SDNode(Opc, dl, VTs) {
 | 
						|
    InitOperands(Ops, X, Y, Z);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/// HandleSDNode - This class is used to form a handle around another node that
 | 
						|
/// is persistant and is updated across invocations of replaceAllUsesWith on its
 | 
						|
/// operand.  This node should be directly created by end-users and not added to
 | 
						|
/// the AllNodes list.
 | 
						|
class HandleSDNode : public SDNode {
 | 
						|
  SDUse Op;
 | 
						|
public:
 | 
						|
  // FIXME: Remove the "noinline" attribute once <rdar://problem/5852746> is
 | 
						|
  // fixed.
 | 
						|
#ifdef __GNUC__
 | 
						|
  explicit __attribute__((__noinline__)) HandleSDNode(SDValue X)
 | 
						|
#else
 | 
						|
  explicit HandleSDNode(SDValue X)
 | 
						|
#endif
 | 
						|
    : SDNode(ISD::HANDLENODE, DebugLoc::getUnknownLoc(),
 | 
						|
             getSDVTList(MVT::Other)) {
 | 
						|
    InitOperands(&Op, X);
 | 
						|
  }
 | 
						|
  ~HandleSDNode();
 | 
						|
  const SDValue &getValue() const { return Op; }
 | 
						|
};
 | 
						|
 | 
						|
/// Abstact virtual class for operations for memory operations
 | 
						|
class MemSDNode : public SDNode {
 | 
						|
private:
 | 
						|
  // MemoryVT - VT of in-memory value.
 | 
						|
  EVT MemoryVT;
 | 
						|
 | 
						|
protected:
 | 
						|
  /// MMO - Memory reference information.
 | 
						|
  MachineMemOperand *MMO;
 | 
						|
 | 
						|
public:
 | 
						|
  MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT MemoryVT,
 | 
						|
            MachineMemOperand *MMO);
 | 
						|
 | 
						|
  MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, const SDValue *Ops,
 | 
						|
            unsigned NumOps, EVT MemoryVT, MachineMemOperand *MMO);
 | 
						|
 | 
						|
  bool readMem() const { return MMO->isLoad(); }
 | 
						|
  bool writeMem() const { return MMO->isStore(); }
 | 
						|
 | 
						|
  /// Returns alignment and volatility of the memory access
 | 
						|
  unsigned getOriginalAlignment() const { 
 | 
						|
    return MMO->getBaseAlignment();
 | 
						|
  }
 | 
						|
  unsigned getAlignment() const {
 | 
						|
    return MMO->getAlignment();
 | 
						|
  }
 | 
						|
 | 
						|
  /// getRawSubclassData - Return the SubclassData value, which contains an
 | 
						|
  /// encoding of the volatile flag, as well as bits used by subclasses. This
 | 
						|
  /// function should only be used to compute a FoldingSetNodeID value.
 | 
						|
  unsigned getRawSubclassData() const {
 | 
						|
    return SubclassData;
 | 
						|
  }
 | 
						|
 | 
						|
  bool isVolatile() const { return (SubclassData >> 5) & 1; }
 | 
						|
 | 
						|
  /// Returns the SrcValue and offset that describes the location of the access
 | 
						|
  const Value *getSrcValue() const { return MMO->getValue(); }
 | 
						|
  int64_t getSrcValueOffset() const { return MMO->getOffset(); }
 | 
						|
 | 
						|
  /// getMemoryVT - Return the type of the in-memory value.
 | 
						|
  EVT getMemoryVT() const { return MemoryVT; }
 | 
						|
 | 
						|
  /// getMemOperand - Return a MachineMemOperand object describing the memory
 | 
						|
  /// reference performed by operation.
 | 
						|
  MachineMemOperand *getMemOperand() const { return MMO; }
 | 
						|
 | 
						|
  /// refineAlignment - Update this MemSDNode's MachineMemOperand information
 | 
						|
  /// to reflect the alignment of NewMMO, if it has a greater alignment.
 | 
						|
  /// This must only be used when the new alignment applies to all users of
 | 
						|
  /// this MachineMemOperand.
 | 
						|
  void refineAlignment(const MachineMemOperand *NewMMO) {
 | 
						|
    MMO->refineAlignment(NewMMO);
 | 
						|
  }
 | 
						|
 | 
						|
  const SDValue &getChain() const { return getOperand(0); }
 | 
						|
  const SDValue &getBasePtr() const {
 | 
						|
    return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Methods to support isa and dyn_cast
 | 
						|
  static bool classof(const MemSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    // For some targets, we lower some target intrinsics to a MemIntrinsicNode
 | 
						|
    // with either an intrinsic or a target opcode.
 | 
						|
    return N->getOpcode() == ISD::LOAD                ||
 | 
						|
           N->getOpcode() == ISD::STORE               ||
 | 
						|
           N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
 | 
						|
           N->getOpcode() == ISD::ATOMIC_SWAP         ||
 | 
						|
           N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
 | 
						|
           N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
 | 
						|
           N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
 | 
						|
           N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
 | 
						|
           N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
 | 
						|
           N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
 | 
						|
           N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
 | 
						|
           N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
 | 
						|
           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
 | 
						|
           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
 | 
						|
           N->isTargetMemoryOpcode();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// AtomicSDNode - A SDNode reprenting atomic operations.
 | 
						|
///
 | 
						|
class AtomicSDNode : public MemSDNode {
 | 
						|
  SDUse Ops[4];
 | 
						|
 | 
						|
public:
 | 
						|
  // Opc:   opcode for atomic
 | 
						|
  // VTL:    value type list
 | 
						|
  // Chain:  memory chain for operaand
 | 
						|
  // Ptr:    address to update as a SDValue
 | 
						|
  // Cmp:    compare value
 | 
						|
  // Swp:    swap value
 | 
						|
  // SrcVal: address to update as a Value (used for MemOperand)
 | 
						|
  // Align:  alignment of memory
 | 
						|
  AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, EVT MemVT,
 | 
						|
               SDValue Chain, SDValue Ptr,
 | 
						|
               SDValue Cmp, SDValue Swp, MachineMemOperand *MMO)
 | 
						|
    : MemSDNode(Opc, dl, VTL, MemVT, MMO) {
 | 
						|
    assert(readMem() && "Atomic MachineMemOperand is not a load!");
 | 
						|
    assert(writeMem() && "Atomic MachineMemOperand is not a store!");
 | 
						|
    InitOperands(Ops, Chain, Ptr, Cmp, Swp);
 | 
						|
  }
 | 
						|
  AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, EVT MemVT,
 | 
						|
               SDValue Chain, SDValue Ptr,
 | 
						|
               SDValue Val, MachineMemOperand *MMO)
 | 
						|
    : MemSDNode(Opc, dl, VTL, MemVT, MMO) {
 | 
						|
    assert(readMem() && "Atomic MachineMemOperand is not a load!");
 | 
						|
    assert(writeMem() && "Atomic MachineMemOperand is not a store!");
 | 
						|
    InitOperands(Ops, Chain, Ptr, Val);
 | 
						|
  }
 | 
						|
 | 
						|
  const SDValue &getBasePtr() const { return getOperand(1); }
 | 
						|
  const SDValue &getVal() const { return getOperand(2); }
 | 
						|
 | 
						|
  bool isCompareAndSwap() const {
 | 
						|
    unsigned Op = getOpcode();
 | 
						|
    return Op == ISD::ATOMIC_CMP_SWAP;
 | 
						|
  }
 | 
						|
 | 
						|
  // Methods to support isa and dyn_cast
 | 
						|
  static bool classof(const AtomicSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    return N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
 | 
						|
           N->getOpcode() == ISD::ATOMIC_SWAP         ||
 | 
						|
           N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
 | 
						|
           N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
 | 
						|
           N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
 | 
						|
           N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
 | 
						|
           N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
 | 
						|
           N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
 | 
						|
           N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
 | 
						|
           N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
 | 
						|
           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
 | 
						|
           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// MemIntrinsicSDNode - This SDNode is used for target intrinsics that touch
 | 
						|
/// memory and need an associated MachineMemOperand. Its opcode may be
 | 
						|
/// INTRINSIC_VOID, INTRINSIC_W_CHAIN, or a target-specific opcode with a
 | 
						|
/// value not less than FIRST_TARGET_MEMORY_OPCODE.
 | 
						|
class MemIntrinsicSDNode : public MemSDNode {
 | 
						|
public:
 | 
						|
  MemIntrinsicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
 | 
						|
                     const SDValue *Ops, unsigned NumOps,
 | 
						|
                     EVT MemoryVT, MachineMemOperand *MMO)
 | 
						|
    : MemSDNode(Opc, dl, VTs, Ops, NumOps, MemoryVT, MMO) {
 | 
						|
  }
 | 
						|
 | 
						|
  // Methods to support isa and dyn_cast
 | 
						|
  static bool classof(const MemIntrinsicSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    // We lower some target intrinsics to their target opcode
 | 
						|
    // early a node with a target opcode can be of this class
 | 
						|
    return N->getOpcode() == ISD::INTRINSIC_W_CHAIN ||
 | 
						|
           N->getOpcode() == ISD::INTRINSIC_VOID ||
 | 
						|
           N->isTargetMemoryOpcode();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// ShuffleVectorSDNode - This SDNode is used to implement the code generator
 | 
						|
/// support for the llvm IR shufflevector instruction.  It combines elements
 | 
						|
/// from two input vectors into a new input vector, with the selection and
 | 
						|
/// ordering of elements determined by an array of integers, referred to as
 | 
						|
/// the shuffle mask.  For input vectors of width N, mask indices of 0..N-1
 | 
						|
/// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
 | 
						|
/// An index of -1 is treated as undef, such that the code generator may put
 | 
						|
/// any value in the corresponding element of the result.
 | 
						|
class ShuffleVectorSDNode : public SDNode {
 | 
						|
  SDUse Ops[2];
 | 
						|
 | 
						|
  // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
 | 
						|
  // is freed when the SelectionDAG object is destroyed.
 | 
						|
  const int *Mask;
 | 
						|
protected:
 | 
						|
  friend class SelectionDAG;
 | 
						|
  ShuffleVectorSDNode(EVT VT, DebugLoc dl, SDValue N1, SDValue N2, 
 | 
						|
                      const int *M)
 | 
						|
    : SDNode(ISD::VECTOR_SHUFFLE, dl, getSDVTList(VT)), Mask(M) {
 | 
						|
    InitOperands(Ops, N1, N2);
 | 
						|
  }
 | 
						|
public:
 | 
						|
 | 
						|
  void getMask(SmallVectorImpl<int> &M) const {
 | 
						|
    EVT VT = getValueType(0);
 | 
						|
    M.clear();
 | 
						|
    for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
 | 
						|
      M.push_back(Mask[i]);
 | 
						|
  }
 | 
						|
  int getMaskElt(unsigned Idx) const {
 | 
						|
    assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
 | 
						|
    return Mask[Idx];
 | 
						|
  }
 | 
						|
  
 | 
						|
  bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
 | 
						|
  int  getSplatIndex() const { 
 | 
						|
    assert(isSplat() && "Cannot get splat index for non-splat!");
 | 
						|
    return Mask[0];
 | 
						|
  }
 | 
						|
  static bool isSplatMask(const int *Mask, EVT VT);
 | 
						|
 | 
						|
  static bool classof(const ShuffleVectorSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    return N->getOpcode() == ISD::VECTOR_SHUFFLE;
 | 
						|
  }
 | 
						|
};
 | 
						|
  
 | 
						|
class ConstantSDNode : public SDNode {
 | 
						|
  const ConstantInt *Value;
 | 
						|
  friend class SelectionDAG;
 | 
						|
  ConstantSDNode(bool isTarget, const ConstantInt *val, EVT VT)
 | 
						|
    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant,
 | 
						|
             DebugLoc::getUnknownLoc(), getSDVTList(VT)), Value(val) {
 | 
						|
  }
 | 
						|
public:
 | 
						|
 | 
						|
  const ConstantInt *getConstantIntValue() const { return Value; }
 | 
						|
  const APInt &getAPIntValue() const { return Value->getValue(); }
 | 
						|
  uint64_t getZExtValue() const { return Value->getZExtValue(); }
 | 
						|
  int64_t getSExtValue() const { return Value->getSExtValue(); }
 | 
						|
 | 
						|
  bool isNullValue() const { return Value->isNullValue(); }
 | 
						|
  bool isAllOnesValue() const { return Value->isAllOnesValue(); }
 | 
						|
 | 
						|
  static bool classof(const ConstantSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    return N->getOpcode() == ISD::Constant ||
 | 
						|
           N->getOpcode() == ISD::TargetConstant;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class ConstantFPSDNode : public SDNode {
 | 
						|
  const ConstantFP *Value;
 | 
						|
  friend class SelectionDAG;
 | 
						|
  ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
 | 
						|
    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
 | 
						|
             DebugLoc::getUnknownLoc(), getSDVTList(VT)), Value(val) {
 | 
						|
  }
 | 
						|
public:
 | 
						|
 | 
						|
  const APFloat& getValueAPF() const { return Value->getValueAPF(); }
 | 
						|
  const ConstantFP *getConstantFPValue() const { return Value; }
 | 
						|
 | 
						|
  /// isExactlyValue - We don't rely on operator== working on double values, as
 | 
						|
  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
 | 
						|
  /// As such, this method can be used to do an exact bit-for-bit comparison of
 | 
						|
  /// two floating point values.
 | 
						|
 | 
						|
  /// We leave the version with the double argument here because it's just so
 | 
						|
  /// convenient to write "2.0" and the like.  Without this function we'd
 | 
						|
  /// have to duplicate its logic everywhere it's called.
 | 
						|
  bool isExactlyValue(double V) const {
 | 
						|
    bool ignored;
 | 
						|
    // convert is not supported on this type
 | 
						|
    if (&Value->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
 | 
						|
      return false;
 | 
						|
    APFloat Tmp(V);
 | 
						|
    Tmp.convert(Value->getValueAPF().getSemantics(),
 | 
						|
                APFloat::rmNearestTiesToEven, &ignored);
 | 
						|
    return isExactlyValue(Tmp);
 | 
						|
  }
 | 
						|
  bool isExactlyValue(const APFloat& V) const;
 | 
						|
 | 
						|
  bool isValueValidForType(EVT VT, const APFloat& Val);
 | 
						|
 | 
						|
  static bool classof(const ConstantFPSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    return N->getOpcode() == ISD::ConstantFP ||
 | 
						|
           N->getOpcode() == ISD::TargetConstantFP;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class GlobalAddressSDNode : public SDNode {
 | 
						|
  GlobalValue *TheGlobal;
 | 
						|
  int64_t Offset;
 | 
						|
  unsigned char TargetFlags;
 | 
						|
  friend class SelectionDAG;
 | 
						|
  GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA, EVT VT,
 | 
						|
                      int64_t o, unsigned char TargetFlags);
 | 
						|
public:
 | 
						|
 | 
						|
  GlobalValue *getGlobal() const { return TheGlobal; }
 | 
						|
  int64_t getOffset() const { return Offset; }
 | 
						|
  unsigned char getTargetFlags() const { return TargetFlags; }
 | 
						|
  // Return the address space this GlobalAddress belongs to.
 | 
						|
  unsigned getAddressSpace() const;
 | 
						|
 | 
						|
  static bool classof(const GlobalAddressSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    return N->getOpcode() == ISD::GlobalAddress ||
 | 
						|
           N->getOpcode() == ISD::TargetGlobalAddress ||
 | 
						|
           N->getOpcode() == ISD::GlobalTLSAddress ||
 | 
						|
           N->getOpcode() == ISD::TargetGlobalTLSAddress;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class FrameIndexSDNode : public SDNode {
 | 
						|
  int FI;
 | 
						|
  friend class SelectionDAG;
 | 
						|
  FrameIndexSDNode(int fi, EVT VT, bool isTarg)
 | 
						|
    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
 | 
						|
      DebugLoc::getUnknownLoc(), getSDVTList(VT)), FI(fi) {
 | 
						|
  }
 | 
						|
public:
 | 
						|
 | 
						|
  int getIndex() const { return FI; }
 | 
						|
 | 
						|
  static bool classof(const FrameIndexSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    return N->getOpcode() == ISD::FrameIndex ||
 | 
						|
           N->getOpcode() == ISD::TargetFrameIndex;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class JumpTableSDNode : public SDNode {
 | 
						|
  int JTI;
 | 
						|
  unsigned char TargetFlags;
 | 
						|
  friend class SelectionDAG;
 | 
						|
  JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned char TF)
 | 
						|
    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
 | 
						|
      DebugLoc::getUnknownLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
 | 
						|
  }
 | 
						|
public:
 | 
						|
 | 
						|
  int getIndex() const { return JTI; }
 | 
						|
  unsigned char getTargetFlags() const { return TargetFlags; }
 | 
						|
 | 
						|
  static bool classof(const JumpTableSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    return N->getOpcode() == ISD::JumpTable ||
 | 
						|
           N->getOpcode() == ISD::TargetJumpTable;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class ConstantPoolSDNode : public SDNode {
 | 
						|
  union {
 | 
						|
    Constant *ConstVal;
 | 
						|
    MachineConstantPoolValue *MachineCPVal;
 | 
						|
  } Val;
 | 
						|
  int Offset;  // It's a MachineConstantPoolValue if top bit is set.
 | 
						|
  unsigned Alignment;  // Minimum alignment requirement of CP (not log2 value).
 | 
						|
  unsigned char TargetFlags;
 | 
						|
  friend class SelectionDAG;
 | 
						|
  ConstantPoolSDNode(bool isTarget, Constant *c, EVT VT, int o, unsigned Align,
 | 
						|
                     unsigned char TF)
 | 
						|
    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
 | 
						|
             DebugLoc::getUnknownLoc(),
 | 
						|
             getSDVTList(VT)), Offset(o), Alignment(Align), TargetFlags(TF) {
 | 
						|
    assert((int)Offset >= 0 && "Offset is too large");
 | 
						|
    Val.ConstVal = c;
 | 
						|
  }
 | 
						|
  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
 | 
						|
                     EVT VT, int o, unsigned Align, unsigned char TF)
 | 
						|
    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
 | 
						|
             DebugLoc::getUnknownLoc(),
 | 
						|
             getSDVTList(VT)), Offset(o), Alignment(Align), TargetFlags(TF) {
 | 
						|
    assert((int)Offset >= 0 && "Offset is too large");
 | 
						|
    Val.MachineCPVal = v;
 | 
						|
    Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
 | 
						|
  }
 | 
						|
public:
 | 
						|
  
 | 
						|
 | 
						|
  bool isMachineConstantPoolEntry() const {
 | 
						|
    return (int)Offset < 0;
 | 
						|
  }
 | 
						|
 | 
						|
  Constant *getConstVal() const {
 | 
						|
    assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
 | 
						|
    return Val.ConstVal;
 | 
						|
  }
 | 
						|
 | 
						|
  MachineConstantPoolValue *getMachineCPVal() const {
 | 
						|
    assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
 | 
						|
    return Val.MachineCPVal;
 | 
						|
  }
 | 
						|
 | 
						|
  int getOffset() const {
 | 
						|
    return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
 | 
						|
  }
 | 
						|
 | 
						|
  // Return the alignment of this constant pool object, which is either 0 (for
 | 
						|
  // default alignment) or the desired value.
 | 
						|
  unsigned getAlignment() const { return Alignment; }
 | 
						|
  unsigned char getTargetFlags() const { return TargetFlags; }
 | 
						|
 | 
						|
  const Type *getType() const;
 | 
						|
 | 
						|
  static bool classof(const ConstantPoolSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    return N->getOpcode() == ISD::ConstantPool ||
 | 
						|
           N->getOpcode() == ISD::TargetConstantPool;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class BasicBlockSDNode : public SDNode {
 | 
						|
  MachineBasicBlock *MBB;
 | 
						|
  friend class SelectionDAG;
 | 
						|
  /// Debug info is meaningful and potentially useful here, but we create
 | 
						|
  /// blocks out of order when they're jumped to, which makes it a bit
 | 
						|
  /// harder.  Let's see if we need it first.
 | 
						|
  explicit BasicBlockSDNode(MachineBasicBlock *mbb)
 | 
						|
    : SDNode(ISD::BasicBlock, DebugLoc::getUnknownLoc(),
 | 
						|
             getSDVTList(MVT::Other)), MBB(mbb) {
 | 
						|
  }
 | 
						|
public:
 | 
						|
 | 
						|
  MachineBasicBlock *getBasicBlock() const { return MBB; }
 | 
						|
 | 
						|
  static bool classof(const BasicBlockSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    return N->getOpcode() == ISD::BasicBlock;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// BuildVectorSDNode - A "pseudo-class" with methods for operating on
 | 
						|
/// BUILD_VECTORs.
 | 
						|
class BuildVectorSDNode : public SDNode {
 | 
						|
  // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
 | 
						|
  explicit BuildVectorSDNode();        // Do not implement
 | 
						|
public:
 | 
						|
  /// isConstantSplat - Check if this is a constant splat, and if so, find the
 | 
						|
  /// smallest element size that splats the vector.  If MinSplatBits is
 | 
						|
  /// nonzero, the element size must be at least that large.  Note that the
 | 
						|
  /// splat element may be the entire vector (i.e., a one element vector).
 | 
						|
  /// Returns the splat element value in SplatValue.  Any undefined bits in
 | 
						|
  /// that value are zero, and the corresponding bits in the SplatUndef mask
 | 
						|
  /// are set.  The SplatBitSize value is set to the splat element size in
 | 
						|
  /// bits.  HasAnyUndefs is set to true if any bits in the vector are
 | 
						|
  /// undefined.
 | 
						|
  bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
 | 
						|
                       unsigned &SplatBitSize, bool &HasAnyUndefs,
 | 
						|
                       unsigned MinSplatBits = 0);
 | 
						|
 | 
						|
  static inline bool classof(const BuildVectorSDNode *) { return true; }
 | 
						|
  static inline bool classof(const SDNode *N) {
 | 
						|
    return N->getOpcode() == ISD::BUILD_VECTOR;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is
 | 
						|
/// used when the SelectionDAG needs to make a simple reference to something
 | 
						|
/// in the LLVM IR representation.
 | 
						|
///
 | 
						|
class SrcValueSDNode : public SDNode {
 | 
						|
  const Value *V;
 | 
						|
  friend class SelectionDAG;
 | 
						|
  /// Create a SrcValue for a general value.
 | 
						|
  explicit SrcValueSDNode(const Value *v)
 | 
						|
    : SDNode(ISD::SRCVALUE, DebugLoc::getUnknownLoc(),
 | 
						|
             getSDVTList(MVT::Other)), V(v) {}
 | 
						|
 | 
						|
public:
 | 
						|
  /// getValue - return the contained Value.
 | 
						|
  const Value *getValue() const { return V; }
 | 
						|
 | 
						|
  static bool classof(const SrcValueSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    return N->getOpcode() == ISD::SRCVALUE;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
class RegisterSDNode : public SDNode {
 | 
						|
  unsigned Reg;
 | 
						|
  friend class SelectionDAG;
 | 
						|
  RegisterSDNode(unsigned reg, EVT VT)
 | 
						|
    : SDNode(ISD::Register, DebugLoc::getUnknownLoc(),
 | 
						|
             getSDVTList(VT)), Reg(reg) {
 | 
						|
  }
 | 
						|
public:
 | 
						|
 | 
						|
  unsigned getReg() const { return Reg; }
 | 
						|
 | 
						|
  static bool classof(const RegisterSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    return N->getOpcode() == ISD::Register;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class DbgStopPointSDNode : public SDNode {
 | 
						|
  SDUse Chain;
 | 
						|
  unsigned Line;
 | 
						|
  unsigned Column;
 | 
						|
  MDNode *CU;
 | 
						|
  friend class SelectionDAG;
 | 
						|
  DbgStopPointSDNode(SDValue ch, unsigned l, unsigned c,
 | 
						|
                     MDNode *cu)
 | 
						|
    : SDNode(ISD::DBG_STOPPOINT, DebugLoc::getUnknownLoc(),
 | 
						|
      getSDVTList(MVT::Other)), Line(l), Column(c), CU(cu) {
 | 
						|
    InitOperands(&Chain, ch);
 | 
						|
  }
 | 
						|
public:
 | 
						|
  unsigned getLine() const { return Line; }
 | 
						|
  unsigned getColumn() const { return Column; }
 | 
						|
  MDNode *getCompileUnit() const { return CU; }
 | 
						|
 | 
						|
  static bool classof(const DbgStopPointSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    return N->getOpcode() == ISD::DBG_STOPPOINT;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class LabelSDNode : public SDNode {
 | 
						|
  SDUse Chain;
 | 
						|
  unsigned LabelID;
 | 
						|
  friend class SelectionDAG;
 | 
						|
LabelSDNode(unsigned NodeTy, DebugLoc dl, SDValue ch, unsigned id)
 | 
						|
    : SDNode(NodeTy, dl, getSDVTList(MVT::Other)), LabelID(id) {
 | 
						|
    InitOperands(&Chain, ch);
 | 
						|
  }
 | 
						|
public:
 | 
						|
  unsigned getLabelID() const { return LabelID; }
 | 
						|
 | 
						|
  static bool classof(const LabelSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    return N->getOpcode() == ISD::DBG_LABEL ||
 | 
						|
           N->getOpcode() == ISD::EH_LABEL;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class ExternalSymbolSDNode : public SDNode {
 | 
						|
  const char *Symbol;
 | 
						|
  unsigned char TargetFlags;
 | 
						|
  
 | 
						|
  friend class SelectionDAG;
 | 
						|
  ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned char TF, EVT VT)
 | 
						|
    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
 | 
						|
             DebugLoc::getUnknownLoc(),
 | 
						|
             getSDVTList(VT)), Symbol(Sym), TargetFlags(TF) {
 | 
						|
  }
 | 
						|
public:
 | 
						|
 | 
						|
  const char *getSymbol() const { return Symbol; }
 | 
						|
  unsigned char getTargetFlags() const { return TargetFlags; }
 | 
						|
 | 
						|
  static bool classof(const ExternalSymbolSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    return N->getOpcode() == ISD::ExternalSymbol ||
 | 
						|
           N->getOpcode() == ISD::TargetExternalSymbol;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class CondCodeSDNode : public SDNode {
 | 
						|
  ISD::CondCode Condition;
 | 
						|
  friend class SelectionDAG;
 | 
						|
  explicit CondCodeSDNode(ISD::CondCode Cond)
 | 
						|
    : SDNode(ISD::CONDCODE, DebugLoc::getUnknownLoc(),
 | 
						|
             getSDVTList(MVT::Other)), Condition(Cond) {
 | 
						|
  }
 | 
						|
public:
 | 
						|
 | 
						|
  ISD::CondCode get() const { return Condition; }
 | 
						|
 | 
						|
  static bool classof(const CondCodeSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    return N->getOpcode() == ISD::CONDCODE;
 | 
						|
  }
 | 
						|
};
 | 
						|
  
 | 
						|
/// CvtRndSatSDNode - NOTE: avoid using this node as this may disappear in the
 | 
						|
/// future and most targets don't support it.
 | 
						|
class CvtRndSatSDNode : public SDNode {
 | 
						|
  ISD::CvtCode CvtCode;
 | 
						|
  friend class SelectionDAG;
 | 
						|
  explicit CvtRndSatSDNode(EVT VT, DebugLoc dl, const SDValue *Ops,
 | 
						|
                           unsigned NumOps, ISD::CvtCode Code)
 | 
						|
    : SDNode(ISD::CONVERT_RNDSAT, dl, getSDVTList(VT), Ops, NumOps),
 | 
						|
      CvtCode(Code) {
 | 
						|
    assert(NumOps == 5 && "wrong number of operations");
 | 
						|
  }
 | 
						|
public:
 | 
						|
  ISD::CvtCode getCvtCode() const { return CvtCode; }
 | 
						|
 | 
						|
  static bool classof(const CvtRndSatSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    return N->getOpcode() == ISD::CONVERT_RNDSAT;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
namespace ISD {
 | 
						|
  struct ArgFlagsTy {
 | 
						|
  private:
 | 
						|
    static const uint64_t NoFlagSet      = 0ULL;
 | 
						|
    static const uint64_t ZExt           = 1ULL<<0;  ///< Zero extended
 | 
						|
    static const uint64_t ZExtOffs       = 0;
 | 
						|
    static const uint64_t SExt           = 1ULL<<1;  ///< Sign extended
 | 
						|
    static const uint64_t SExtOffs       = 1;
 | 
						|
    static const uint64_t InReg          = 1ULL<<2;  ///< Passed in register
 | 
						|
    static const uint64_t InRegOffs      = 2;
 | 
						|
    static const uint64_t SRet           = 1ULL<<3;  ///< Hidden struct-ret ptr
 | 
						|
    static const uint64_t SRetOffs       = 3;
 | 
						|
    static const uint64_t ByVal          = 1ULL<<4;  ///< Struct passed by value
 | 
						|
    static const uint64_t ByValOffs      = 4;
 | 
						|
    static const uint64_t Nest           = 1ULL<<5;  ///< Nested fn static chain
 | 
						|
    static const uint64_t NestOffs       = 5;
 | 
						|
    static const uint64_t ByValAlign     = 0xFULL << 6; //< Struct alignment
 | 
						|
    static const uint64_t ByValAlignOffs = 6;
 | 
						|
    static const uint64_t Split          = 1ULL << 10;
 | 
						|
    static const uint64_t SplitOffs      = 10;
 | 
						|
    static const uint64_t OrigAlign      = 0x1FULL<<27;
 | 
						|
    static const uint64_t OrigAlignOffs  = 27;
 | 
						|
    static const uint64_t ByValSize      = 0xffffffffULL << 32; //< Struct size
 | 
						|
    static const uint64_t ByValSizeOffs  = 32;
 | 
						|
 | 
						|
    static const uint64_t One            = 1ULL; //< 1 of this type, for shifts
 | 
						|
 | 
						|
    uint64_t Flags;
 | 
						|
  public:
 | 
						|
    ArgFlagsTy() : Flags(0) { }
 | 
						|
 | 
						|
    bool isZExt()   const { return Flags & ZExt; }
 | 
						|
    void setZExt()  { Flags |= One << ZExtOffs; }
 | 
						|
 | 
						|
    bool isSExt()   const { return Flags & SExt; }
 | 
						|
    void setSExt()  { Flags |= One << SExtOffs; }
 | 
						|
 | 
						|
    bool isInReg()  const { return Flags & InReg; }
 | 
						|
    void setInReg() { Flags |= One << InRegOffs; }
 | 
						|
 | 
						|
    bool isSRet()   const { return Flags & SRet; }
 | 
						|
    void setSRet()  { Flags |= One << SRetOffs; }
 | 
						|
 | 
						|
    bool isByVal()  const { return Flags & ByVal; }
 | 
						|
    void setByVal() { Flags |= One << ByValOffs; }
 | 
						|
 | 
						|
    bool isNest()   const { return Flags & Nest; }
 | 
						|
    void setNest()  { Flags |= One << NestOffs; }
 | 
						|
 | 
						|
    unsigned getByValAlign() const {
 | 
						|
      return (unsigned)
 | 
						|
        ((One << ((Flags & ByValAlign) >> ByValAlignOffs)) / 2);
 | 
						|
    }
 | 
						|
    void setByValAlign(unsigned A) {
 | 
						|
      Flags = (Flags & ~ByValAlign) |
 | 
						|
        (uint64_t(Log2_32(A) + 1) << ByValAlignOffs);
 | 
						|
    }
 | 
						|
 | 
						|
    bool isSplit()   const { return Flags & Split; }
 | 
						|
    void setSplit()  { Flags |= One << SplitOffs; }
 | 
						|
 | 
						|
    unsigned getOrigAlign() const {
 | 
						|
      return (unsigned)
 | 
						|
        ((One << ((Flags & OrigAlign) >> OrigAlignOffs)) / 2);
 | 
						|
    }
 | 
						|
    void setOrigAlign(unsigned A) {
 | 
						|
      Flags = (Flags & ~OrigAlign) |
 | 
						|
        (uint64_t(Log2_32(A) + 1) << OrigAlignOffs);
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned getByValSize() const {
 | 
						|
      return (unsigned)((Flags & ByValSize) >> ByValSizeOffs);
 | 
						|
    }
 | 
						|
    void setByValSize(unsigned S) {
 | 
						|
      Flags = (Flags & ~ByValSize) | (uint64_t(S) << ByValSizeOffs);
 | 
						|
    }
 | 
						|
 | 
						|
    /// getArgFlagsString - Returns the flags as a string, eg: "zext align:4".
 | 
						|
    std::string getArgFlagsString();
 | 
						|
 | 
						|
    /// getRawBits - Represent the flags as a bunch of bits.
 | 
						|
    uint64_t getRawBits() const { return Flags; }
 | 
						|
  };
 | 
						|
 | 
						|
  /// InputArg - This struct carries flags and type information about a
 | 
						|
  /// single incoming (formal) argument or incoming (from the perspective
 | 
						|
  /// of the caller) return value virtual register.
 | 
						|
  ///
 | 
						|
  struct InputArg {
 | 
						|
    ArgFlagsTy Flags;
 | 
						|
    EVT VT;
 | 
						|
    bool Used;
 | 
						|
 | 
						|
    InputArg() : VT(MVT::Other), Used(false) {}
 | 
						|
    InputArg(ISD::ArgFlagsTy flags, EVT vt, bool used)
 | 
						|
      : Flags(flags), VT(vt), Used(used) {
 | 
						|
      assert(VT.isSimple() &&
 | 
						|
             "InputArg value type must be Simple!");
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// OutputArg - This struct carries flags and a value for a
 | 
						|
  /// single outgoing (actual) argument or outgoing (from the perspective
 | 
						|
  /// of the caller) return value virtual register.
 | 
						|
  ///
 | 
						|
  struct OutputArg {
 | 
						|
    ArgFlagsTy Flags;
 | 
						|
    SDValue Val;
 | 
						|
    bool IsFixed;
 | 
						|
 | 
						|
    OutputArg() : IsFixed(false) {}
 | 
						|
    OutputArg(ISD::ArgFlagsTy flags, SDValue val, bool isfixed)
 | 
						|
      : Flags(flags), Val(val), IsFixed(isfixed) {
 | 
						|
      assert(Val.getValueType().isSimple() &&
 | 
						|
             "OutputArg value type must be Simple!");
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// VTSDNode - This class is used to represent EVT's, which are used
 | 
						|
/// to parameterize some operations.
 | 
						|
class VTSDNode : public SDNode {
 | 
						|
  EVT ValueType;
 | 
						|
  friend class SelectionDAG;
 | 
						|
  explicit VTSDNode(EVT VT)
 | 
						|
    : SDNode(ISD::VALUETYPE, DebugLoc::getUnknownLoc(),
 | 
						|
             getSDVTList(MVT::Other)), ValueType(VT) {
 | 
						|
  }
 | 
						|
public:
 | 
						|
 | 
						|
  EVT getVT() const { return ValueType; }
 | 
						|
 | 
						|
  static bool classof(const VTSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    return N->getOpcode() == ISD::VALUETYPE;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode
 | 
						|
///
 | 
						|
class LSBaseSDNode : public MemSDNode {
 | 
						|
  //! Operand array for load and store
 | 
						|
  /*!
 | 
						|
    \note Moving this array to the base class captures more
 | 
						|
    common functionality shared between LoadSDNode and
 | 
						|
    StoreSDNode
 | 
						|
   */
 | 
						|
  SDUse Ops[4];
 | 
						|
public:
 | 
						|
  LSBaseSDNode(ISD::NodeType NodeTy, DebugLoc dl, SDValue *Operands,
 | 
						|
               unsigned numOperands, SDVTList VTs, ISD::MemIndexedMode AM,
 | 
						|
               EVT MemVT, MachineMemOperand *MMO)
 | 
						|
    : MemSDNode(NodeTy, dl, VTs, MemVT, MMO) {
 | 
						|
    SubclassData |= AM << 2;
 | 
						|
    assert(getAddressingMode() == AM && "MemIndexedMode encoding error!");
 | 
						|
    InitOperands(Ops, Operands, numOperands);
 | 
						|
    assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
 | 
						|
           "Only indexed loads and stores have a non-undef offset operand");
 | 
						|
  }
 | 
						|
 | 
						|
  const SDValue &getOffset() const {
 | 
						|
    return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
 | 
						|
  }
 | 
						|
 | 
						|
  /// getAddressingMode - Return the addressing mode for this load or store:
 | 
						|
  /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
 | 
						|
  ISD::MemIndexedMode getAddressingMode() const {
 | 
						|
    return ISD::MemIndexedMode((SubclassData >> 2) & 7);
 | 
						|
  }
 | 
						|
 | 
						|
  /// isIndexed - Return true if this is a pre/post inc/dec load/store.
 | 
						|
  bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
 | 
						|
 | 
						|
  /// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
 | 
						|
  bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
 | 
						|
 | 
						|
  static bool classof(const LSBaseSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    return N->getOpcode() == ISD::LOAD ||
 | 
						|
           N->getOpcode() == ISD::STORE;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
 | 
						|
///
 | 
						|
class LoadSDNode : public LSBaseSDNode {
 | 
						|
  friend class SelectionDAG;
 | 
						|
  LoadSDNode(SDValue *ChainPtrOff, DebugLoc dl, SDVTList VTs,
 | 
						|
             ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
 | 
						|
             MachineMemOperand *MMO)
 | 
						|
    : LSBaseSDNode(ISD::LOAD, dl, ChainPtrOff, 3,
 | 
						|
                   VTs, AM, MemVT, MMO) {
 | 
						|
    SubclassData |= (unsigned short)ETy;
 | 
						|
    assert(getExtensionType() == ETy && "LoadExtType encoding error!");
 | 
						|
    assert(readMem() && "Load MachineMemOperand is not a load!");
 | 
						|
    assert(!writeMem() && "Load MachineMemOperand is a store!");
 | 
						|
  }
 | 
						|
public:
 | 
						|
 | 
						|
  /// getExtensionType - Return whether this is a plain node,
 | 
						|
  /// or one of the varieties of value-extending loads.
 | 
						|
  ISD::LoadExtType getExtensionType() const {
 | 
						|
    return ISD::LoadExtType(SubclassData & 3);
 | 
						|
  }
 | 
						|
 | 
						|
  const SDValue &getBasePtr() const { return getOperand(1); }
 | 
						|
  const SDValue &getOffset() const { return getOperand(2); }
 | 
						|
 | 
						|
  static bool classof(const LoadSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    return N->getOpcode() == ISD::LOAD;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// StoreSDNode - This class is used to represent ISD::STORE nodes.
 | 
						|
///
 | 
						|
class StoreSDNode : public LSBaseSDNode {
 | 
						|
  friend class SelectionDAG;
 | 
						|
  StoreSDNode(SDValue *ChainValuePtrOff, DebugLoc dl, SDVTList VTs,
 | 
						|
              ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
 | 
						|
              MachineMemOperand *MMO)
 | 
						|
    : LSBaseSDNode(ISD::STORE, dl, ChainValuePtrOff, 4,
 | 
						|
                   VTs, AM, MemVT, MMO) {
 | 
						|
    SubclassData |= (unsigned short)isTrunc;
 | 
						|
    assert(isTruncatingStore() == isTrunc && "isTrunc encoding error!");
 | 
						|
    assert(!readMem() && "Store MachineMemOperand is a load!");
 | 
						|
    assert(writeMem() && "Store MachineMemOperand is not a store!");
 | 
						|
  }
 | 
						|
public:
 | 
						|
 | 
						|
  /// isTruncatingStore - Return true if the op does a truncation before store.
 | 
						|
  /// For integers this is the same as doing a TRUNCATE and storing the result.
 | 
						|
  /// For floats, it is the same as doing an FP_ROUND and storing the result.
 | 
						|
  bool isTruncatingStore() const { return SubclassData & 1; }
 | 
						|
 | 
						|
  const SDValue &getValue() const { return getOperand(1); }
 | 
						|
  const SDValue &getBasePtr() const { return getOperand(2); }
 | 
						|
  const SDValue &getOffset() const { return getOperand(3); }
 | 
						|
 | 
						|
  static bool classof(const StoreSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    return N->getOpcode() == ISD::STORE;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// MachineSDNode - An SDNode that represents everything that will be needed
 | 
						|
/// to construct a MachineInstr. These nodes are created during the
 | 
						|
/// instruction selection proper phase.
 | 
						|
///
 | 
						|
class MachineSDNode : public SDNode {
 | 
						|
public:
 | 
						|
  typedef MachineMemOperand **mmo_iterator;
 | 
						|
 | 
						|
private:
 | 
						|
  friend class SelectionDAG;
 | 
						|
  MachineSDNode(unsigned Opc, const DebugLoc DL, SDVTList VTs)
 | 
						|
    : SDNode(Opc, DL, VTs), MemRefs(0), MemRefsEnd(0) {}
 | 
						|
 | 
						|
  /// LocalOperands - Operands for this instruction, if they fit here. If
 | 
						|
  /// they don't, this field is unused.
 | 
						|
  SDUse LocalOperands[4];
 | 
						|
 | 
						|
  /// MemRefs - Memory reference descriptions for this instruction.
 | 
						|
  mmo_iterator MemRefs;
 | 
						|
  mmo_iterator MemRefsEnd;
 | 
						|
 | 
						|
public:
 | 
						|
  mmo_iterator memoperands_begin() const { return MemRefs; }
 | 
						|
  mmo_iterator memoperands_end() const { return MemRefsEnd; }
 | 
						|
  bool memoperands_empty() const { return MemRefsEnd == MemRefs; }
 | 
						|
 | 
						|
  /// setMemRefs - Assign this MachineSDNodes's memory reference descriptor
 | 
						|
  /// list. This does not transfer ownership.
 | 
						|
  void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
 | 
						|
    MemRefs = NewMemRefs;
 | 
						|
    MemRefsEnd = NewMemRefsEnd;
 | 
						|
  }
 | 
						|
 | 
						|
  static bool classof(const MachineSDNode *) { return true; }
 | 
						|
  static bool classof(const SDNode *N) {
 | 
						|
    return N->isMachineOpcode();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class SDNodeIterator : public std::iterator<std::forward_iterator_tag,
 | 
						|
                                            SDNode, ptrdiff_t> {
 | 
						|
  SDNode *Node;
 | 
						|
  unsigned Operand;
 | 
						|
 | 
						|
  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
 | 
						|
public:
 | 
						|
  bool operator==(const SDNodeIterator& x) const {
 | 
						|
    return Operand == x.Operand;
 | 
						|
  }
 | 
						|
  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
 | 
						|
 | 
						|
  const SDNodeIterator &operator=(const SDNodeIterator &I) {
 | 
						|
    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
 | 
						|
    Operand = I.Operand;
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  pointer operator*() const {
 | 
						|
    return Node->getOperand(Operand).getNode();
 | 
						|
  }
 | 
						|
  pointer operator->() const { return operator*(); }
 | 
						|
 | 
						|
  SDNodeIterator& operator++() {                // Preincrement
 | 
						|
    ++Operand;
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
  SDNodeIterator operator++(int) { // Postincrement
 | 
						|
    SDNodeIterator tmp = *this; ++*this; return tmp;
 | 
						|
  }
 | 
						|
 | 
						|
  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
 | 
						|
  static SDNodeIterator end  (SDNode *N) {
 | 
						|
    return SDNodeIterator(N, N->getNumOperands());
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned getOperand() const { return Operand; }
 | 
						|
  const SDNode *getNode() const { return Node; }
 | 
						|
};
 | 
						|
 | 
						|
template <> struct GraphTraits<SDNode*> {
 | 
						|
  typedef SDNode NodeType;
 | 
						|
  typedef SDNodeIterator ChildIteratorType;
 | 
						|
  static inline NodeType *getEntryNode(SDNode *N) { return N; }
 | 
						|
  static inline ChildIteratorType child_begin(NodeType *N) {
 | 
						|
    return SDNodeIterator::begin(N);
 | 
						|
  }
 | 
						|
  static inline ChildIteratorType child_end(NodeType *N) {
 | 
						|
    return SDNodeIterator::end(N);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// LargestSDNode - The largest SDNode class.
 | 
						|
///
 | 
						|
typedef LoadSDNode LargestSDNode;
 | 
						|
 | 
						|
/// MostAlignedSDNode - The SDNode class with the greatest alignment
 | 
						|
/// requirement.
 | 
						|
///
 | 
						|
typedef GlobalAddressSDNode MostAlignedSDNode;
 | 
						|
 | 
						|
namespace ISD {
 | 
						|
  /// isNormalLoad - Returns true if the specified node is a non-extending
 | 
						|
  /// and unindexed load.
 | 
						|
  inline bool isNormalLoad(const SDNode *N) {
 | 
						|
    const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
 | 
						|
    return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
 | 
						|
      Ld->getAddressingMode() == ISD::UNINDEXED;
 | 
						|
  }
 | 
						|
 | 
						|
  /// isNON_EXTLoad - Returns true if the specified node is a non-extending
 | 
						|
  /// load.
 | 
						|
  inline bool isNON_EXTLoad(const SDNode *N) {
 | 
						|
    return isa<LoadSDNode>(N) &&
 | 
						|
      cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
 | 
						|
  }
 | 
						|
 | 
						|
  /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
 | 
						|
  ///
 | 
						|
  inline bool isEXTLoad(const SDNode *N) {
 | 
						|
    return isa<LoadSDNode>(N) &&
 | 
						|
      cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
 | 
						|
  }
 | 
						|
 | 
						|
  /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
 | 
						|
  ///
 | 
						|
  inline bool isSEXTLoad(const SDNode *N) {
 | 
						|
    return isa<LoadSDNode>(N) &&
 | 
						|
      cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
 | 
						|
  }
 | 
						|
 | 
						|
  /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
 | 
						|
  ///
 | 
						|
  inline bool isZEXTLoad(const SDNode *N) {
 | 
						|
    return isa<LoadSDNode>(N) &&
 | 
						|
      cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
 | 
						|
  }
 | 
						|
 | 
						|
  /// isUNINDEXEDLoad - Returns true if the specified node is an unindexed load.
 | 
						|
  ///
 | 
						|
  inline bool isUNINDEXEDLoad(const SDNode *N) {
 | 
						|
    return isa<LoadSDNode>(N) &&
 | 
						|
      cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
 | 
						|
  }
 | 
						|
 | 
						|
  /// isNormalStore - Returns true if the specified node is a non-truncating
 | 
						|
  /// and unindexed store.
 | 
						|
  inline bool isNormalStore(const SDNode *N) {
 | 
						|
    const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
 | 
						|
    return St && !St->isTruncatingStore() &&
 | 
						|
      St->getAddressingMode() == ISD::UNINDEXED;
 | 
						|
  }
 | 
						|
 | 
						|
  /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
 | 
						|
  /// store.
 | 
						|
  inline bool isNON_TRUNCStore(const SDNode *N) {
 | 
						|
    return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
 | 
						|
  }
 | 
						|
 | 
						|
  /// isTRUNCStore - Returns true if the specified node is a truncating
 | 
						|
  /// store.
 | 
						|
  inline bool isTRUNCStore(const SDNode *N) {
 | 
						|
    return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
 | 
						|
  }
 | 
						|
 | 
						|
  /// isUNINDEXEDStore - Returns true if the specified node is an
 | 
						|
  /// unindexed store.
 | 
						|
  inline bool isUNINDEXEDStore(const SDNode *N) {
 | 
						|
    return isa<StoreSDNode>(N) &&
 | 
						|
      cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
} // end llvm namespace
 | 
						|
 | 
						|
#endif
 |