llvm-6502/lib/Analysis/Interval.cpp
2001-06-20 22:44:32 +00:00

195 lines
7.8 KiB
C++

//===- Intervals.cpp - Interval partition Calculation ------------*- C++ -*--=//
//
// This file contains the declaration of the cfg::IntervalPartition class, which
// calculates and represent the interval partition of a method.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Intervals.h"
#include "llvm/Method.h"
#include "llvm/BasicBlock.h"
#include "llvm/CFG.h"
using namespace cfg;
// getNodeHeader - Given a source graph node and the source graph, return the
// BasicBlock that is the header node. This is the opposite of
// getSourceGraphNode.
//
inline static BasicBlock *getNodeHeader(BasicBlock *BB) { return BB; }
inline static BasicBlock *getNodeHeader(Interval *I) { return I->HeaderNode; }
// getSourceGraphNode - Given a BasicBlock and the source graph, return the
// source graph node that corresponds to the BasicBlock. This is the opposite
// of getNodeHeader.
//
inline static BasicBlock *getSourceGraphNode(Method *, BasicBlock *BB) {
return BB;
}
inline static Interval *getSourceGraphNode(IntervalPartition *IP,
BasicBlock *BB) {
return IP->getBlockInterval(BB);
}
// addNodeToInterval - This method exists to assist the generic ProcessNode
// with the task of adding a node to the new interval, depending on the
// type of the source node. In the case of a CFG source graph (BasicBlock
// case), the BasicBlock itself is added to the interval.
//
inline void IntervalPartition::addNodeToInterval(Interval *Int, BasicBlock *BB){
Int->Nodes.push_back(BB);
IntervalMap.insert(make_pair(BB, Int));
}
// addNodeToInterval - This method exists to assist the generic ProcessNode
// with the task of adding a node to the new interval, depending on the
// type of the source node. In the case of a CFG source graph (BasicBlock
// case), the BasicBlock itself is added to the interval. In the case of
// an IntervalPartition source graph (Interval case), all of the member
// BasicBlocks are added to the interval.
//
inline void IntervalPartition::addNodeToInterval(Interval *Int, Interval *I) {
// Add all of the nodes in I as new nodes in Int.
copy(I->Nodes.begin(), I->Nodes.end(), back_inserter(Int->Nodes));
// Add mappings for all of the basic blocks in I to the IntervalPartition
for (Interval::node_iterator It = I->Nodes.begin(), End = I->Nodes.end();
It != End; ++It)
IntervalMap.insert(make_pair(*It, Int));
}
// ProcessNode - This method is called by ProcessInterval to add nodes to the
// interval being constructed, and it is also called recursively as it walks
// the source graph. A node is added to the current interval only if all of
// its predecessors are already in the graph. This also takes care of keeping
// the successor set of an interval up to date.
//
// This method is templated because it may operate on two different source
// graphs: a basic block graph, or a preexisting interval graph.
//
template<class NodeTy, class OrigContainer>
void IntervalPartition::ProcessNode(Interval *Int,
NodeTy *Node, OrigContainer *OC) {
assert(Int && "Null interval == bad!");
assert(Node && "Null Node == bad!");
BasicBlock *NodeHeader = getNodeHeader(Node);
Interval *CurInt = getBlockInterval(NodeHeader);
if (CurInt == Int) { // Already in this interval...
return;
} else if (CurInt != 0) { // In another interval, add as successor
if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set
Int->Successors.push_back(NodeHeader);
} else { // Otherwise, not in interval yet
for (typename NodeTy::pred_iterator I = pred_begin(Node),
E = pred_end(Node); I != E; ++I) {
if (!Int->contains(*I)) { // If pred not in interval, we can't be
if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set
Int->Successors.push_back(NodeHeader);
return; // See you later
}
}
// If we get here, then all of the predecessors of BB are in the interval
// already. In this case, we must add BB to the interval!
addNodeToInterval(Int, Node);
if (Int->isSuccessor(NodeHeader)) {
// If we were in the successor list from before... remove from succ list
Int->Successors.erase(remove(Int->Successors.begin(),
Int->Successors.end(), NodeHeader),
Int->Successors.end());
}
// Now that we have discovered that Node is in the interval, perhaps some of
// its successors are as well?
for (typename NodeTy::succ_iterator It = succ_begin(Node),
End = succ_end(Node); It != End; ++It)
ProcessNode(Int, getSourceGraphNode(OC, *It), OC);
}
}
// ProcessInterval - This method is used during the construction of the
// interval graph. It walks through the source graph, recursively creating
// an interval per invokation until the entire graph is covered. This uses
// the ProcessNode method to add all of the nodes to the interval.
//
// This method is templated because it may operate on two different source
// graphs: a basic block graph, or a preexisting interval graph.
//
template<class NodeTy, class OrigContainer>
void IntervalPartition::ProcessInterval(NodeTy *Node, OrigContainer *OC) {
BasicBlock *Header = getNodeHeader(Node);
if (getBlockInterval(Header)) return; // Interval already constructed?
// Create a new interval and add the interval to our current set
Interval *Int = new Interval(Header);
IntervalList.push_back(Int);
IntervalMap.insert(make_pair(Header, Int));
// Check all of our successors to see if they are in the interval...
for (typename NodeTy::succ_iterator I = succ_begin(Node), E = succ_end(Node);
I != E; ++I)
ProcessNode(Int, getSourceGraphNode(OC, *I), OC);
// Build all of the successor intervals of this interval now...
for(Interval::succ_iterator I = Int->Successors.begin(),
E = Int->Successors.end(); I != E; ++I) {
ProcessInterval(getSourceGraphNode(OC, *I), OC);
}
}
// updatePredecessors - Interval generation only sets the successor fields of
// the interval data structures. After interval generation is complete,
// run through all of the intervals and propogate successor info as
// predecessor info.
//
void IntervalPartition::updatePredecessors(cfg::Interval *Int) {
BasicBlock *Header = Int->HeaderNode;
for (Interval::succ_iterator I = Int->Successors.begin(),
E = Int->Successors.end(); I != E; ++I)
getBlockInterval(*I)->Predecessors.push_back(Header);
}
// IntervalPartition ctor - Build the first level interval partition for the
// specified method...
//
IntervalPartition::IntervalPartition(Method *M) {
BasicBlock *MethodStart = M->getBasicBlocks().front();
assert(MethodStart && "Cannot operate on prototypes!");
ProcessInterval(MethodStart, M);
RootInterval = getBlockInterval(MethodStart);
// Now that we know all of the successor information, propogate this to the
// predecessors for each block...
for(iterator I = begin(), E = end(); I != E; ++I)
updatePredecessors(*I);
}
// IntervalPartition ctor - Build a reduced interval partition from an
// existing interval graph. This takes an additional boolean parameter to
// distinguish it from a copy constructor. Always pass in false for now.
//
IntervalPartition::IntervalPartition(IntervalPartition &I, bool) {
Interval *MethodStart = I.getRootInterval();
assert(MethodStart && "Cannot operate on empty IntervalPartitions!");
ProcessInterval(MethodStart, &I);
RootInterval = getBlockInterval(*MethodStart->Nodes.begin());
// Now that we know all of the successor information, propogate this to the
// predecessors for each block...
for(iterator I = begin(), E = end(); I != E; ++I)
updatePredecessors(*I);
}