mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	handle cases like this:
void test(int N, double* G) {
  long j;
  for (j = 1; j < N - 1; j++)
      G[j+1] = G[j] + G[j+1];
}
where G[1] isn't live into the loop.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@90041 91177308-0d34-0410-b5e6-96231b3b80d8
		
	
		
			
				
	
	
		
			2062 lines
		
	
	
		
			71 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2062 lines
		
	
	
		
			71 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass performs global value numbering to eliminate fully redundant
 | 
						|
// instructions.  It also performs simple dead load elimination.
 | 
						|
//
 | 
						|
// Note that this pass does the value numbering itself; it does not use the
 | 
						|
// ValueNumbering analysis passes.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "gvn"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/BasicBlock.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/LLVMContext.h"
 | 
						|
#include "llvm/Operator.h"
 | 
						|
#include "llvm/Value.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/PostOrderIterator.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/MemoryBuiltins.h"
 | 
						|
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/SSAUpdater.h"
 | 
						|
#include <cstdio>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumGVNInstr,  "Number of instructions deleted");
 | 
						|
STATISTIC(NumGVNLoad,   "Number of loads deleted");
 | 
						|
STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
 | 
						|
STATISTIC(NumGVNBlocks, "Number of blocks merged");
 | 
						|
STATISTIC(NumPRELoad,   "Number of loads PRE'd");
 | 
						|
 | 
						|
static cl::opt<bool> EnablePRE("enable-pre",
 | 
						|
                               cl::init(true), cl::Hidden);
 | 
						|
static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                         ValueTable Class
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// This class holds the mapping between values and value numbers.  It is used
 | 
						|
/// as an efficient mechanism to determine the expression-wise equivalence of
 | 
						|
/// two values.
 | 
						|
namespace {
 | 
						|
  struct Expression {
 | 
						|
    enum ExpressionOpcode { ADD, FADD, SUB, FSUB, MUL, FMUL,
 | 
						|
                            UDIV, SDIV, FDIV, UREM, SREM,
 | 
						|
                            FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
 | 
						|
                            ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
 | 
						|
                            ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
 | 
						|
                            FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
 | 
						|
                            FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
 | 
						|
                            FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
 | 
						|
                            SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
 | 
						|
                            FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
 | 
						|
                            PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
 | 
						|
                            INSERTVALUE, EXTRACTVALUE, EMPTY, TOMBSTONE };
 | 
						|
 | 
						|
    ExpressionOpcode opcode;
 | 
						|
    const Type* type;
 | 
						|
    SmallVector<uint32_t, 4> varargs;
 | 
						|
    Value *function;
 | 
						|
 | 
						|
    Expression() { }
 | 
						|
    Expression(ExpressionOpcode o) : opcode(o) { }
 | 
						|
 | 
						|
    bool operator==(const Expression &other) const {
 | 
						|
      if (opcode != other.opcode)
 | 
						|
        return false;
 | 
						|
      else if (opcode == EMPTY || opcode == TOMBSTONE)
 | 
						|
        return true;
 | 
						|
      else if (type != other.type)
 | 
						|
        return false;
 | 
						|
      else if (function != other.function)
 | 
						|
        return false;
 | 
						|
      else {
 | 
						|
        if (varargs.size() != other.varargs.size())
 | 
						|
          return false;
 | 
						|
 | 
						|
        for (size_t i = 0; i < varargs.size(); ++i)
 | 
						|
          if (varargs[i] != other.varargs[i])
 | 
						|
            return false;
 | 
						|
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    bool operator!=(const Expression &other) const {
 | 
						|
      return !(*this == other);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  class ValueTable {
 | 
						|
    private:
 | 
						|
      DenseMap<Value*, uint32_t> valueNumbering;
 | 
						|
      DenseMap<Expression, uint32_t> expressionNumbering;
 | 
						|
      AliasAnalysis* AA;
 | 
						|
      MemoryDependenceAnalysis* MD;
 | 
						|
      DominatorTree* DT;
 | 
						|
 | 
						|
      uint32_t nextValueNumber;
 | 
						|
 | 
						|
      Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
 | 
						|
      Expression::ExpressionOpcode getOpcode(CmpInst* C);
 | 
						|
      Expression::ExpressionOpcode getOpcode(CastInst* C);
 | 
						|
      Expression create_expression(BinaryOperator* BO);
 | 
						|
      Expression create_expression(CmpInst* C);
 | 
						|
      Expression create_expression(ShuffleVectorInst* V);
 | 
						|
      Expression create_expression(ExtractElementInst* C);
 | 
						|
      Expression create_expression(InsertElementInst* V);
 | 
						|
      Expression create_expression(SelectInst* V);
 | 
						|
      Expression create_expression(CastInst* C);
 | 
						|
      Expression create_expression(GetElementPtrInst* G);
 | 
						|
      Expression create_expression(CallInst* C);
 | 
						|
      Expression create_expression(Constant* C);
 | 
						|
      Expression create_expression(ExtractValueInst* C);
 | 
						|
      Expression create_expression(InsertValueInst* C);
 | 
						|
      
 | 
						|
      uint32_t lookup_or_add_call(CallInst* C);
 | 
						|
    public:
 | 
						|
      ValueTable() : nextValueNumber(1) { }
 | 
						|
      uint32_t lookup_or_add(Value *V);
 | 
						|
      uint32_t lookup(Value *V) const;
 | 
						|
      void add(Value *V, uint32_t num);
 | 
						|
      void clear();
 | 
						|
      void erase(Value *v);
 | 
						|
      unsigned size();
 | 
						|
      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
 | 
						|
      AliasAnalysis *getAliasAnalysis() const { return AA; }
 | 
						|
      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
 | 
						|
      void setDomTree(DominatorTree* D) { DT = D; }
 | 
						|
      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
 | 
						|
      void verifyRemoved(const Value *) const;
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
template <> struct DenseMapInfo<Expression> {
 | 
						|
  static inline Expression getEmptyKey() {
 | 
						|
    return Expression(Expression::EMPTY);
 | 
						|
  }
 | 
						|
 | 
						|
  static inline Expression getTombstoneKey() {
 | 
						|
    return Expression(Expression::TOMBSTONE);
 | 
						|
  }
 | 
						|
 | 
						|
  static unsigned getHashValue(const Expression e) {
 | 
						|
    unsigned hash = e.opcode;
 | 
						|
 | 
						|
    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
 | 
						|
            (unsigned)((uintptr_t)e.type >> 9));
 | 
						|
 | 
						|
    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
 | 
						|
         E = e.varargs.end(); I != E; ++I)
 | 
						|
      hash = *I + hash * 37;
 | 
						|
 | 
						|
    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
 | 
						|
            (unsigned)((uintptr_t)e.function >> 9)) +
 | 
						|
           hash * 37;
 | 
						|
 | 
						|
    return hash;
 | 
						|
  }
 | 
						|
  static bool isEqual(const Expression &LHS, const Expression &RHS) {
 | 
						|
    return LHS == RHS;
 | 
						|
  }
 | 
						|
  static bool isPod() { return true; }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                     ValueTable Internal Functions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
 | 
						|
  switch(BO->getOpcode()) {
 | 
						|
  default: // THIS SHOULD NEVER HAPPEN
 | 
						|
    llvm_unreachable("Binary operator with unknown opcode?");
 | 
						|
  case Instruction::Add:  return Expression::ADD;
 | 
						|
  case Instruction::FAdd: return Expression::FADD;
 | 
						|
  case Instruction::Sub:  return Expression::SUB;
 | 
						|
  case Instruction::FSub: return Expression::FSUB;
 | 
						|
  case Instruction::Mul:  return Expression::MUL;
 | 
						|
  case Instruction::FMul: return Expression::FMUL;
 | 
						|
  case Instruction::UDiv: return Expression::UDIV;
 | 
						|
  case Instruction::SDiv: return Expression::SDIV;
 | 
						|
  case Instruction::FDiv: return Expression::FDIV;
 | 
						|
  case Instruction::URem: return Expression::UREM;
 | 
						|
  case Instruction::SRem: return Expression::SREM;
 | 
						|
  case Instruction::FRem: return Expression::FREM;
 | 
						|
  case Instruction::Shl:  return Expression::SHL;
 | 
						|
  case Instruction::LShr: return Expression::LSHR;
 | 
						|
  case Instruction::AShr: return Expression::ASHR;
 | 
						|
  case Instruction::And:  return Expression::AND;
 | 
						|
  case Instruction::Or:   return Expression::OR;
 | 
						|
  case Instruction::Xor:  return Expression::XOR;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
 | 
						|
  if (isa<ICmpInst>(C)) {
 | 
						|
    switch (C->getPredicate()) {
 | 
						|
    default:  // THIS SHOULD NEVER HAPPEN
 | 
						|
      llvm_unreachable("Comparison with unknown predicate?");
 | 
						|
    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
 | 
						|
    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
 | 
						|
    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
 | 
						|
    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
 | 
						|
    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
 | 
						|
    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
 | 
						|
    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
 | 
						|
    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
 | 
						|
    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
 | 
						|
    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    switch (C->getPredicate()) {
 | 
						|
    default: // THIS SHOULD NEVER HAPPEN
 | 
						|
      llvm_unreachable("Comparison with unknown predicate?");
 | 
						|
    case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
 | 
						|
    case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
 | 
						|
    case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
 | 
						|
    case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
 | 
						|
    case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
 | 
						|
    case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
 | 
						|
    case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
 | 
						|
    case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
 | 
						|
    case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
 | 
						|
    case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
 | 
						|
    case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
 | 
						|
    case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
 | 
						|
    case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
 | 
						|
    case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
 | 
						|
  switch(C->getOpcode()) {
 | 
						|
  default: // THIS SHOULD NEVER HAPPEN
 | 
						|
    llvm_unreachable("Cast operator with unknown opcode?");
 | 
						|
  case Instruction::Trunc:    return Expression::TRUNC;
 | 
						|
  case Instruction::ZExt:     return Expression::ZEXT;
 | 
						|
  case Instruction::SExt:     return Expression::SEXT;
 | 
						|
  case Instruction::FPToUI:   return Expression::FPTOUI;
 | 
						|
  case Instruction::FPToSI:   return Expression::FPTOSI;
 | 
						|
  case Instruction::UIToFP:   return Expression::UITOFP;
 | 
						|
  case Instruction::SIToFP:   return Expression::SITOFP;
 | 
						|
  case Instruction::FPTrunc:  return Expression::FPTRUNC;
 | 
						|
  case Instruction::FPExt:    return Expression::FPEXT;
 | 
						|
  case Instruction::PtrToInt: return Expression::PTRTOINT;
 | 
						|
  case Instruction::IntToPtr: return Expression::INTTOPTR;
 | 
						|
  case Instruction::BitCast:  return Expression::BITCAST;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Expression ValueTable::create_expression(CallInst* C) {
 | 
						|
  Expression e;
 | 
						|
 | 
						|
  e.type = C->getType();
 | 
						|
  e.function = C->getCalledFunction();
 | 
						|
  e.opcode = Expression::CALL;
 | 
						|
 | 
						|
  for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
 | 
						|
       I != E; ++I)
 | 
						|
    e.varargs.push_back(lookup_or_add(*I));
 | 
						|
 | 
						|
  return e;
 | 
						|
}
 | 
						|
 | 
						|
Expression ValueTable::create_expression(BinaryOperator* BO) {
 | 
						|
  Expression e;
 | 
						|
  e.varargs.push_back(lookup_or_add(BO->getOperand(0)));
 | 
						|
  e.varargs.push_back(lookup_or_add(BO->getOperand(1)));
 | 
						|
  e.function = 0;
 | 
						|
  e.type = BO->getType();
 | 
						|
  e.opcode = getOpcode(BO);
 | 
						|
 | 
						|
  return e;
 | 
						|
}
 | 
						|
 | 
						|
Expression ValueTable::create_expression(CmpInst* C) {
 | 
						|
  Expression e;
 | 
						|
 | 
						|
  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
 | 
						|
  e.varargs.push_back(lookup_or_add(C->getOperand(1)));
 | 
						|
  e.function = 0;
 | 
						|
  e.type = C->getType();
 | 
						|
  e.opcode = getOpcode(C);
 | 
						|
 | 
						|
  return e;
 | 
						|
}
 | 
						|
 | 
						|
Expression ValueTable::create_expression(CastInst* C) {
 | 
						|
  Expression e;
 | 
						|
 | 
						|
  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
 | 
						|
  e.function = 0;
 | 
						|
  e.type = C->getType();
 | 
						|
  e.opcode = getOpcode(C);
 | 
						|
 | 
						|
  return e;
 | 
						|
}
 | 
						|
 | 
						|
Expression ValueTable::create_expression(ShuffleVectorInst* S) {
 | 
						|
  Expression e;
 | 
						|
 | 
						|
  e.varargs.push_back(lookup_or_add(S->getOperand(0)));
 | 
						|
  e.varargs.push_back(lookup_or_add(S->getOperand(1)));
 | 
						|
  e.varargs.push_back(lookup_or_add(S->getOperand(2)));
 | 
						|
  e.function = 0;
 | 
						|
  e.type = S->getType();
 | 
						|
  e.opcode = Expression::SHUFFLE;
 | 
						|
 | 
						|
  return e;
 | 
						|
}
 | 
						|
 | 
						|
Expression ValueTable::create_expression(ExtractElementInst* E) {
 | 
						|
  Expression e;
 | 
						|
 | 
						|
  e.varargs.push_back(lookup_or_add(E->getOperand(0)));
 | 
						|
  e.varargs.push_back(lookup_or_add(E->getOperand(1)));
 | 
						|
  e.function = 0;
 | 
						|
  e.type = E->getType();
 | 
						|
  e.opcode = Expression::EXTRACT;
 | 
						|
 | 
						|
  return e;
 | 
						|
}
 | 
						|
 | 
						|
Expression ValueTable::create_expression(InsertElementInst* I) {
 | 
						|
  Expression e;
 | 
						|
 | 
						|
  e.varargs.push_back(lookup_or_add(I->getOperand(0)));
 | 
						|
  e.varargs.push_back(lookup_or_add(I->getOperand(1)));
 | 
						|
  e.varargs.push_back(lookup_or_add(I->getOperand(2)));
 | 
						|
  e.function = 0;
 | 
						|
  e.type = I->getType();
 | 
						|
  e.opcode = Expression::INSERT;
 | 
						|
 | 
						|
  return e;
 | 
						|
}
 | 
						|
 | 
						|
Expression ValueTable::create_expression(SelectInst* I) {
 | 
						|
  Expression e;
 | 
						|
 | 
						|
  e.varargs.push_back(lookup_or_add(I->getCondition()));
 | 
						|
  e.varargs.push_back(lookup_or_add(I->getTrueValue()));
 | 
						|
  e.varargs.push_back(lookup_or_add(I->getFalseValue()));
 | 
						|
  e.function = 0;
 | 
						|
  e.type = I->getType();
 | 
						|
  e.opcode = Expression::SELECT;
 | 
						|
 | 
						|
  return e;
 | 
						|
}
 | 
						|
 | 
						|
Expression ValueTable::create_expression(GetElementPtrInst* G) {
 | 
						|
  Expression e;
 | 
						|
 | 
						|
  e.varargs.push_back(lookup_or_add(G->getPointerOperand()));
 | 
						|
  e.function = 0;
 | 
						|
  e.type = G->getType();
 | 
						|
  e.opcode = Expression::GEP;
 | 
						|
 | 
						|
  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
 | 
						|
       I != E; ++I)
 | 
						|
    e.varargs.push_back(lookup_or_add(*I));
 | 
						|
 | 
						|
  return e;
 | 
						|
}
 | 
						|
 | 
						|
Expression ValueTable::create_expression(ExtractValueInst* E) {
 | 
						|
  Expression e;
 | 
						|
 | 
						|
  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
 | 
						|
  for (ExtractValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
 | 
						|
       II != IE; ++II)
 | 
						|
    e.varargs.push_back(*II);
 | 
						|
  e.function = 0;
 | 
						|
  e.type = E->getType();
 | 
						|
  e.opcode = Expression::EXTRACTVALUE;
 | 
						|
 | 
						|
  return e;
 | 
						|
}
 | 
						|
 | 
						|
Expression ValueTable::create_expression(InsertValueInst* E) {
 | 
						|
  Expression e;
 | 
						|
 | 
						|
  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
 | 
						|
  e.varargs.push_back(lookup_or_add(E->getInsertedValueOperand()));
 | 
						|
  for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
 | 
						|
       II != IE; ++II)
 | 
						|
    e.varargs.push_back(*II);
 | 
						|
  e.function = 0;
 | 
						|
  e.type = E->getType();
 | 
						|
  e.opcode = Expression::INSERTVALUE;
 | 
						|
 | 
						|
  return e;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                     ValueTable External Functions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// add - Insert a value into the table with a specified value number.
 | 
						|
void ValueTable::add(Value *V, uint32_t num) {
 | 
						|
  valueNumbering.insert(std::make_pair(V, num));
 | 
						|
}
 | 
						|
 | 
						|
uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
 | 
						|
  if (AA->doesNotAccessMemory(C)) {
 | 
						|
    Expression exp = create_expression(C);
 | 
						|
    uint32_t& e = expressionNumbering[exp];
 | 
						|
    if (!e) e = nextValueNumber++;
 | 
						|
    valueNumbering[C] = e;
 | 
						|
    return e;
 | 
						|
  } else if (AA->onlyReadsMemory(C)) {
 | 
						|
    Expression exp = create_expression(C);
 | 
						|
    uint32_t& e = expressionNumbering[exp];
 | 
						|
    if (!e) {
 | 
						|
      e = nextValueNumber++;
 | 
						|
      valueNumbering[C] = e;
 | 
						|
      return e;
 | 
						|
    }
 | 
						|
    if (!MD) {
 | 
						|
      e = nextValueNumber++;
 | 
						|
      valueNumbering[C] = e;
 | 
						|
      return e;
 | 
						|
    }
 | 
						|
 | 
						|
    MemDepResult local_dep = MD->getDependency(C);
 | 
						|
 | 
						|
    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
 | 
						|
      valueNumbering[C] =  nextValueNumber;
 | 
						|
      return nextValueNumber++;
 | 
						|
    }
 | 
						|
 | 
						|
    if (local_dep.isDef()) {
 | 
						|
      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
 | 
						|
 | 
						|
      if (local_cdep->getNumOperands() != C->getNumOperands()) {
 | 
						|
        valueNumbering[C] = nextValueNumber;
 | 
						|
        return nextValueNumber++;
 | 
						|
      }
 | 
						|
 | 
						|
      for (unsigned i = 1; i < C->getNumOperands(); ++i) {
 | 
						|
        uint32_t c_vn = lookup_or_add(C->getOperand(i));
 | 
						|
        uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
 | 
						|
        if (c_vn != cd_vn) {
 | 
						|
          valueNumbering[C] = nextValueNumber;
 | 
						|
          return nextValueNumber++;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      uint32_t v = lookup_or_add(local_cdep);
 | 
						|
      valueNumbering[C] = v;
 | 
						|
      return v;
 | 
						|
    }
 | 
						|
 | 
						|
    // Non-local case.
 | 
						|
    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
 | 
						|
      MD->getNonLocalCallDependency(CallSite(C));
 | 
						|
    // FIXME: call/call dependencies for readonly calls should return def, not
 | 
						|
    // clobber!  Move the checking logic to MemDep!
 | 
						|
    CallInst* cdep = 0;
 | 
						|
 | 
						|
    // Check to see if we have a single dominating call instruction that is
 | 
						|
    // identical to C.
 | 
						|
    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
 | 
						|
      const MemoryDependenceAnalysis::NonLocalDepEntry *I = &deps[i];
 | 
						|
      // Ignore non-local dependencies.
 | 
						|
      if (I->second.isNonLocal())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // We don't handle non-depedencies.  If we already have a call, reject
 | 
						|
      // instruction dependencies.
 | 
						|
      if (I->second.isClobber() || cdep != 0) {
 | 
						|
        cdep = 0;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->second.getInst());
 | 
						|
      // FIXME: All duplicated with non-local case.
 | 
						|
      if (NonLocalDepCall && DT->properlyDominates(I->first, C->getParent())){
 | 
						|
        cdep = NonLocalDepCall;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      cdep = 0;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!cdep) {
 | 
						|
      valueNumbering[C] = nextValueNumber;
 | 
						|
      return nextValueNumber++;
 | 
						|
    }
 | 
						|
 | 
						|
    if (cdep->getNumOperands() != C->getNumOperands()) {
 | 
						|
      valueNumbering[C] = nextValueNumber;
 | 
						|
      return nextValueNumber++;
 | 
						|
    }
 | 
						|
    for (unsigned i = 1; i < C->getNumOperands(); ++i) {
 | 
						|
      uint32_t c_vn = lookup_or_add(C->getOperand(i));
 | 
						|
      uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
 | 
						|
      if (c_vn != cd_vn) {
 | 
						|
        valueNumbering[C] = nextValueNumber;
 | 
						|
        return nextValueNumber++;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    uint32_t v = lookup_or_add(cdep);
 | 
						|
    valueNumbering[C] = v;
 | 
						|
    return v;
 | 
						|
 | 
						|
  } else {
 | 
						|
    valueNumbering[C] = nextValueNumber;
 | 
						|
    return nextValueNumber++;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// lookup_or_add - Returns the value number for the specified value, assigning
 | 
						|
/// it a new number if it did not have one before.
 | 
						|
uint32_t ValueTable::lookup_or_add(Value *V) {
 | 
						|
  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
 | 
						|
  if (VI != valueNumbering.end())
 | 
						|
    return VI->second;
 | 
						|
 | 
						|
  if (!isa<Instruction>(V)) {
 | 
						|
    valueNumbering[V] = nextValueNumber;
 | 
						|
    return nextValueNumber++;
 | 
						|
  }
 | 
						|
  
 | 
						|
  Instruction* I = cast<Instruction>(V);
 | 
						|
  Expression exp;
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
    case Instruction::Call:
 | 
						|
      return lookup_or_add_call(cast<CallInst>(I));
 | 
						|
    case Instruction::Add:
 | 
						|
    case Instruction::FAdd:
 | 
						|
    case Instruction::Sub:
 | 
						|
    case Instruction::FSub:
 | 
						|
    case Instruction::Mul:
 | 
						|
    case Instruction::FMul:
 | 
						|
    case Instruction::UDiv:
 | 
						|
    case Instruction::SDiv:
 | 
						|
    case Instruction::FDiv:
 | 
						|
    case Instruction::URem:
 | 
						|
    case Instruction::SRem:
 | 
						|
    case Instruction::FRem:
 | 
						|
    case Instruction::Shl:
 | 
						|
    case Instruction::LShr:
 | 
						|
    case Instruction::AShr:
 | 
						|
    case Instruction::And:
 | 
						|
    case Instruction::Or :
 | 
						|
    case Instruction::Xor:
 | 
						|
      exp = create_expression(cast<BinaryOperator>(I));
 | 
						|
      break;
 | 
						|
    case Instruction::ICmp:
 | 
						|
    case Instruction::FCmp:
 | 
						|
      exp = create_expression(cast<CmpInst>(I));
 | 
						|
      break;
 | 
						|
    case Instruction::Trunc:
 | 
						|
    case Instruction::ZExt:
 | 
						|
    case Instruction::SExt:
 | 
						|
    case Instruction::FPToUI:
 | 
						|
    case Instruction::FPToSI:
 | 
						|
    case Instruction::UIToFP:
 | 
						|
    case Instruction::SIToFP:
 | 
						|
    case Instruction::FPTrunc:
 | 
						|
    case Instruction::FPExt:
 | 
						|
    case Instruction::PtrToInt:
 | 
						|
    case Instruction::IntToPtr:
 | 
						|
    case Instruction::BitCast:
 | 
						|
      exp = create_expression(cast<CastInst>(I));
 | 
						|
      break;
 | 
						|
    case Instruction::Select:
 | 
						|
      exp = create_expression(cast<SelectInst>(I));
 | 
						|
      break;
 | 
						|
    case Instruction::ExtractElement:
 | 
						|
      exp = create_expression(cast<ExtractElementInst>(I));
 | 
						|
      break;
 | 
						|
    case Instruction::InsertElement:
 | 
						|
      exp = create_expression(cast<InsertElementInst>(I));
 | 
						|
      break;
 | 
						|
    case Instruction::ShuffleVector:
 | 
						|
      exp = create_expression(cast<ShuffleVectorInst>(I));
 | 
						|
      break;
 | 
						|
    case Instruction::ExtractValue:
 | 
						|
      exp = create_expression(cast<ExtractValueInst>(I));
 | 
						|
      break;
 | 
						|
    case Instruction::InsertValue:
 | 
						|
      exp = create_expression(cast<InsertValueInst>(I));
 | 
						|
      break;      
 | 
						|
    case Instruction::GetElementPtr:
 | 
						|
      exp = create_expression(cast<GetElementPtrInst>(I));
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      valueNumbering[V] = nextValueNumber;
 | 
						|
      return nextValueNumber++;
 | 
						|
  }
 | 
						|
 | 
						|
  uint32_t& e = expressionNumbering[exp];
 | 
						|
  if (!e) e = nextValueNumber++;
 | 
						|
  valueNumbering[V] = e;
 | 
						|
  return e;
 | 
						|
}
 | 
						|
 | 
						|
/// lookup - Returns the value number of the specified value. Fails if
 | 
						|
/// the value has not yet been numbered.
 | 
						|
uint32_t ValueTable::lookup(Value *V) const {
 | 
						|
  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
 | 
						|
  assert(VI != valueNumbering.end() && "Value not numbered?");
 | 
						|
  return VI->second;
 | 
						|
}
 | 
						|
 | 
						|
/// clear - Remove all entries from the ValueTable
 | 
						|
void ValueTable::clear() {
 | 
						|
  valueNumbering.clear();
 | 
						|
  expressionNumbering.clear();
 | 
						|
  nextValueNumber = 1;
 | 
						|
}
 | 
						|
 | 
						|
/// erase - Remove a value from the value numbering
 | 
						|
void ValueTable::erase(Value *V) {
 | 
						|
  valueNumbering.erase(V);
 | 
						|
}
 | 
						|
 | 
						|
/// verifyRemoved - Verify that the value is removed from all internal data
 | 
						|
/// structures.
 | 
						|
void ValueTable::verifyRemoved(const Value *V) const {
 | 
						|
  for (DenseMap<Value*, uint32_t>::const_iterator
 | 
						|
         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
 | 
						|
    assert(I->first != V && "Inst still occurs in value numbering map!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                                GVN Pass
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct ValueNumberScope {
 | 
						|
    ValueNumberScope* parent;
 | 
						|
    DenseMap<uint32_t, Value*> table;
 | 
						|
 | 
						|
    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
  class GVN : public FunctionPass {
 | 
						|
    bool runOnFunction(Function &F);
 | 
						|
  public:
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    explicit GVN(bool nopre = false, bool noloads = false)
 | 
						|
      : FunctionPass(&ID), NoPRE(nopre), NoLoads(noloads), MD(0) { }
 | 
						|
 | 
						|
  private:
 | 
						|
    bool NoPRE;
 | 
						|
    bool NoLoads;
 | 
						|
    MemoryDependenceAnalysis *MD;
 | 
						|
    DominatorTree *DT;
 | 
						|
 | 
						|
    ValueTable VN;
 | 
						|
    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
 | 
						|
 | 
						|
    // This transformation requires dominator postdominator info
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addRequired<DominatorTree>();
 | 
						|
      if (!NoLoads)
 | 
						|
        AU.addRequired<MemoryDependenceAnalysis>();
 | 
						|
      AU.addRequired<AliasAnalysis>();
 | 
						|
 | 
						|
      AU.addPreserved<DominatorTree>();
 | 
						|
      AU.addPreserved<AliasAnalysis>();
 | 
						|
    }
 | 
						|
 | 
						|
    // Helper fuctions
 | 
						|
    // FIXME: eliminate or document these better
 | 
						|
    bool processLoad(LoadInst* L,
 | 
						|
                     SmallVectorImpl<Instruction*> &toErase);
 | 
						|
    bool processInstruction(Instruction *I,
 | 
						|
                            SmallVectorImpl<Instruction*> &toErase);
 | 
						|
    bool processNonLocalLoad(LoadInst* L,
 | 
						|
                             SmallVectorImpl<Instruction*> &toErase);
 | 
						|
    bool processBlock(BasicBlock *BB);
 | 
						|
    void dump(DenseMap<uint32_t, Value*>& d);
 | 
						|
    bool iterateOnFunction(Function &F);
 | 
						|
    Value *CollapsePhi(PHINode* p);
 | 
						|
    bool performPRE(Function& F);
 | 
						|
    Value *lookupNumber(BasicBlock *BB, uint32_t num);
 | 
						|
    void cleanupGlobalSets();
 | 
						|
    void verifyRemoved(const Instruction *I) const;
 | 
						|
  };
 | 
						|
 | 
						|
  char GVN::ID = 0;
 | 
						|
}
 | 
						|
 | 
						|
// createGVNPass - The public interface to this file...
 | 
						|
FunctionPass *llvm::createGVNPass(bool NoPRE, bool NoLoads) {
 | 
						|
  return new GVN(NoPRE, NoLoads);
 | 
						|
}
 | 
						|
 | 
						|
static RegisterPass<GVN> X("gvn",
 | 
						|
                           "Global Value Numbering");
 | 
						|
 | 
						|
void GVN::dump(DenseMap<uint32_t, Value*>& d) {
 | 
						|
  printf("{\n");
 | 
						|
  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
 | 
						|
       E = d.end(); I != E; ++I) {
 | 
						|
      printf("%d\n", I->first);
 | 
						|
      I->second->dump();
 | 
						|
  }
 | 
						|
  printf("}\n");
 | 
						|
}
 | 
						|
 | 
						|
static bool isSafeReplacement(PHINode* p, Instruction *inst) {
 | 
						|
  if (!isa<PHINode>(inst))
 | 
						|
    return true;
 | 
						|
 | 
						|
  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
 | 
						|
       UI != E; ++UI)
 | 
						|
    if (PHINode* use_phi = dyn_cast<PHINode>(UI))
 | 
						|
      if (use_phi->getParent() == inst->getParent())
 | 
						|
        return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
Value *GVN::CollapsePhi(PHINode *PN) {
 | 
						|
  Value *ConstVal = PN->hasConstantValue(DT);
 | 
						|
  if (!ConstVal) return 0;
 | 
						|
 | 
						|
  Instruction *Inst = dyn_cast<Instruction>(ConstVal);
 | 
						|
  if (!Inst)
 | 
						|
    return ConstVal;
 | 
						|
 | 
						|
  if (DT->dominates(Inst, PN))
 | 
						|
    if (isSafeReplacement(PN, Inst))
 | 
						|
      return Inst;
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
 | 
						|
/// we're analyzing is fully available in the specified block.  As we go, keep
 | 
						|
/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
 | 
						|
/// map is actually a tri-state map with the following values:
 | 
						|
///   0) we know the block *is not* fully available.
 | 
						|
///   1) we know the block *is* fully available.
 | 
						|
///   2) we do not know whether the block is fully available or not, but we are
 | 
						|
///      currently speculating that it will be.
 | 
						|
///   3) we are speculating for this block and have used that to speculate for
 | 
						|
///      other blocks.
 | 
						|
static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
 | 
						|
                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
 | 
						|
  // Optimistically assume that the block is fully available and check to see
 | 
						|
  // if we already know about this block in one lookup.
 | 
						|
  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
 | 
						|
    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
 | 
						|
 | 
						|
  // If the entry already existed for this block, return the precomputed value.
 | 
						|
  if (!IV.second) {
 | 
						|
    // If this is a speculative "available" value, mark it as being used for
 | 
						|
    // speculation of other blocks.
 | 
						|
    if (IV.first->second == 2)
 | 
						|
      IV.first->second = 3;
 | 
						|
    return IV.first->second != 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, see if it is fully available in all predecessors.
 | 
						|
  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
 | 
						|
 | 
						|
  // If this block has no predecessors, it isn't live-in here.
 | 
						|
  if (PI == PE)
 | 
						|
    goto SpeculationFailure;
 | 
						|
 | 
						|
  for (; PI != PE; ++PI)
 | 
						|
    // If the value isn't fully available in one of our predecessors, then it
 | 
						|
    // isn't fully available in this block either.  Undo our previous
 | 
						|
    // optimistic assumption and bail out.
 | 
						|
    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
 | 
						|
      goto SpeculationFailure;
 | 
						|
 | 
						|
  return true;
 | 
						|
 | 
						|
// SpeculationFailure - If we get here, we found out that this is not, after
 | 
						|
// all, a fully-available block.  We have a problem if we speculated on this and
 | 
						|
// used the speculation to mark other blocks as available.
 | 
						|
SpeculationFailure:
 | 
						|
  char &BBVal = FullyAvailableBlocks[BB];
 | 
						|
 | 
						|
  // If we didn't speculate on this, just return with it set to false.
 | 
						|
  if (BBVal == 2) {
 | 
						|
    BBVal = 0;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we did speculate on this value, we could have blocks set to 1 that are
 | 
						|
  // incorrect.  Walk the (transitive) successors of this block and mark them as
 | 
						|
  // 0 if set to one.
 | 
						|
  SmallVector<BasicBlock*, 32> BBWorklist;
 | 
						|
  BBWorklist.push_back(BB);
 | 
						|
 | 
						|
  while (!BBWorklist.empty()) {
 | 
						|
    BasicBlock *Entry = BBWorklist.pop_back_val();
 | 
						|
    // Note that this sets blocks to 0 (unavailable) if they happen to not
 | 
						|
    // already be in FullyAvailableBlocks.  This is safe.
 | 
						|
    char &EntryVal = FullyAvailableBlocks[Entry];
 | 
						|
    if (EntryVal == 0) continue;  // Already unavailable.
 | 
						|
 | 
						|
    // Mark as unavailable.
 | 
						|
    EntryVal = 0;
 | 
						|
 | 
						|
    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
 | 
						|
      BBWorklist.push_back(*I);
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// CanCoerceMustAliasedValueToLoad - Return true if
 | 
						|
/// CoerceAvailableValueToLoadType will succeed.
 | 
						|
static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
 | 
						|
                                            const Type *LoadTy,
 | 
						|
                                            const TargetData &TD) {
 | 
						|
  // If the loaded or stored value is an first class array or struct, don't try
 | 
						|
  // to transform them.  We need to be able to bitcast to integer.
 | 
						|
  if (isa<StructType>(LoadTy) || isa<ArrayType>(LoadTy) ||
 | 
						|
      isa<StructType>(StoredVal->getType()) ||
 | 
						|
      isa<ArrayType>(StoredVal->getType()))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // The store has to be at least as big as the load.
 | 
						|
  if (TD.getTypeSizeInBits(StoredVal->getType()) <
 | 
						|
        TD.getTypeSizeInBits(LoadTy))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  return true;
 | 
						|
}
 | 
						|
  
 | 
						|
 | 
						|
/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
 | 
						|
/// then a load from a must-aliased pointer of a different type, try to coerce
 | 
						|
/// the stored value.  LoadedTy is the type of the load we want to replace and
 | 
						|
/// InsertPt is the place to insert new instructions.
 | 
						|
///
 | 
						|
/// If we can't do it, return null.
 | 
						|
static Value *CoerceAvailableValueToLoadType(Value *StoredVal, 
 | 
						|
                                             const Type *LoadedTy,
 | 
						|
                                             Instruction *InsertPt,
 | 
						|
                                             const TargetData &TD) {
 | 
						|
  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  const Type *StoredValTy = StoredVal->getType();
 | 
						|
  
 | 
						|
  uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
 | 
						|
  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
 | 
						|
  
 | 
						|
  // If the store and reload are the same size, we can always reuse it.
 | 
						|
  if (StoreSize == LoadSize) {
 | 
						|
    if (isa<PointerType>(StoredValTy) && isa<PointerType>(LoadedTy)) {
 | 
						|
      // Pointer to Pointer -> use bitcast.
 | 
						|
      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Convert source pointers to integers, which can be bitcast.
 | 
						|
    if (isa<PointerType>(StoredValTy)) {
 | 
						|
      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
 | 
						|
      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
 | 
						|
    }
 | 
						|
    
 | 
						|
    const Type *TypeToCastTo = LoadedTy;
 | 
						|
    if (isa<PointerType>(TypeToCastTo))
 | 
						|
      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
 | 
						|
    
 | 
						|
    if (StoredValTy != TypeToCastTo)
 | 
						|
      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
 | 
						|
    
 | 
						|
    // Cast to pointer if the load needs a pointer type.
 | 
						|
    if (isa<PointerType>(LoadedTy))
 | 
						|
      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
 | 
						|
    
 | 
						|
    return StoredVal;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If the loaded value is smaller than the available value, then we can
 | 
						|
  // extract out a piece from it.  If the available value is too small, then we
 | 
						|
  // can't do anything.
 | 
						|
  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
 | 
						|
  
 | 
						|
  // Convert source pointers to integers, which can be manipulated.
 | 
						|
  if (isa<PointerType>(StoredValTy)) {
 | 
						|
    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
 | 
						|
    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Convert vectors and fp to integer, which can be manipulated.
 | 
						|
  if (!isa<IntegerType>(StoredValTy)) {
 | 
						|
    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
 | 
						|
    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If this is a big-endian system, we need to shift the value down to the low
 | 
						|
  // bits so that a truncate will work.
 | 
						|
  if (TD.isBigEndian()) {
 | 
						|
    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
 | 
						|
    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Truncate the integer to the right size now.
 | 
						|
  const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
 | 
						|
  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
 | 
						|
  
 | 
						|
  if (LoadedTy == NewIntTy)
 | 
						|
    return StoredVal;
 | 
						|
  
 | 
						|
  // If the result is a pointer, inttoptr.
 | 
						|
  if (isa<PointerType>(LoadedTy))
 | 
						|
    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
 | 
						|
  
 | 
						|
  // Otherwise, bitcast.
 | 
						|
  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
 | 
						|
}
 | 
						|
 | 
						|
/// GetBaseWithConstantOffset - Analyze the specified pointer to see if it can
 | 
						|
/// be expressed as a base pointer plus a constant offset.  Return the base and
 | 
						|
/// offset to the caller.
 | 
						|
static Value *GetBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
 | 
						|
                                        const TargetData &TD) {
 | 
						|
  Operator *PtrOp = dyn_cast<Operator>(Ptr);
 | 
						|
  if (PtrOp == 0) return Ptr;
 | 
						|
  
 | 
						|
  // Just look through bitcasts.
 | 
						|
  if (PtrOp->getOpcode() == Instruction::BitCast)
 | 
						|
    return GetBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
 | 
						|
  
 | 
						|
  // If this is a GEP with constant indices, we can look through it.
 | 
						|
  GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
 | 
						|
  if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
 | 
						|
  
 | 
						|
  gep_type_iterator GTI = gep_type_begin(GEP);
 | 
						|
  for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
 | 
						|
       ++I, ++GTI) {
 | 
						|
    ConstantInt *OpC = cast<ConstantInt>(*I);
 | 
						|
    if (OpC->isZero()) continue;
 | 
						|
    
 | 
						|
    // Handle a struct and array indices which add their offset to the pointer.
 | 
						|
    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
 | 
						|
      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
 | 
						|
    } else {
 | 
						|
      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
 | 
						|
      Offset += OpC->getSExtValue()*Size;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Re-sign extend from the pointer size if needed to get overflow edge cases
 | 
						|
  // right.
 | 
						|
  unsigned PtrSize = TD.getPointerSizeInBits();
 | 
						|
  if (PtrSize < 64)
 | 
						|
    Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
 | 
						|
  
 | 
						|
  return GetBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// AnalyzeLoadFromClobberingStore - This function is called when we have a
 | 
						|
/// memdep query of a load that ends up being a clobbering store.  This means
 | 
						|
/// that the store *may* provide bits used by the load but we can't be sure
 | 
						|
/// because the pointers don't mustalias.  Check this case to see if there is
 | 
						|
/// anything more we can do before we give up.  This returns -1 if we have to
 | 
						|
/// give up, or a byte number in the stored value of the piece that feeds the
 | 
						|
/// load.
 | 
						|
static int AnalyzeLoadFromClobberingStore(LoadInst *L, StoreInst *DepSI,
 | 
						|
                                          const TargetData &TD) {
 | 
						|
  // If the loaded or stored value is an first class array or struct, don't try
 | 
						|
  // to transform them.  We need to be able to bitcast to integer.
 | 
						|
  if (isa<StructType>(L->getType()) || isa<ArrayType>(L->getType()) ||
 | 
						|
      isa<StructType>(DepSI->getOperand(0)->getType()) ||
 | 
						|
      isa<ArrayType>(DepSI->getOperand(0)->getType()))
 | 
						|
    return -1;
 | 
						|
  
 | 
						|
  int64_t StoreOffset = 0, LoadOffset = 0;
 | 
						|
  Value *StoreBase = 
 | 
						|
    GetBaseWithConstantOffset(DepSI->getPointerOperand(), StoreOffset, TD);
 | 
						|
  Value *LoadBase = 
 | 
						|
    GetBaseWithConstantOffset(L->getPointerOperand(), LoadOffset, TD);
 | 
						|
  if (StoreBase != LoadBase)
 | 
						|
    return -1;
 | 
						|
  
 | 
						|
  // If the load and store are to the exact same address, they should have been
 | 
						|
  // a must alias.  AA must have gotten confused.
 | 
						|
  // FIXME: Study to see if/when this happens.
 | 
						|
  if (LoadOffset == StoreOffset) {
 | 
						|
#if 0
 | 
						|
    errs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
 | 
						|
    << "Base       = " << *StoreBase << "\n"
 | 
						|
    << "Store Ptr  = " << *DepSI->getPointerOperand() << "\n"
 | 
						|
    << "Store Offs = " << StoreOffset << " - " << *DepSI << "\n"
 | 
						|
    << "Load Ptr   = " << *L->getPointerOperand() << "\n"
 | 
						|
    << "Load Offs  = " << LoadOffset << " - " << *L << "\n\n";
 | 
						|
    errs() << "'" << L->getParent()->getParent()->getName() << "'"
 | 
						|
    << *L->getParent();
 | 
						|
#endif
 | 
						|
    return -1;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If the load and store don't overlap at all, the store doesn't provide
 | 
						|
  // anything to the load.  In this case, they really don't alias at all, AA
 | 
						|
  // must have gotten confused.
 | 
						|
  // FIXME: Investigate cases where this bails out, e.g. rdar://7238614. Then
 | 
						|
  // remove this check, as it is duplicated with what we have below.
 | 
						|
  uint64_t StoreSize = TD.getTypeSizeInBits(DepSI->getOperand(0)->getType());
 | 
						|
  uint64_t LoadSize = TD.getTypeSizeInBits(L->getType());
 | 
						|
  
 | 
						|
  if ((StoreSize & 7) | (LoadSize & 7))
 | 
						|
    return -1;
 | 
						|
  StoreSize >>= 3;  // Convert to bytes.
 | 
						|
  LoadSize >>= 3;
 | 
						|
  
 | 
						|
  
 | 
						|
  bool isAAFailure = false;
 | 
						|
  if (StoreOffset < LoadOffset) {
 | 
						|
    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
 | 
						|
  } else {
 | 
						|
    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
 | 
						|
  }
 | 
						|
  if (isAAFailure) {
 | 
						|
#if 0
 | 
						|
    errs() << "STORE LOAD DEP WITH COMMON BASE:\n"
 | 
						|
    << "Base       = " << *StoreBase << "\n"
 | 
						|
    << "Store Ptr  = " << *DepSI->getPointerOperand() << "\n"
 | 
						|
    << "Store Offs = " << StoreOffset << " - " << *DepSI << "\n"
 | 
						|
    << "Load Ptr   = " << *L->getPointerOperand() << "\n"
 | 
						|
    << "Load Offs  = " << LoadOffset << " - " << *L << "\n\n";
 | 
						|
    errs() << "'" << L->getParent()->getParent()->getName() << "'"
 | 
						|
    << *L->getParent();
 | 
						|
#endif
 | 
						|
    return -1;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If the Load isn't completely contained within the stored bits, we don't
 | 
						|
  // have all the bits to feed it.  We could do something crazy in the future
 | 
						|
  // (issue a smaller load then merge the bits in) but this seems unlikely to be
 | 
						|
  // valuable.
 | 
						|
  if (StoreOffset > LoadOffset ||
 | 
						|
      StoreOffset+StoreSize < LoadOffset+LoadSize)
 | 
						|
    return -1;
 | 
						|
  
 | 
						|
  // Okay, we can do this transformation.  Return the number of bytes into the
 | 
						|
  // store that the load is.
 | 
						|
  return LoadOffset-StoreOffset;
 | 
						|
}  
 | 
						|
 | 
						|
 | 
						|
/// GetStoreValueForLoad - This function is called when we have a
 | 
						|
/// memdep query of a load that ends up being a clobbering store.  This means
 | 
						|
/// that the store *may* provide bits used by the load but we can't be sure
 | 
						|
/// because the pointers don't mustalias.  Check this case to see if there is
 | 
						|
/// anything more we can do before we give up.
 | 
						|
static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
 | 
						|
                                   const Type *LoadTy,
 | 
						|
                                   Instruction *InsertPt, const TargetData &TD){
 | 
						|
  LLVMContext &Ctx = SrcVal->getType()->getContext();
 | 
						|
  
 | 
						|
  uint64_t StoreSize = TD.getTypeSizeInBits(SrcVal->getType())/8;
 | 
						|
  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
 | 
						|
  
 | 
						|
  
 | 
						|
  // Compute which bits of the stored value are being used by the load.  Convert
 | 
						|
  // to an integer type to start with.
 | 
						|
  if (isa<PointerType>(SrcVal->getType()))
 | 
						|
    SrcVal = new PtrToIntInst(SrcVal, TD.getIntPtrType(Ctx), "tmp", InsertPt);
 | 
						|
  if (!isa<IntegerType>(SrcVal->getType()))
 | 
						|
    SrcVal = new BitCastInst(SrcVal, IntegerType::get(Ctx, StoreSize*8),
 | 
						|
                             "tmp", InsertPt);
 | 
						|
  
 | 
						|
  // Shift the bits to the least significant depending on endianness.
 | 
						|
  unsigned ShiftAmt;
 | 
						|
  if (TD.isLittleEndian()) {
 | 
						|
    ShiftAmt = Offset*8;
 | 
						|
  } else {
 | 
						|
    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (ShiftAmt)
 | 
						|
    SrcVal = BinaryOperator::CreateLShr(SrcVal,
 | 
						|
                ConstantInt::get(SrcVal->getType(), ShiftAmt), "tmp", InsertPt);
 | 
						|
  
 | 
						|
  if (LoadSize != StoreSize)
 | 
						|
    SrcVal = new TruncInst(SrcVal, IntegerType::get(Ctx, LoadSize*8),
 | 
						|
                           "tmp", InsertPt);
 | 
						|
  
 | 
						|
  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
 | 
						|
}
 | 
						|
 | 
						|
struct AvailableValueInBlock {
 | 
						|
  /// BB - The basic block in question.
 | 
						|
  BasicBlock *BB;
 | 
						|
  /// V - The value that is live out of the block.
 | 
						|
  Value *V;
 | 
						|
  /// Offset - The byte offset in V that is interesting for the load query.
 | 
						|
  unsigned Offset;
 | 
						|
  
 | 
						|
  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
 | 
						|
                                   unsigned Offset = 0) {
 | 
						|
    AvailableValueInBlock Res;
 | 
						|
    Res.BB = BB;
 | 
						|
    Res.V = V;
 | 
						|
    Res.Offset = Offset;
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
 | 
						|
/// construct SSA form, allowing us to eliminate LI.  This returns the value
 | 
						|
/// that should be used at LI's definition site.
 | 
						|
static Value *ConstructSSAForLoadSet(LoadInst *LI, 
 | 
						|
                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
 | 
						|
                                     const TargetData *TD,
 | 
						|
                                     AliasAnalysis *AA) {
 | 
						|
  SmallVector<PHINode*, 8> NewPHIs;
 | 
						|
  SSAUpdater SSAUpdate(&NewPHIs);
 | 
						|
  SSAUpdate.Initialize(LI);
 | 
						|
  
 | 
						|
  const Type *LoadTy = LI->getType();
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
 | 
						|
    BasicBlock *BB = ValuesPerBlock[i].BB;
 | 
						|
    Value *AvailableVal = ValuesPerBlock[i].V;
 | 
						|
    unsigned Offset = ValuesPerBlock[i].Offset;
 | 
						|
    
 | 
						|
    if (SSAUpdate.HasValueForBlock(BB))
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    if (AvailableVal->getType() != LoadTy) {
 | 
						|
      assert(TD && "Need target data to handle type mismatch case");
 | 
						|
      AvailableVal = GetStoreValueForLoad(AvailableVal, Offset, LoadTy,
 | 
						|
                                          BB->getTerminator(), *TD);
 | 
						|
      
 | 
						|
      if (Offset) {
 | 
						|
        DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\n"
 | 
						|
              << *ValuesPerBlock[i].V << '\n'
 | 
						|
              << *AvailableVal << '\n' << "\n\n\n");
 | 
						|
      }
 | 
						|
      
 | 
						|
      
 | 
						|
      DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\n"
 | 
						|
            << *ValuesPerBlock[i].V << '\n'
 | 
						|
            << *AvailableVal << '\n' << "\n\n\n");
 | 
						|
    }
 | 
						|
    
 | 
						|
    SSAUpdate.AddAvailableValue(BB, AvailableVal);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Perform PHI construction.
 | 
						|
  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
 | 
						|
  
 | 
						|
  // If new PHI nodes were created, notify alias analysis.
 | 
						|
  if (isa<PointerType>(V->getType()))
 | 
						|
    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
 | 
						|
      AA->copyValue(LI, NewPHIs[i]);
 | 
						|
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
 | 
						|
/// non-local by performing PHI construction.
 | 
						|
bool GVN::processNonLocalLoad(LoadInst *LI,
 | 
						|
                              SmallVectorImpl<Instruction*> &toErase) {
 | 
						|
  // Find the non-local dependencies of the load.
 | 
						|
  SmallVector<MemoryDependenceAnalysis::NonLocalDepEntry, 64> Deps;
 | 
						|
  MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
 | 
						|
                                   Deps);
 | 
						|
  //DEBUG(errs() << "INVESTIGATING NONLOCAL LOAD: "
 | 
						|
  //             << Deps.size() << *LI << '\n');
 | 
						|
 | 
						|
  // If we had to process more than one hundred blocks to find the
 | 
						|
  // dependencies, this load isn't worth worrying about.  Optimizing
 | 
						|
  // it will be too expensive.
 | 
						|
  if (Deps.size() > 100)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If we had a phi translation failure, we'll have a single entry which is a
 | 
						|
  // clobber in the current block.  Reject this early.
 | 
						|
  if (Deps.size() == 1 && Deps[0].second.isClobber()) {
 | 
						|
    DEBUG(
 | 
						|
      errs() << "GVN: non-local load ";
 | 
						|
      WriteAsOperand(errs(), LI);
 | 
						|
      errs() << " is clobbered by " << *Deps[0].second.getInst() << '\n';
 | 
						|
    );
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Filter out useless results (non-locals, etc).  Keep track of the blocks
 | 
						|
  // where we have a value available in repl, also keep track of whether we see
 | 
						|
  // dependencies that produce an unknown value for the load (such as a call
 | 
						|
  // that could potentially clobber the load).
 | 
						|
  SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
 | 
						|
  SmallVector<BasicBlock*, 16> UnavailableBlocks;
 | 
						|
 | 
						|
  const TargetData *TD = 0;
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
 | 
						|
    BasicBlock *DepBB = Deps[i].first;
 | 
						|
    MemDepResult DepInfo = Deps[i].second;
 | 
						|
 | 
						|
    if (DepInfo.isClobber()) {
 | 
						|
      // If the dependence is to a store that writes to a superset of the bits
 | 
						|
      // read by the load, we can extract the bits we need for the load from the
 | 
						|
      // stored value.
 | 
						|
      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
 | 
						|
        if (TD == 0)
 | 
						|
          TD = getAnalysisIfAvailable<TargetData>();
 | 
						|
        if (TD) {
 | 
						|
          int Offset = AnalyzeLoadFromClobberingStore(LI, DepSI, *TD);
 | 
						|
          if (Offset != -1) {
 | 
						|
            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
 | 
						|
                                                           DepSI->getOperand(0),
 | 
						|
                                                                Offset));
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
      // FIXME: Handle memset/memcpy.
 | 
						|
      UnavailableBlocks.push_back(DepBB);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    Instruction *DepInst = DepInfo.getInst();
 | 
						|
 | 
						|
    // Loading the allocation -> undef.
 | 
						|
    if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
 | 
						|
      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
 | 
						|
                                             UndefValue::get(LI->getType())));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Loading immediately after lifetime begin or end -> undef.
 | 
						|
    if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(DepInst)) {
 | 
						|
      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
 | 
						|
          II->getIntrinsicID() == Intrinsic::lifetime_end) {
 | 
						|
        ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
 | 
						|
                                             UndefValue::get(LI->getType())));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
 | 
						|
      // Reject loads and stores that are to the same address but are of
 | 
						|
      // different types if we have to.
 | 
						|
      if (S->getOperand(0)->getType() != LI->getType()) {
 | 
						|
        if (TD == 0)
 | 
						|
          TD = getAnalysisIfAvailable<TargetData>();
 | 
						|
        
 | 
						|
        // If the stored value is larger or equal to the loaded value, we can
 | 
						|
        // reuse it.
 | 
						|
        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getOperand(0),
 | 
						|
                                                        LI->getType(), *TD)) {
 | 
						|
          UnavailableBlocks.push_back(DepBB);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
 | 
						|
                                                          S->getOperand(0)));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
 | 
						|
      // If the types mismatch and we can't handle it, reject reuse of the load.
 | 
						|
      if (LD->getType() != LI->getType()) {
 | 
						|
        if (TD == 0)
 | 
						|
          TD = getAnalysisIfAvailable<TargetData>();
 | 
						|
        
 | 
						|
        // If the stored value is larger or equal to the loaded value, we can
 | 
						|
        // reuse it.
 | 
						|
        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
 | 
						|
          UnavailableBlocks.push_back(DepBB);
 | 
						|
          continue;
 | 
						|
        }          
 | 
						|
      }
 | 
						|
      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, LD));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    UnavailableBlocks.push_back(DepBB);
 | 
						|
    continue;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have no predecessors that produce a known value for this load, exit
 | 
						|
  // early.
 | 
						|
  if (ValuesPerBlock.empty()) return false;
 | 
						|
 | 
						|
  // If all of the instructions we depend on produce a known value for this
 | 
						|
  // load, then it is fully redundant and we can use PHI insertion to compute
 | 
						|
  // its value.  Insert PHIs and remove the fully redundant value now.
 | 
						|
  if (UnavailableBlocks.empty()) {
 | 
						|
    DEBUG(errs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
 | 
						|
    
 | 
						|
    // Perform PHI construction.
 | 
						|
    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD,
 | 
						|
                                      VN.getAliasAnalysis());
 | 
						|
    LI->replaceAllUsesWith(V);
 | 
						|
 | 
						|
    if (isa<PHINode>(V))
 | 
						|
      V->takeName(LI);
 | 
						|
    if (isa<PointerType>(V->getType()))
 | 
						|
      MD->invalidateCachedPointerInfo(V);
 | 
						|
    toErase.push_back(LI);
 | 
						|
    NumGVNLoad++;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!EnablePRE || !EnableLoadPRE)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Okay, we have *some* definitions of the value.  This means that the value
 | 
						|
  // is available in some of our (transitive) predecessors.  Lets think about
 | 
						|
  // doing PRE of this load.  This will involve inserting a new load into the
 | 
						|
  // predecessor when it's not available.  We could do this in general, but
 | 
						|
  // prefer to not increase code size.  As such, we only do this when we know
 | 
						|
  // that we only have to insert *one* load (which means we're basically moving
 | 
						|
  // the load, not inserting a new one).
 | 
						|
 | 
						|
  SmallPtrSet<BasicBlock *, 4> Blockers;
 | 
						|
  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
 | 
						|
    Blockers.insert(UnavailableBlocks[i]);
 | 
						|
 | 
						|
  // Lets find first basic block with more than one predecessor.  Walk backwards
 | 
						|
  // through predecessors if needed.
 | 
						|
  BasicBlock *LoadBB = LI->getParent();
 | 
						|
  BasicBlock *TmpBB = LoadBB;
 | 
						|
 | 
						|
  bool isSinglePred = false;
 | 
						|
  bool allSingleSucc = true;
 | 
						|
  while (TmpBB->getSinglePredecessor()) {
 | 
						|
    isSinglePred = true;
 | 
						|
    TmpBB = TmpBB->getSinglePredecessor();
 | 
						|
    if (!TmpBB) // If haven't found any, bail now.
 | 
						|
      return false;
 | 
						|
    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
 | 
						|
      return false;
 | 
						|
    if (Blockers.count(TmpBB))
 | 
						|
      return false;
 | 
						|
    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
 | 
						|
      allSingleSucc = false;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(TmpBB);
 | 
						|
  LoadBB = TmpBB;
 | 
						|
 | 
						|
  // If we have a repl set with LI itself in it, this means we have a loop where
 | 
						|
  // at least one of the values is LI.  Since this means that we won't be able
 | 
						|
  // to eliminate LI even if we insert uses in the other predecessors, we will
 | 
						|
  // end up increasing code size.  Reject this by scanning for LI.
 | 
						|
  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
 | 
						|
    if (ValuesPerBlock[i].V == LI)
 | 
						|
      return false;
 | 
						|
 | 
						|
  if (isSinglePred) {
 | 
						|
    bool isHot = false;
 | 
						|
    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
 | 
						|
      if (Instruction *I = dyn_cast<Instruction>(ValuesPerBlock[i].V))
 | 
						|
        // "Hot" Instruction is in some loop (because it dominates its dep.
 | 
						|
        // instruction).
 | 
						|
        if (DT->dominates(LI, I)) {
 | 
						|
          isHot = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
    // We are interested only in "hot" instructions. We don't want to do any
 | 
						|
    // mis-optimizations here.
 | 
						|
    if (!isHot)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we have some hope :).  Check to see if the loaded value is fully
 | 
						|
  // available in all but one predecessor.
 | 
						|
  // FIXME: If we could restructure the CFG, we could make a common pred with
 | 
						|
  // all the preds that don't have an available LI and insert a new load into
 | 
						|
  // that one block.
 | 
						|
  BasicBlock *UnavailablePred = 0;
 | 
						|
 | 
						|
  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
 | 
						|
  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
 | 
						|
    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
 | 
						|
  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
 | 
						|
    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
 | 
						|
 | 
						|
  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
 | 
						|
       PI != E; ++PI) {
 | 
						|
    if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If this load is not available in multiple predecessors, reject it.
 | 
						|
    if (UnavailablePred && UnavailablePred != *PI)
 | 
						|
      return false;
 | 
						|
    UnavailablePred = *PI;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(UnavailablePred != 0 &&
 | 
						|
         "Fully available value should be eliminated above!");
 | 
						|
 | 
						|
  // We don't currently handle critical edges :(
 | 
						|
  if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) {
 | 
						|
    DEBUG(errs() << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
 | 
						|
                 << UnavailablePred->getName() << "': " << *LI << '\n');
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Do PHI translation to get its value in the predecessor if necessary.  The
 | 
						|
  // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
 | 
						|
  //
 | 
						|
  // FIXME: This may insert a computation, but we don't tell scalar GVN
 | 
						|
  // optimization stuff about it.  How do we do this?
 | 
						|
  SmallVector<Instruction*, 8> NewInsts;
 | 
						|
  Value *LoadPtr = 0;
 | 
						|
  
 | 
						|
  // If all preds have a single successor, then we know it is safe to insert the
 | 
						|
  // load on the pred (?!?), so we can insert code to materialize the pointer if
 | 
						|
  // it is not available.
 | 
						|
  if (allSingleSucc) {
 | 
						|
    LoadPtr = MD->InsertPHITranslatedPointer(LI->getOperand(0), LoadBB,
 | 
						|
                                             UnavailablePred, TD, *DT,NewInsts);
 | 
						|
  } else {
 | 
						|
    LoadPtr = MD->GetAvailablePHITranslatedValue(LI->getOperand(0), LoadBB,
 | 
						|
                                                 UnavailablePred, TD, *DT);
 | 
						|
  }
 | 
						|
    
 | 
						|
  // If we couldn't find or insert a computation of this phi translated value,
 | 
						|
  // we fail PRE.
 | 
						|
  if (LoadPtr == 0) {
 | 
						|
    DEBUG(errs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
 | 
						|
                 << *LI->getOperand(0) << "\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Make sure it is valid to move this load here.  We have to watch out for:
 | 
						|
  //  @1 = getelementptr (i8* p, ...
 | 
						|
  //  test p and branch if == 0
 | 
						|
  //  load @1
 | 
						|
  // It is valid to have the getelementptr before the test, even if p can be 0,
 | 
						|
  // as getelementptr only does address arithmetic.
 | 
						|
  // If we are not pushing the value through any multiple-successor blocks
 | 
						|
  // we do not have this case.  Otherwise, check that the load is safe to
 | 
						|
  // put anywhere; this can be improved, but should be conservatively safe.
 | 
						|
  if (!allSingleSucc &&
 | 
						|
      // FIXME: REEVALUTE THIS.
 | 
						|
      !isSafeToLoadUnconditionally(LoadPtr, UnavailablePred->getTerminator())) {
 | 
						|
    assert(NewInsts.empty() && "Should not have inserted instructions");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we can eliminate this load by inserting a reload in the predecessor
 | 
						|
  // and using PHI construction to get the value in the other predecessors, do
 | 
						|
  // it.
 | 
						|
  DEBUG(errs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
 | 
						|
  DEBUG(if (!NewInsts.empty())
 | 
						|
          errs() << "INSERTED " << NewInsts.size() << " INSTS: "
 | 
						|
                 << *NewInsts.back() << '\n');
 | 
						|
  
 | 
						|
  Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
 | 
						|
                                LI->getAlignment(),
 | 
						|
                                UnavailablePred->getTerminator());
 | 
						|
 | 
						|
  // Add the newly created load.
 | 
						|
  ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,NewLoad));
 | 
						|
 | 
						|
  // Perform PHI construction.
 | 
						|
  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD,
 | 
						|
                                    VN.getAliasAnalysis());
 | 
						|
  LI->replaceAllUsesWith(V);
 | 
						|
  if (isa<PHINode>(V))
 | 
						|
    V->takeName(LI);
 | 
						|
  if (isa<PointerType>(V->getType()))
 | 
						|
    MD->invalidateCachedPointerInfo(V);
 | 
						|
  toErase.push_back(LI);
 | 
						|
  NumPRELoad++;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// processLoad - Attempt to eliminate a load, first by eliminating it
 | 
						|
/// locally, and then attempting non-local elimination if that fails.
 | 
						|
bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
 | 
						|
  if (!MD)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (L->isVolatile())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // ... to a pointer that has been loaded from before...
 | 
						|
  MemDepResult Dep = MD->getDependency(L);
 | 
						|
 | 
						|
  // If the value isn't available, don't do anything!
 | 
						|
  if (Dep.isClobber()) {
 | 
						|
    // FIXME: We should handle memset/memcpy/memmove as dependent instructions
 | 
						|
    // to forward the value if available.
 | 
						|
    //if (isa<MemIntrinsic>(Dep.getInst()))
 | 
						|
    //errs() << "LOAD DEPENDS ON MEM: " << *L << "\n" << *Dep.getInst()<<"\n\n";
 | 
						|
    
 | 
						|
    // Check to see if we have something like this:
 | 
						|
    //   store i32 123, i32* %P
 | 
						|
    //   %A = bitcast i32* %P to i8*
 | 
						|
    //   %B = gep i8* %A, i32 1
 | 
						|
    //   %C = load i8* %B
 | 
						|
    //
 | 
						|
    // We could do that by recognizing if the clobber instructions are obviously
 | 
						|
    // a common base + constant offset, and if the previous store (or memset)
 | 
						|
    // completely covers this load.  This sort of thing can happen in bitfield
 | 
						|
    // access code.
 | 
						|
    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst()))
 | 
						|
      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
 | 
						|
        int Offset = AnalyzeLoadFromClobberingStore(L, DepSI, *TD);
 | 
						|
        if (Offset != -1) {
 | 
						|
          Value *AvailVal = GetStoreValueForLoad(DepSI->getOperand(0), Offset,
 | 
						|
                                                 L->getType(), L, *TD);
 | 
						|
          DEBUG(errs() << "GVN COERCED STORE BITS:\n" << *DepSI << '\n'
 | 
						|
                       << *AvailVal << '\n' << *L << "\n\n\n");
 | 
						|
    
 | 
						|
          // Replace the load!
 | 
						|
          L->replaceAllUsesWith(AvailVal);
 | 
						|
          if (isa<PointerType>(AvailVal->getType()))
 | 
						|
            MD->invalidateCachedPointerInfo(AvailVal);
 | 
						|
          toErase.push_back(L);
 | 
						|
          NumGVNLoad++;
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    
 | 
						|
    DEBUG(
 | 
						|
      // fast print dep, using operator<< on instruction would be too slow
 | 
						|
      errs() << "GVN: load ";
 | 
						|
      WriteAsOperand(errs(), L);
 | 
						|
      Instruction *I = Dep.getInst();
 | 
						|
      errs() << " is clobbered by " << *I << '\n';
 | 
						|
    );
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If it is defined in another block, try harder.
 | 
						|
  if (Dep.isNonLocal())
 | 
						|
    return processNonLocalLoad(L, toErase);
 | 
						|
 | 
						|
  Instruction *DepInst = Dep.getInst();
 | 
						|
  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
 | 
						|
    Value *StoredVal = DepSI->getOperand(0);
 | 
						|
    
 | 
						|
    // The store and load are to a must-aliased pointer, but they may not
 | 
						|
    // actually have the same type.  See if we know how to reuse the stored
 | 
						|
    // value (depending on its type).
 | 
						|
    const TargetData *TD = 0;
 | 
						|
    if (StoredVal->getType() != L->getType()) {
 | 
						|
      if ((TD = getAnalysisIfAvailable<TargetData>())) {
 | 
						|
        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
 | 
						|
                                                   L, *TD);
 | 
						|
        if (StoredVal == 0)
 | 
						|
          return false;
 | 
						|
        
 | 
						|
        DEBUG(errs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
 | 
						|
                     << '\n' << *L << "\n\n\n");
 | 
						|
      }
 | 
						|
      else 
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Remove it!
 | 
						|
    L->replaceAllUsesWith(StoredVal);
 | 
						|
    if (isa<PointerType>(StoredVal->getType()))
 | 
						|
      MD->invalidateCachedPointerInfo(StoredVal);
 | 
						|
    toErase.push_back(L);
 | 
						|
    NumGVNLoad++;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
 | 
						|
    Value *AvailableVal = DepLI;
 | 
						|
    
 | 
						|
    // The loads are of a must-aliased pointer, but they may not actually have
 | 
						|
    // the same type.  See if we know how to reuse the previously loaded value
 | 
						|
    // (depending on its type).
 | 
						|
    const TargetData *TD = 0;
 | 
						|
    if (DepLI->getType() != L->getType()) {
 | 
						|
      if ((TD = getAnalysisIfAvailable<TargetData>())) {
 | 
						|
        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L,*TD);
 | 
						|
        if (AvailableVal == 0)
 | 
						|
          return false;
 | 
						|
      
 | 
						|
        DEBUG(errs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
 | 
						|
                     << "\n" << *L << "\n\n\n");
 | 
						|
      }
 | 
						|
      else 
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Remove it!
 | 
						|
    L->replaceAllUsesWith(AvailableVal);
 | 
						|
    if (isa<PointerType>(DepLI->getType()))
 | 
						|
      MD->invalidateCachedPointerInfo(DepLI);
 | 
						|
    toErase.push_back(L);
 | 
						|
    NumGVNLoad++;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this load really doesn't depend on anything, then we must be loading an
 | 
						|
  // undef value.  This can happen when loading for a fresh allocation with no
 | 
						|
  // intervening stores, for example.
 | 
						|
  if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
 | 
						|
    L->replaceAllUsesWith(UndefValue::get(L->getType()));
 | 
						|
    toErase.push_back(L);
 | 
						|
    NumGVNLoad++;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If this load occurs either right after a lifetime begin or a lifetime end,
 | 
						|
  // then the loaded value is undefined.
 | 
						|
  if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(DepInst)) {
 | 
						|
    if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
 | 
						|
        II->getIntrinsicID() == Intrinsic::lifetime_end) {
 | 
						|
      L->replaceAllUsesWith(UndefValue::get(L->getType()));
 | 
						|
      toErase.push_back(L);
 | 
						|
      NumGVNLoad++;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Value *GVN::lookupNumber(BasicBlock *BB, uint32_t num) {
 | 
						|
  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
 | 
						|
  if (I == localAvail.end())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  ValueNumberScope *Locals = I->second;
 | 
						|
  while (Locals) {
 | 
						|
    DenseMap<uint32_t, Value*>::iterator I = Locals->table.find(num);
 | 
						|
    if (I != Locals->table.end())
 | 
						|
      return I->second;
 | 
						|
    Locals = Locals->parent;
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// processInstruction - When calculating availability, handle an instruction
 | 
						|
/// by inserting it into the appropriate sets
 | 
						|
bool GVN::processInstruction(Instruction *I,
 | 
						|
                             SmallVectorImpl<Instruction*> &toErase) {
 | 
						|
  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | 
						|
    bool Changed = processLoad(LI, toErase);
 | 
						|
 | 
						|
    if (!Changed) {
 | 
						|
      unsigned Num = VN.lookup_or_add(LI);
 | 
						|
      localAvail[I->getParent()]->table.insert(std::make_pair(Num, LI));
 | 
						|
    }
 | 
						|
 | 
						|
    return Changed;
 | 
						|
  }
 | 
						|
 | 
						|
  uint32_t NextNum = VN.getNextUnusedValueNumber();
 | 
						|
  unsigned Num = VN.lookup_or_add(I);
 | 
						|
 | 
						|
  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
 | 
						|
    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
 | 
						|
 | 
						|
    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
 | 
						|
      return false;
 | 
						|
 | 
						|
    Value *BranchCond = BI->getCondition();
 | 
						|
    uint32_t CondVN = VN.lookup_or_add(BranchCond);
 | 
						|
 | 
						|
    BasicBlock *TrueSucc = BI->getSuccessor(0);
 | 
						|
    BasicBlock *FalseSucc = BI->getSuccessor(1);
 | 
						|
 | 
						|
    if (TrueSucc->getSinglePredecessor())
 | 
						|
      localAvail[TrueSucc]->table[CondVN] =
 | 
						|
        ConstantInt::getTrue(TrueSucc->getContext());
 | 
						|
    if (FalseSucc->getSinglePredecessor())
 | 
						|
      localAvail[FalseSucc]->table[CondVN] =
 | 
						|
        ConstantInt::getFalse(TrueSucc->getContext());
 | 
						|
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Allocations are always uniquely numbered, so we can save time and memory
 | 
						|
  // by fast failing them.
 | 
						|
  } else if (isa<AllocaInst>(I) || isa<TerminatorInst>(I)) {
 | 
						|
    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Collapse PHI nodes
 | 
						|
  if (PHINode* p = dyn_cast<PHINode>(I)) {
 | 
						|
    Value *constVal = CollapsePhi(p);
 | 
						|
 | 
						|
    if (constVal) {
 | 
						|
      p->replaceAllUsesWith(constVal);
 | 
						|
      if (MD && isa<PointerType>(constVal->getType()))
 | 
						|
        MD->invalidateCachedPointerInfo(constVal);
 | 
						|
      VN.erase(p);
 | 
						|
 | 
						|
      toErase.push_back(p);
 | 
						|
    } else {
 | 
						|
      localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
 | 
						|
    }
 | 
						|
 | 
						|
  // If the number we were assigned was a brand new VN, then we don't
 | 
						|
  // need to do a lookup to see if the number already exists
 | 
						|
  // somewhere in the domtree: it can't!
 | 
						|
  } else if (Num == NextNum) {
 | 
						|
    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
 | 
						|
 | 
						|
  // Perform fast-path value-number based elimination of values inherited from
 | 
						|
  // dominators.
 | 
						|
  } else if (Value *repl = lookupNumber(I->getParent(), Num)) {
 | 
						|
    // Remove it!
 | 
						|
    VN.erase(I);
 | 
						|
    I->replaceAllUsesWith(repl);
 | 
						|
    if (MD && isa<PointerType>(repl->getType()))
 | 
						|
      MD->invalidateCachedPointerInfo(repl);
 | 
						|
    toErase.push_back(I);
 | 
						|
    return true;
 | 
						|
 | 
						|
  } else {
 | 
						|
    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// runOnFunction - This is the main transformation entry point for a function.
 | 
						|
bool GVN::runOnFunction(Function& F) {
 | 
						|
  if (!NoLoads)
 | 
						|
    MD = &getAnalysis<MemoryDependenceAnalysis>();
 | 
						|
  DT = &getAnalysis<DominatorTree>();
 | 
						|
  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
 | 
						|
  VN.setMemDep(MD);
 | 
						|
  VN.setDomTree(DT);
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  bool ShouldContinue = true;
 | 
						|
 | 
						|
  // Merge unconditional branches, allowing PRE to catch more
 | 
						|
  // optimization opportunities.
 | 
						|
  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
 | 
						|
    BasicBlock *BB = FI;
 | 
						|
    ++FI;
 | 
						|
    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
 | 
						|
    if (removedBlock) NumGVNBlocks++;
 | 
						|
 | 
						|
    Changed |= removedBlock;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Iteration = 0;
 | 
						|
 | 
						|
  while (ShouldContinue) {
 | 
						|
    DEBUG(errs() << "GVN iteration: " << Iteration << "\n");
 | 
						|
    ShouldContinue = iterateOnFunction(F);
 | 
						|
    Changed |= ShouldContinue;
 | 
						|
    ++Iteration;
 | 
						|
  }
 | 
						|
 | 
						|
  if (EnablePRE) {
 | 
						|
    bool PREChanged = true;
 | 
						|
    while (PREChanged) {
 | 
						|
      PREChanged = performPRE(F);
 | 
						|
      Changed |= PREChanged;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // FIXME: Should perform GVN again after PRE does something.  PRE can move
 | 
						|
  // computations into blocks where they become fully redundant.  Note that
 | 
						|
  // we can't do this until PRE's critical edge splitting updates memdep.
 | 
						|
  // Actually, when this happens, we should just fully integrate PRE into GVN.
 | 
						|
 | 
						|
  cleanupGlobalSets();
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool GVN::processBlock(BasicBlock *BB) {
 | 
						|
  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
 | 
						|
  // incrementing BI before processing an instruction).
 | 
						|
  SmallVector<Instruction*, 8> toErase;
 | 
						|
  bool ChangedFunction = false;
 | 
						|
 | 
						|
  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
 | 
						|
       BI != BE;) {
 | 
						|
    ChangedFunction |= processInstruction(BI, toErase);
 | 
						|
    if (toErase.empty()) {
 | 
						|
      ++BI;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we need some instructions deleted, do it now.
 | 
						|
    NumGVNInstr += toErase.size();
 | 
						|
 | 
						|
    // Avoid iterator invalidation.
 | 
						|
    bool AtStart = BI == BB->begin();
 | 
						|
    if (!AtStart)
 | 
						|
      --BI;
 | 
						|
 | 
						|
    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
 | 
						|
         E = toErase.end(); I != E; ++I) {
 | 
						|
      DEBUG(errs() << "GVN removed: " << **I << '\n');
 | 
						|
      if (MD) MD->removeInstruction(*I);
 | 
						|
      (*I)->eraseFromParent();
 | 
						|
      DEBUG(verifyRemoved(*I));
 | 
						|
    }
 | 
						|
    toErase.clear();
 | 
						|
 | 
						|
    if (AtStart)
 | 
						|
      BI = BB->begin();
 | 
						|
    else
 | 
						|
      ++BI;
 | 
						|
  }
 | 
						|
 | 
						|
  return ChangedFunction;
 | 
						|
}
 | 
						|
 | 
						|
/// performPRE - Perform a purely local form of PRE that looks for diamond
 | 
						|
/// control flow patterns and attempts to perform simple PRE at the join point.
 | 
						|
bool GVN::performPRE(Function &F) {
 | 
						|
  bool Changed = false;
 | 
						|
  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
 | 
						|
  DenseMap<BasicBlock*, Value*> predMap;
 | 
						|
  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
 | 
						|
       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
 | 
						|
    BasicBlock *CurrentBlock = *DI;
 | 
						|
 | 
						|
    // Nothing to PRE in the entry block.
 | 
						|
    if (CurrentBlock == &F.getEntryBlock()) continue;
 | 
						|
 | 
						|
    for (BasicBlock::iterator BI = CurrentBlock->begin(),
 | 
						|
         BE = CurrentBlock->end(); BI != BE; ) {
 | 
						|
      Instruction *CurInst = BI++;
 | 
						|
 | 
						|
      if (isa<AllocaInst>(CurInst) ||
 | 
						|
          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
 | 
						|
          CurInst->getType()->isVoidTy() ||
 | 
						|
          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
 | 
						|
          isa<DbgInfoIntrinsic>(CurInst))
 | 
						|
        continue;
 | 
						|
 | 
						|
      uint32_t ValNo = VN.lookup(CurInst);
 | 
						|
 | 
						|
      // Look for the predecessors for PRE opportunities.  We're
 | 
						|
      // only trying to solve the basic diamond case, where
 | 
						|
      // a value is computed in the successor and one predecessor,
 | 
						|
      // but not the other.  We also explicitly disallow cases
 | 
						|
      // where the successor is its own predecessor, because they're
 | 
						|
      // more complicated to get right.
 | 
						|
      unsigned NumWith = 0;
 | 
						|
      unsigned NumWithout = 0;
 | 
						|
      BasicBlock *PREPred = 0;
 | 
						|
      predMap.clear();
 | 
						|
 | 
						|
      for (pred_iterator PI = pred_begin(CurrentBlock),
 | 
						|
           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
 | 
						|
        // We're not interested in PRE where the block is its
 | 
						|
        // own predecessor, on in blocks with predecessors
 | 
						|
        // that are not reachable.
 | 
						|
        if (*PI == CurrentBlock) {
 | 
						|
          NumWithout = 2;
 | 
						|
          break;
 | 
						|
        } else if (!localAvail.count(*PI))  {
 | 
						|
          NumWithout = 2;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
        DenseMap<uint32_t, Value*>::iterator predV =
 | 
						|
                                            localAvail[*PI]->table.find(ValNo);
 | 
						|
        if (predV == localAvail[*PI]->table.end()) {
 | 
						|
          PREPred = *PI;
 | 
						|
          NumWithout++;
 | 
						|
        } else if (predV->second == CurInst) {
 | 
						|
          NumWithout = 2;
 | 
						|
        } else {
 | 
						|
          predMap[*PI] = predV->second;
 | 
						|
          NumWith++;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Don't do PRE when it might increase code size, i.e. when
 | 
						|
      // we would need to insert instructions in more than one pred.
 | 
						|
      if (NumWithout != 1 || NumWith == 0)
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      // Don't do PRE across indirect branch.
 | 
						|
      if (isa<IndirectBrInst>(PREPred->getTerminator()))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // We can't do PRE safely on a critical edge, so instead we schedule
 | 
						|
      // the edge to be split and perform the PRE the next time we iterate
 | 
						|
      // on the function.
 | 
						|
      unsigned SuccNum = 0;
 | 
						|
      for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
 | 
						|
           i != e; ++i)
 | 
						|
        if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
 | 
						|
          SuccNum = i;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
 | 
						|
        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Instantiate the expression the in predecessor that lacked it.
 | 
						|
      // Because we are going top-down through the block, all value numbers
 | 
						|
      // will be available in the predecessor by the time we need them.  Any
 | 
						|
      // that weren't original present will have been instantiated earlier
 | 
						|
      // in this loop.
 | 
						|
      Instruction *PREInstr = CurInst->clone();
 | 
						|
      bool success = true;
 | 
						|
      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
 | 
						|
        Value *Op = PREInstr->getOperand(i);
 | 
						|
        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
 | 
						|
          continue;
 | 
						|
 | 
						|
        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
 | 
						|
          PREInstr->setOperand(i, V);
 | 
						|
        } else {
 | 
						|
          success = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Fail out if we encounter an operand that is not available in
 | 
						|
      // the PRE predecessor.  This is typically because of loads which
 | 
						|
      // are not value numbered precisely.
 | 
						|
      if (!success) {
 | 
						|
        delete PREInstr;
 | 
						|
        DEBUG(verifyRemoved(PREInstr));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      PREInstr->insertBefore(PREPred->getTerminator());
 | 
						|
      PREInstr->setName(CurInst->getName() + ".pre");
 | 
						|
      predMap[PREPred] = PREInstr;
 | 
						|
      VN.add(PREInstr, ValNo);
 | 
						|
      NumGVNPRE++;
 | 
						|
 | 
						|
      // Update the availability map to include the new instruction.
 | 
						|
      localAvail[PREPred]->table.insert(std::make_pair(ValNo, PREInstr));
 | 
						|
 | 
						|
      // Create a PHI to make the value available in this block.
 | 
						|
      PHINode* Phi = PHINode::Create(CurInst->getType(),
 | 
						|
                                     CurInst->getName() + ".pre-phi",
 | 
						|
                                     CurrentBlock->begin());
 | 
						|
      for (pred_iterator PI = pred_begin(CurrentBlock),
 | 
						|
           PE = pred_end(CurrentBlock); PI != PE; ++PI)
 | 
						|
        Phi->addIncoming(predMap[*PI], *PI);
 | 
						|
 | 
						|
      VN.add(Phi, ValNo);
 | 
						|
      localAvail[CurrentBlock]->table[ValNo] = Phi;
 | 
						|
 | 
						|
      CurInst->replaceAllUsesWith(Phi);
 | 
						|
      if (MD && isa<PointerType>(Phi->getType()))
 | 
						|
        MD->invalidateCachedPointerInfo(Phi);
 | 
						|
      VN.erase(CurInst);
 | 
						|
 | 
						|
      DEBUG(errs() << "GVN PRE removed: " << *CurInst << '\n');
 | 
						|
      if (MD) MD->removeInstruction(CurInst);
 | 
						|
      CurInst->eraseFromParent();
 | 
						|
      DEBUG(verifyRemoved(CurInst));
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
 | 
						|
       I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
 | 
						|
    SplitCriticalEdge(I->first, I->second, this);
 | 
						|
 | 
						|
  return Changed || toSplit.size();
 | 
						|
}
 | 
						|
 | 
						|
/// iterateOnFunction - Executes one iteration of GVN
 | 
						|
bool GVN::iterateOnFunction(Function &F) {
 | 
						|
  cleanupGlobalSets();
 | 
						|
 | 
						|
  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
 | 
						|
       DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
 | 
						|
    if (DI->getIDom())
 | 
						|
      localAvail[DI->getBlock()] =
 | 
						|
                   new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
 | 
						|
    else
 | 
						|
      localAvail[DI->getBlock()] = new ValueNumberScope(0);
 | 
						|
  }
 | 
						|
 | 
						|
  // Top-down walk of the dominator tree
 | 
						|
  bool Changed = false;
 | 
						|
#if 0
 | 
						|
  // Needed for value numbering with phi construction to work.
 | 
						|
  ReversePostOrderTraversal<Function*> RPOT(&F);
 | 
						|
  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
 | 
						|
       RE = RPOT.end(); RI != RE; ++RI)
 | 
						|
    Changed |= processBlock(*RI);
 | 
						|
#else
 | 
						|
  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
 | 
						|
       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
 | 
						|
    Changed |= processBlock(DI->getBlock());
 | 
						|
#endif
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
void GVN::cleanupGlobalSets() {
 | 
						|
  VN.clear();
 | 
						|
 | 
						|
  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
 | 
						|
       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
 | 
						|
    delete I->second;
 | 
						|
  localAvail.clear();
 | 
						|
}
 | 
						|
 | 
						|
/// verifyRemoved - Verify that the specified instruction does not occur in our
 | 
						|
/// internal data structures.
 | 
						|
void GVN::verifyRemoved(const Instruction *Inst) const {
 | 
						|
  VN.verifyRemoved(Inst);
 | 
						|
 | 
						|
  // Walk through the value number scope to make sure the instruction isn't
 | 
						|
  // ferreted away in it.
 | 
						|
  for (DenseMap<BasicBlock*, ValueNumberScope*>::const_iterator
 | 
						|
         I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
 | 
						|
    const ValueNumberScope *VNS = I->second;
 | 
						|
 | 
						|
    while (VNS) {
 | 
						|
      for (DenseMap<uint32_t, Value*>::const_iterator
 | 
						|
             II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
 | 
						|
        assert(II->second != Inst && "Inst still in value numbering scope!");
 | 
						|
      }
 | 
						|
 | 
						|
      VNS = VNS->parent;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 |