mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	LoopSimplify form may not be available. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86175 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			779 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			779 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This transformation analyzes and transforms the induction variables (and
 | 
						|
// computations derived from them) into simpler forms suitable for subsequent
 | 
						|
// analysis and transformation.
 | 
						|
//
 | 
						|
// This transformation makes the following changes to each loop with an
 | 
						|
// identifiable induction variable:
 | 
						|
//   1. All loops are transformed to have a SINGLE canonical induction variable
 | 
						|
//      which starts at zero and steps by one.
 | 
						|
//   2. The canonical induction variable is guaranteed to be the first PHI node
 | 
						|
//      in the loop header block.
 | 
						|
//   3. The canonical induction variable is guaranteed to be in a wide enough
 | 
						|
//      type so that IV expressions need not be (directly) zero-extended or
 | 
						|
//      sign-extended.
 | 
						|
//   4. Any pointer arithmetic recurrences are raised to use array subscripts.
 | 
						|
//
 | 
						|
// If the trip count of a loop is computable, this pass also makes the following
 | 
						|
// changes:
 | 
						|
//   1. The exit condition for the loop is canonicalized to compare the
 | 
						|
//      induction value against the exit value.  This turns loops like:
 | 
						|
//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
 | 
						|
//   2. Any use outside of the loop of an expression derived from the indvar
 | 
						|
//      is changed to compute the derived value outside of the loop, eliminating
 | 
						|
//      the dependence on the exit value of the induction variable.  If the only
 | 
						|
//      purpose of the loop is to compute the exit value of some derived
 | 
						|
//      expression, this transformation will make the loop dead.
 | 
						|
//
 | 
						|
// This transformation should be followed by strength reduction after all of the
 | 
						|
// desired loop transformations have been performed.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "indvars"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/BasicBlock.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/LLVMContext.h"
 | 
						|
#include "llvm/Type.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Analysis/IVUsers.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/LoopPass.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumRemoved , "Number of aux indvars removed");
 | 
						|
STATISTIC(NumInserted, "Number of canonical indvars added");
 | 
						|
STATISTIC(NumReplaced, "Number of exit values replaced");
 | 
						|
STATISTIC(NumLFTR    , "Number of loop exit tests replaced");
 | 
						|
 | 
						|
namespace {
 | 
						|
  class IndVarSimplify : public LoopPass {
 | 
						|
    IVUsers         *IU;
 | 
						|
    LoopInfo        *LI;
 | 
						|
    ScalarEvolution *SE;
 | 
						|
    DominatorTree   *DT;
 | 
						|
    bool Changed;
 | 
						|
  public:
 | 
						|
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    IndVarSimplify() : LoopPass(&ID) {}
 | 
						|
 | 
						|
    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
 | 
						|
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addRequired<DominatorTree>();
 | 
						|
      AU.addRequired<LoopInfo>();
 | 
						|
      AU.addRequired<ScalarEvolution>();
 | 
						|
      AU.addRequiredID(LoopSimplifyID);
 | 
						|
      AU.addRequiredID(LCSSAID);
 | 
						|
      AU.addRequired<IVUsers>();
 | 
						|
      AU.addPreserved<ScalarEvolution>();
 | 
						|
      AU.addPreservedID(LoopSimplifyID);
 | 
						|
      AU.addPreservedID(LCSSAID);
 | 
						|
      AU.addPreserved<IVUsers>();
 | 
						|
      AU.setPreservesCFG();
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
 | 
						|
    void RewriteNonIntegerIVs(Loop *L);
 | 
						|
 | 
						|
    ICmpInst *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
 | 
						|
                                   Value *IndVar,
 | 
						|
                                   BasicBlock *ExitingBlock,
 | 
						|
                                   BranchInst *BI,
 | 
						|
                                   SCEVExpander &Rewriter);
 | 
						|
    void RewriteLoopExitValues(Loop *L, const SCEV *BackedgeTakenCount,
 | 
						|
                               SCEVExpander &Rewriter);
 | 
						|
 | 
						|
    void RewriteIVExpressions(Loop *L, const Type *LargestType,
 | 
						|
                              SCEVExpander &Rewriter);
 | 
						|
 | 
						|
    void SinkUnusedInvariants(Loop *L);
 | 
						|
 | 
						|
    void HandleFloatingPointIV(Loop *L, PHINode *PH);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char IndVarSimplify::ID = 0;
 | 
						|
static RegisterPass<IndVarSimplify>
 | 
						|
X("indvars", "Canonicalize Induction Variables");
 | 
						|
 | 
						|
Pass *llvm::createIndVarSimplifyPass() {
 | 
						|
  return new IndVarSimplify();
 | 
						|
}
 | 
						|
 | 
						|
/// LinearFunctionTestReplace - This method rewrites the exit condition of the
 | 
						|
/// loop to be a canonical != comparison against the incremented loop induction
 | 
						|
/// variable.  This pass is able to rewrite the exit tests of any loop where the
 | 
						|
/// SCEV analysis can determine a loop-invariant trip count of the loop, which
 | 
						|
/// is actually a much broader range than just linear tests.
 | 
						|
ICmpInst *IndVarSimplify::LinearFunctionTestReplace(Loop *L,
 | 
						|
                                   const SCEV *BackedgeTakenCount,
 | 
						|
                                   Value *IndVar,
 | 
						|
                                   BasicBlock *ExitingBlock,
 | 
						|
                                   BranchInst *BI,
 | 
						|
                                   SCEVExpander &Rewriter) {
 | 
						|
  // If the exiting block is not the same as the backedge block, we must compare
 | 
						|
  // against the preincremented value, otherwise we prefer to compare against
 | 
						|
  // the post-incremented value.
 | 
						|
  Value *CmpIndVar;
 | 
						|
  const SCEV *RHS = BackedgeTakenCount;
 | 
						|
  if (ExitingBlock == L->getLoopLatch()) {
 | 
						|
    // Add one to the "backedge-taken" count to get the trip count.
 | 
						|
    // If this addition may overflow, we have to be more pessimistic and
 | 
						|
    // cast the induction variable before doing the add.
 | 
						|
    const SCEV *Zero = SE->getIntegerSCEV(0, BackedgeTakenCount->getType());
 | 
						|
    const SCEV *N =
 | 
						|
      SE->getAddExpr(BackedgeTakenCount,
 | 
						|
                     SE->getIntegerSCEV(1, BackedgeTakenCount->getType()));
 | 
						|
    if ((isa<SCEVConstant>(N) && !N->isZero()) ||
 | 
						|
        SE->isLoopGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
 | 
						|
      // No overflow. Cast the sum.
 | 
						|
      RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType());
 | 
						|
    } else {
 | 
						|
      // Potential overflow. Cast before doing the add.
 | 
						|
      RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
 | 
						|
                                        IndVar->getType());
 | 
						|
      RHS = SE->getAddExpr(RHS,
 | 
						|
                           SE->getIntegerSCEV(1, IndVar->getType()));
 | 
						|
    }
 | 
						|
 | 
						|
    // The BackedgeTaken expression contains the number of times that the
 | 
						|
    // backedge branches to the loop header.  This is one less than the
 | 
						|
    // number of times the loop executes, so use the incremented indvar.
 | 
						|
    CmpIndVar = L->getCanonicalInductionVariableIncrement();
 | 
						|
  } else {
 | 
						|
    // We have to use the preincremented value...
 | 
						|
    RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
 | 
						|
                                      IndVar->getType());
 | 
						|
    CmpIndVar = IndVar;
 | 
						|
  }
 | 
						|
 | 
						|
  // Expand the code for the iteration count.
 | 
						|
  assert(RHS->isLoopInvariant(L) &&
 | 
						|
         "Computed iteration count is not loop invariant!");
 | 
						|
  Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(), BI);
 | 
						|
 | 
						|
  // Insert a new icmp_ne or icmp_eq instruction before the branch.
 | 
						|
  ICmpInst::Predicate Opcode;
 | 
						|
  if (L->contains(BI->getSuccessor(0)))
 | 
						|
    Opcode = ICmpInst::ICMP_NE;
 | 
						|
  else
 | 
						|
    Opcode = ICmpInst::ICMP_EQ;
 | 
						|
 | 
						|
  DEBUG(errs() << "INDVARS: Rewriting loop exit condition to:\n"
 | 
						|
               << "      LHS:" << *CmpIndVar << '\n'
 | 
						|
               << "       op:\t"
 | 
						|
               << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
 | 
						|
               << "      RHS:\t" << *RHS << "\n");
 | 
						|
 | 
						|
  ICmpInst *Cond = new ICmpInst(BI, Opcode, CmpIndVar, ExitCnt, "exitcond");
 | 
						|
 | 
						|
  Instruction *OrigCond = cast<Instruction>(BI->getCondition());
 | 
						|
  // It's tempting to use replaceAllUsesWith here to fully replace the old
 | 
						|
  // comparison, but that's not immediately safe, since users of the old
 | 
						|
  // comparison may not be dominated by the new comparison. Instead, just
 | 
						|
  // update the branch to use the new comparison; in the common case this
 | 
						|
  // will make old comparison dead.
 | 
						|
  BI->setCondition(Cond);
 | 
						|
  RecursivelyDeleteTriviallyDeadInstructions(OrigCond);
 | 
						|
 | 
						|
  ++NumLFTR;
 | 
						|
  Changed = true;
 | 
						|
  return Cond;
 | 
						|
}
 | 
						|
 | 
						|
/// RewriteLoopExitValues - Check to see if this loop has a computable
 | 
						|
/// loop-invariant execution count.  If so, this means that we can compute the
 | 
						|
/// final value of any expressions that are recurrent in the loop, and
 | 
						|
/// substitute the exit values from the loop into any instructions outside of
 | 
						|
/// the loop that use the final values of the current expressions.
 | 
						|
///
 | 
						|
/// This is mostly redundant with the regular IndVarSimplify activities that
 | 
						|
/// happen later, except that it's more powerful in some cases, because it's
 | 
						|
/// able to brute-force evaluate arbitrary instructions as long as they have
 | 
						|
/// constant operands at the beginning of the loop.
 | 
						|
void IndVarSimplify::RewriteLoopExitValues(Loop *L,
 | 
						|
                                           const SCEV *BackedgeTakenCount,
 | 
						|
                                           SCEVExpander &Rewriter) {
 | 
						|
  // Verify the input to the pass in already in LCSSA form.
 | 
						|
  assert(L->isLCSSAForm());
 | 
						|
 | 
						|
  SmallVector<BasicBlock*, 8> ExitBlocks;
 | 
						|
  L->getUniqueExitBlocks(ExitBlocks);
 | 
						|
 | 
						|
  // Find all values that are computed inside the loop, but used outside of it.
 | 
						|
  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
 | 
						|
  // the exit blocks of the loop to find them.
 | 
						|
  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
 | 
						|
    BasicBlock *ExitBB = ExitBlocks[i];
 | 
						|
 | 
						|
    // If there are no PHI nodes in this exit block, then no values defined
 | 
						|
    // inside the loop are used on this path, skip it.
 | 
						|
    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
 | 
						|
    if (!PN) continue;
 | 
						|
 | 
						|
    unsigned NumPreds = PN->getNumIncomingValues();
 | 
						|
 | 
						|
    // Iterate over all of the PHI nodes.
 | 
						|
    BasicBlock::iterator BBI = ExitBB->begin();
 | 
						|
    while ((PN = dyn_cast<PHINode>(BBI++))) {
 | 
						|
      if (PN->use_empty())
 | 
						|
        continue; // dead use, don't replace it
 | 
						|
      // Iterate over all of the values in all the PHI nodes.
 | 
						|
      for (unsigned i = 0; i != NumPreds; ++i) {
 | 
						|
        // If the value being merged in is not integer or is not defined
 | 
						|
        // in the loop, skip it.
 | 
						|
        Value *InVal = PN->getIncomingValue(i);
 | 
						|
        if (!isa<Instruction>(InVal) ||
 | 
						|
            // SCEV only supports integer expressions for now.
 | 
						|
            (!isa<IntegerType>(InVal->getType()) &&
 | 
						|
             !isa<PointerType>(InVal->getType())))
 | 
						|
          continue;
 | 
						|
 | 
						|
        // If this pred is for a subloop, not L itself, skip it.
 | 
						|
        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
 | 
						|
          continue; // The Block is in a subloop, skip it.
 | 
						|
 | 
						|
        // Check that InVal is defined in the loop.
 | 
						|
        Instruction *Inst = cast<Instruction>(InVal);
 | 
						|
        if (!L->contains(Inst->getParent()))
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Okay, this instruction has a user outside of the current loop
 | 
						|
        // and varies predictably *inside* the loop.  Evaluate the value it
 | 
						|
        // contains when the loop exits, if possible.
 | 
						|
        const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
 | 
						|
        if (!ExitValue->isLoopInvariant(L))
 | 
						|
          continue;
 | 
						|
 | 
						|
        Changed = true;
 | 
						|
        ++NumReplaced;
 | 
						|
 | 
						|
        Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
 | 
						|
 | 
						|
        DEBUG(errs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
 | 
						|
                     << "  LoopVal = " << *Inst << "\n");
 | 
						|
 | 
						|
        PN->setIncomingValue(i, ExitVal);
 | 
						|
 | 
						|
        // If this instruction is dead now, delete it.
 | 
						|
        RecursivelyDeleteTriviallyDeadInstructions(Inst);
 | 
						|
 | 
						|
        if (NumPreds == 1) {
 | 
						|
          // Completely replace a single-pred PHI. This is safe, because the
 | 
						|
          // NewVal won't be variant in the loop, so we don't need an LCSSA phi
 | 
						|
          // node anymore.
 | 
						|
          PN->replaceAllUsesWith(ExitVal);
 | 
						|
          RecursivelyDeleteTriviallyDeadInstructions(PN);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (NumPreds != 1) {
 | 
						|
        // Clone the PHI and delete the original one. This lets IVUsers and
 | 
						|
        // any other maps purge the original user from their records.
 | 
						|
        PHINode *NewPN = cast<PHINode>(PN->clone());
 | 
						|
        NewPN->takeName(PN);
 | 
						|
        NewPN->insertBefore(PN);
 | 
						|
        PN->replaceAllUsesWith(NewPN);
 | 
						|
        PN->eraseFromParent();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
 | 
						|
  // First step.  Check to see if there are any floating-point recurrences.
 | 
						|
  // If there are, change them into integer recurrences, permitting analysis by
 | 
						|
  // the SCEV routines.
 | 
						|
  //
 | 
						|
  BasicBlock *Header    = L->getHeader();
 | 
						|
 | 
						|
  SmallVector<WeakVH, 8> PHIs;
 | 
						|
  for (BasicBlock::iterator I = Header->begin();
 | 
						|
       PHINode *PN = dyn_cast<PHINode>(I); ++I)
 | 
						|
    PHIs.push_back(PN);
 | 
						|
 | 
						|
  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
 | 
						|
    if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i]))
 | 
						|
      HandleFloatingPointIV(L, PN);
 | 
						|
 | 
						|
  // If the loop previously had floating-point IV, ScalarEvolution
 | 
						|
  // may not have been able to compute a trip count. Now that we've done some
 | 
						|
  // re-writing, the trip count may be computable.
 | 
						|
  if (Changed)
 | 
						|
    SE->forgetLoop(L);
 | 
						|
}
 | 
						|
 | 
						|
bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
 | 
						|
  IU = &getAnalysis<IVUsers>();
 | 
						|
  LI = &getAnalysis<LoopInfo>();
 | 
						|
  SE = &getAnalysis<ScalarEvolution>();
 | 
						|
  DT = &getAnalysis<DominatorTree>();
 | 
						|
  Changed = false;
 | 
						|
 | 
						|
  // If there are any floating-point recurrences, attempt to
 | 
						|
  // transform them to use integer recurrences.
 | 
						|
  RewriteNonIntegerIVs(L);
 | 
						|
 | 
						|
  BasicBlock *ExitingBlock = L->getExitingBlock(); // may be null
 | 
						|
  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
 | 
						|
 | 
						|
  // Create a rewriter object which we'll use to transform the code with.
 | 
						|
  SCEVExpander Rewriter(*SE);
 | 
						|
 | 
						|
  // Check to see if this loop has a computable loop-invariant execution count.
 | 
						|
  // If so, this means that we can compute the final value of any expressions
 | 
						|
  // that are recurrent in the loop, and substitute the exit values from the
 | 
						|
  // loop into any instructions outside of the loop that use the final values of
 | 
						|
  // the current expressions.
 | 
						|
  //
 | 
						|
  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
 | 
						|
    RewriteLoopExitValues(L, BackedgeTakenCount, Rewriter);
 | 
						|
 | 
						|
  // Compute the type of the largest recurrence expression, and decide whether
 | 
						|
  // a canonical induction variable should be inserted.
 | 
						|
  const Type *LargestType = 0;
 | 
						|
  bool NeedCannIV = false;
 | 
						|
  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
 | 
						|
    LargestType = BackedgeTakenCount->getType();
 | 
						|
    LargestType = SE->getEffectiveSCEVType(LargestType);
 | 
						|
    // If we have a known trip count and a single exit block, we'll be
 | 
						|
    // rewriting the loop exit test condition below, which requires a
 | 
						|
    // canonical induction variable.
 | 
						|
    if (ExitingBlock)
 | 
						|
      NeedCannIV = true;
 | 
						|
  }
 | 
						|
  for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
 | 
						|
    const SCEV *Stride = IU->StrideOrder[i];
 | 
						|
    const Type *Ty = SE->getEffectiveSCEVType(Stride->getType());
 | 
						|
    if (!LargestType ||
 | 
						|
        SE->getTypeSizeInBits(Ty) >
 | 
						|
          SE->getTypeSizeInBits(LargestType))
 | 
						|
      LargestType = Ty;
 | 
						|
 | 
						|
    std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
 | 
						|
      IU->IVUsesByStride.find(IU->StrideOrder[i]);
 | 
						|
    assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
 | 
						|
 | 
						|
    if (!SI->second->Users.empty())
 | 
						|
      NeedCannIV = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that we know the largest of of the induction variable expressions
 | 
						|
  // in this loop, insert a canonical induction variable of the largest size.
 | 
						|
  Value *IndVar = 0;
 | 
						|
  if (NeedCannIV) {
 | 
						|
    // Check to see if the loop already has a canonical-looking induction
 | 
						|
    // variable. If one is present and it's wider than the planned canonical
 | 
						|
    // induction variable, temporarily remove it, so that the Rewriter
 | 
						|
    // doesn't attempt to reuse it.
 | 
						|
    PHINode *OldCannIV = L->getCanonicalInductionVariable();
 | 
						|
    if (OldCannIV) {
 | 
						|
      if (SE->getTypeSizeInBits(OldCannIV->getType()) >
 | 
						|
          SE->getTypeSizeInBits(LargestType))
 | 
						|
        OldCannIV->removeFromParent();
 | 
						|
      else
 | 
						|
        OldCannIV = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
 | 
						|
 | 
						|
    ++NumInserted;
 | 
						|
    Changed = true;
 | 
						|
    DEBUG(errs() << "INDVARS: New CanIV: " << *IndVar << '\n');
 | 
						|
 | 
						|
    // Now that the official induction variable is established, reinsert
 | 
						|
    // the old canonical-looking variable after it so that the IR remains
 | 
						|
    // consistent. It will be deleted as part of the dead-PHI deletion at
 | 
						|
    // the end of the pass.
 | 
						|
    if (OldCannIV)
 | 
						|
      OldCannIV->insertAfter(cast<Instruction>(IndVar));
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have a trip count expression, rewrite the loop's exit condition
 | 
						|
  // using it.  We can currently only handle loops with a single exit.
 | 
						|
  ICmpInst *NewICmp = 0;
 | 
						|
  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && ExitingBlock) {
 | 
						|
    assert(NeedCannIV &&
 | 
						|
           "LinearFunctionTestReplace requires a canonical induction variable");
 | 
						|
    // Can't rewrite non-branch yet.
 | 
						|
    if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
 | 
						|
      NewICmp = LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
 | 
						|
                                          ExitingBlock, BI, Rewriter);
 | 
						|
  }
 | 
						|
 | 
						|
  // Rewrite IV-derived expressions. Clears the rewriter cache.
 | 
						|
  RewriteIVExpressions(L, LargestType, Rewriter);
 | 
						|
 | 
						|
  // The Rewriter may not be used from this point on.
 | 
						|
 | 
						|
  // Loop-invariant instructions in the preheader that aren't used in the
 | 
						|
  // loop may be sunk below the loop to reduce register pressure.
 | 
						|
  SinkUnusedInvariants(L);
 | 
						|
 | 
						|
  // For completeness, inform IVUsers of the IV use in the newly-created
 | 
						|
  // loop exit test instruction.
 | 
						|
  if (NewICmp)
 | 
						|
    IU->AddUsersIfInteresting(cast<Instruction>(NewICmp->getOperand(0)));
 | 
						|
 | 
						|
  // Clean up dead instructions.
 | 
						|
  DeleteDeadPHIs(L->getHeader());
 | 
						|
  // Check a post-condition.
 | 
						|
  assert(L->isLCSSAForm() && "Indvars did not leave the loop in lcssa form!");
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
void IndVarSimplify::RewriteIVExpressions(Loop *L, const Type *LargestType,
 | 
						|
                                          SCEVExpander &Rewriter) {
 | 
						|
  SmallVector<WeakVH, 16> DeadInsts;
 | 
						|
 | 
						|
  // Rewrite all induction variable expressions in terms of the canonical
 | 
						|
  // induction variable.
 | 
						|
  //
 | 
						|
  // If there were induction variables of other sizes or offsets, manually
 | 
						|
  // add the offsets to the primary induction variable and cast, avoiding
 | 
						|
  // the need for the code evaluation methods to insert induction variables
 | 
						|
  // of different sizes.
 | 
						|
  for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
 | 
						|
    const SCEV *Stride = IU->StrideOrder[i];
 | 
						|
 | 
						|
    std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
 | 
						|
      IU->IVUsesByStride.find(IU->StrideOrder[i]);
 | 
						|
    assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
 | 
						|
    ilist<IVStrideUse> &List = SI->second->Users;
 | 
						|
    for (ilist<IVStrideUse>::iterator UI = List.begin(),
 | 
						|
         E = List.end(); UI != E; ++UI) {
 | 
						|
      Value *Op = UI->getOperandValToReplace();
 | 
						|
      const Type *UseTy = Op->getType();
 | 
						|
      Instruction *User = UI->getUser();
 | 
						|
 | 
						|
      // Compute the final addrec to expand into code.
 | 
						|
      const SCEV *AR = IU->getReplacementExpr(*UI);
 | 
						|
 | 
						|
      // FIXME: It is an extremely bad idea to indvar substitute anything more
 | 
						|
      // complex than affine induction variables.  Doing so will put expensive
 | 
						|
      // polynomial evaluations inside of the loop, and the str reduction pass
 | 
						|
      // currently can only reduce affine polynomials.  For now just disable
 | 
						|
      // indvar subst on anything more complex than an affine addrec, unless
 | 
						|
      // it can be expanded to a trivial value.
 | 
						|
      if (!AR->isLoopInvariant(L) && !Stride->isLoopInvariant(L))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Determine the insertion point for this user. By default, insert
 | 
						|
      // immediately before the user. The SCEVExpander class will automatically
 | 
						|
      // hoist loop invariants out of the loop. For PHI nodes, there may be
 | 
						|
      // multiple uses, so compute the nearest common dominator for the
 | 
						|
      // incoming blocks.
 | 
						|
      Instruction *InsertPt = User;
 | 
						|
      if (PHINode *PHI = dyn_cast<PHINode>(InsertPt))
 | 
						|
        for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
 | 
						|
          if (PHI->getIncomingValue(i) == Op) {
 | 
						|
            if (InsertPt == User)
 | 
						|
              InsertPt = PHI->getIncomingBlock(i)->getTerminator();
 | 
						|
            else
 | 
						|
              InsertPt =
 | 
						|
                DT->findNearestCommonDominator(InsertPt->getParent(),
 | 
						|
                                               PHI->getIncomingBlock(i))
 | 
						|
                      ->getTerminator();
 | 
						|
          }
 | 
						|
 | 
						|
      // Now expand it into actual Instructions and patch it into place.
 | 
						|
      Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
 | 
						|
 | 
						|
      // Patch the new value into place.
 | 
						|
      if (Op->hasName())
 | 
						|
        NewVal->takeName(Op);
 | 
						|
      User->replaceUsesOfWith(Op, NewVal);
 | 
						|
      UI->setOperandValToReplace(NewVal);
 | 
						|
      DEBUG(errs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
 | 
						|
                   << "   into = " << *NewVal << "\n");
 | 
						|
      ++NumRemoved;
 | 
						|
      Changed = true;
 | 
						|
 | 
						|
      // The old value may be dead now.
 | 
						|
      DeadInsts.push_back(Op);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Clear the rewriter cache, because values that are in the rewriter's cache
 | 
						|
  // can be deleted in the loop below, causing the AssertingVH in the cache to
 | 
						|
  // trigger.
 | 
						|
  Rewriter.clear();
 | 
						|
  // Now that we're done iterating through lists, clean up any instructions
 | 
						|
  // which are now dead.
 | 
						|
  while (!DeadInsts.empty()) {
 | 
						|
    Instruction *Inst = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
 | 
						|
    if (Inst)
 | 
						|
      RecursivelyDeleteTriviallyDeadInstructions(Inst);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// If there's a single exit block, sink any loop-invariant values that
 | 
						|
/// were defined in the preheader but not used inside the loop into the
 | 
						|
/// exit block to reduce register pressure in the loop.
 | 
						|
void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
 | 
						|
  BasicBlock *ExitBlock = L->getExitBlock();
 | 
						|
  if (!ExitBlock) return;
 | 
						|
 | 
						|
  BasicBlock *Preheader = L->getLoopPreheader();
 | 
						|
  if (!Preheader) return;
 | 
						|
 | 
						|
  Instruction *InsertPt = ExitBlock->getFirstNonPHI();
 | 
						|
  BasicBlock::iterator I = Preheader->getTerminator();
 | 
						|
  while (I != Preheader->begin()) {
 | 
						|
    --I;
 | 
						|
    // New instructions were inserted at the end of the preheader.
 | 
						|
    if (isa<PHINode>(I))
 | 
						|
      break;
 | 
						|
    // Don't move instructions which might have side effects, since the side
 | 
						|
    // effects need to complete before instructions inside the loop.  Also
 | 
						|
    // don't move instructions which might read memory, since the loop may
 | 
						|
    // modify memory. Note that it's okay if the instruction might have
 | 
						|
    // undefined behavior: LoopSimplify guarantees that the preheader
 | 
						|
    // dominates the exit block.
 | 
						|
    if (I->mayHaveSideEffects() || I->mayReadFromMemory())
 | 
						|
      continue;
 | 
						|
    // Don't sink static AllocaInsts out of the entry block, which would
 | 
						|
    // turn them into dynamic allocas!
 | 
						|
    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
 | 
						|
      if (AI->isStaticAlloca())
 | 
						|
        continue;
 | 
						|
    // Determine if there is a use in or before the loop (direct or
 | 
						|
    // otherwise).
 | 
						|
    bool UsedInLoop = false;
 | 
						|
    for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
 | 
						|
         UI != UE; ++UI) {
 | 
						|
      BasicBlock *UseBB = cast<Instruction>(UI)->getParent();
 | 
						|
      if (PHINode *P = dyn_cast<PHINode>(UI)) {
 | 
						|
        unsigned i =
 | 
						|
          PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
 | 
						|
        UseBB = P->getIncomingBlock(i);
 | 
						|
      }
 | 
						|
      if (UseBB == Preheader || L->contains(UseBB)) {
 | 
						|
        UsedInLoop = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // If there is, the def must remain in the preheader.
 | 
						|
    if (UsedInLoop)
 | 
						|
      continue;
 | 
						|
    // Otherwise, sink it to the exit block.
 | 
						|
    Instruction *ToMove = I;
 | 
						|
    bool Done = false;
 | 
						|
    if (I != Preheader->begin())
 | 
						|
      --I;
 | 
						|
    else
 | 
						|
      Done = true;
 | 
						|
    ToMove->moveBefore(InsertPt);
 | 
						|
    if (Done)
 | 
						|
      break;
 | 
						|
    InsertPt = ToMove;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if it is OK to use SIToFPInst for an inducation variable
 | 
						|
/// with given inital and exit values.
 | 
						|
static bool useSIToFPInst(ConstantFP &InitV, ConstantFP &ExitV,
 | 
						|
                          uint64_t intIV, uint64_t intEV) {
 | 
						|
 | 
						|
  if (InitV.getValueAPF().isNegative() || ExitV.getValueAPF().isNegative())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If the iteration range can be handled by SIToFPInst then use it.
 | 
						|
  APInt Max = APInt::getSignedMaxValue(32);
 | 
						|
  if (Max.getZExtValue() > static_cast<uint64_t>(abs64(intEV - intIV)))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// convertToInt - Convert APF to an integer, if possible.
 | 
						|
static bool convertToInt(const APFloat &APF, uint64_t *intVal) {
 | 
						|
 | 
						|
  bool isExact = false;
 | 
						|
  if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
 | 
						|
    return false;
 | 
						|
  if (APF.convertToInteger(intVal, 32, APF.isNegative(),
 | 
						|
                           APFloat::rmTowardZero, &isExact)
 | 
						|
      != APFloat::opOK)
 | 
						|
    return false;
 | 
						|
  if (!isExact)
 | 
						|
    return false;
 | 
						|
  return true;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/// HandleFloatingPointIV - If the loop has floating induction variable
 | 
						|
/// then insert corresponding integer induction variable if possible.
 | 
						|
/// For example,
 | 
						|
/// for(double i = 0; i < 10000; ++i)
 | 
						|
///   bar(i)
 | 
						|
/// is converted into
 | 
						|
/// for(int i = 0; i < 10000; ++i)
 | 
						|
///   bar((double)i);
 | 
						|
///
 | 
						|
void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PH) {
 | 
						|
 | 
						|
  unsigned IncomingEdge = L->contains(PH->getIncomingBlock(0));
 | 
						|
  unsigned BackEdge     = IncomingEdge^1;
 | 
						|
 | 
						|
  // Check incoming value.
 | 
						|
  ConstantFP *InitValue = dyn_cast<ConstantFP>(PH->getIncomingValue(IncomingEdge));
 | 
						|
  if (!InitValue) return;
 | 
						|
  uint64_t newInitValue =
 | 
						|
              Type::getInt32Ty(PH->getContext())->getPrimitiveSizeInBits();
 | 
						|
  if (!convertToInt(InitValue->getValueAPF(), &newInitValue))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Check IV increment. Reject this PH if increement operation is not
 | 
						|
  // an add or increment value can not be represented by an integer.
 | 
						|
  BinaryOperator *Incr =
 | 
						|
    dyn_cast<BinaryOperator>(PH->getIncomingValue(BackEdge));
 | 
						|
  if (!Incr) return;
 | 
						|
  if (Incr->getOpcode() != Instruction::FAdd) return;
 | 
						|
  ConstantFP *IncrValue = NULL;
 | 
						|
  unsigned IncrVIndex = 1;
 | 
						|
  if (Incr->getOperand(1) == PH)
 | 
						|
    IncrVIndex = 0;
 | 
						|
  IncrValue = dyn_cast<ConstantFP>(Incr->getOperand(IncrVIndex));
 | 
						|
  if (!IncrValue) return;
 | 
						|
  uint64_t newIncrValue =
 | 
						|
              Type::getInt32Ty(PH->getContext())->getPrimitiveSizeInBits();
 | 
						|
  if (!convertToInt(IncrValue->getValueAPF(), &newIncrValue))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Check Incr uses. One user is PH and the other users is exit condition used
 | 
						|
  // by the conditional terminator.
 | 
						|
  Value::use_iterator IncrUse = Incr->use_begin();
 | 
						|
  Instruction *U1 = cast<Instruction>(IncrUse++);
 | 
						|
  if (IncrUse == Incr->use_end()) return;
 | 
						|
  Instruction *U2 = cast<Instruction>(IncrUse++);
 | 
						|
  if (IncrUse != Incr->use_end()) return;
 | 
						|
 | 
						|
  // Find exit condition.
 | 
						|
  FCmpInst *EC = dyn_cast<FCmpInst>(U1);
 | 
						|
  if (!EC)
 | 
						|
    EC = dyn_cast<FCmpInst>(U2);
 | 
						|
  if (!EC) return;
 | 
						|
 | 
						|
  if (BranchInst *BI = dyn_cast<BranchInst>(EC->getParent()->getTerminator())) {
 | 
						|
    if (!BI->isConditional()) return;
 | 
						|
    if (BI->getCondition() != EC) return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Find exit value. If exit value can not be represented as an interger then
 | 
						|
  // do not handle this floating point PH.
 | 
						|
  ConstantFP *EV = NULL;
 | 
						|
  unsigned EVIndex = 1;
 | 
						|
  if (EC->getOperand(1) == Incr)
 | 
						|
    EVIndex = 0;
 | 
						|
  EV = dyn_cast<ConstantFP>(EC->getOperand(EVIndex));
 | 
						|
  if (!EV) return;
 | 
						|
  uint64_t intEV = Type::getInt32Ty(PH->getContext())->getPrimitiveSizeInBits();
 | 
						|
  if (!convertToInt(EV->getValueAPF(), &intEV))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Find new predicate for integer comparison.
 | 
						|
  CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
 | 
						|
  switch (EC->getPredicate()) {
 | 
						|
  case CmpInst::FCMP_OEQ:
 | 
						|
  case CmpInst::FCMP_UEQ:
 | 
						|
    NewPred = CmpInst::ICMP_EQ;
 | 
						|
    break;
 | 
						|
  case CmpInst::FCMP_OGT:
 | 
						|
  case CmpInst::FCMP_UGT:
 | 
						|
    NewPred = CmpInst::ICMP_UGT;
 | 
						|
    break;
 | 
						|
  case CmpInst::FCMP_OGE:
 | 
						|
  case CmpInst::FCMP_UGE:
 | 
						|
    NewPred = CmpInst::ICMP_UGE;
 | 
						|
    break;
 | 
						|
  case CmpInst::FCMP_OLT:
 | 
						|
  case CmpInst::FCMP_ULT:
 | 
						|
    NewPred = CmpInst::ICMP_ULT;
 | 
						|
    break;
 | 
						|
  case CmpInst::FCMP_OLE:
 | 
						|
  case CmpInst::FCMP_ULE:
 | 
						|
    NewPred = CmpInst::ICMP_ULE;
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  if (NewPred == CmpInst::BAD_ICMP_PREDICATE) return;
 | 
						|
 | 
						|
  // Insert new integer induction variable.
 | 
						|
  PHINode *NewPHI = PHINode::Create(Type::getInt32Ty(PH->getContext()),
 | 
						|
                                    PH->getName()+".int", PH);
 | 
						|
  NewPHI->addIncoming(ConstantInt::get(Type::getInt32Ty(PH->getContext()),
 | 
						|
                                       newInitValue),
 | 
						|
                      PH->getIncomingBlock(IncomingEdge));
 | 
						|
 | 
						|
  Value *NewAdd = BinaryOperator::CreateAdd(NewPHI,
 | 
						|
                           ConstantInt::get(Type::getInt32Ty(PH->getContext()),
 | 
						|
                                                             newIncrValue),
 | 
						|
                                            Incr->getName()+".int", Incr);
 | 
						|
  NewPHI->addIncoming(NewAdd, PH->getIncomingBlock(BackEdge));
 | 
						|
 | 
						|
  // The back edge is edge 1 of newPHI, whatever it may have been in the
 | 
						|
  // original PHI.
 | 
						|
  ConstantInt *NewEV = ConstantInt::get(Type::getInt32Ty(PH->getContext()),
 | 
						|
                                        intEV);
 | 
						|
  Value *LHS = (EVIndex == 1 ? NewPHI->getIncomingValue(1) : NewEV);
 | 
						|
  Value *RHS = (EVIndex == 1 ? NewEV : NewPHI->getIncomingValue(1));
 | 
						|
  ICmpInst *NewEC = new ICmpInst(EC->getParent()->getTerminator(),
 | 
						|
                                 NewPred, LHS, RHS, EC->getName());
 | 
						|
 | 
						|
  // In the following deltions, PH may become dead and may be deleted.
 | 
						|
  // Use a WeakVH to observe whether this happens.
 | 
						|
  WeakVH WeakPH = PH;
 | 
						|
 | 
						|
  // Delete old, floating point, exit comparision instruction.
 | 
						|
  NewEC->takeName(EC);
 | 
						|
  EC->replaceAllUsesWith(NewEC);
 | 
						|
  RecursivelyDeleteTriviallyDeadInstructions(EC);
 | 
						|
 | 
						|
  // Delete old, floating point, increment instruction.
 | 
						|
  Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
 | 
						|
  RecursivelyDeleteTriviallyDeadInstructions(Incr);
 | 
						|
 | 
						|
  // Replace floating induction variable, if it isn't already deleted.
 | 
						|
  // Give SIToFPInst preference over UIToFPInst because it is faster on
 | 
						|
  // platforms that are widely used.
 | 
						|
  if (WeakPH && !PH->use_empty()) {
 | 
						|
    if (useSIToFPInst(*InitValue, *EV, newInitValue, intEV)) {
 | 
						|
      SIToFPInst *Conv = new SIToFPInst(NewPHI, PH->getType(), "indvar.conv",
 | 
						|
                                        PH->getParent()->getFirstNonPHI());
 | 
						|
      PH->replaceAllUsesWith(Conv);
 | 
						|
    } else {
 | 
						|
      UIToFPInst *Conv = new UIToFPInst(NewPHI, PH->getType(), "indvar.conv",
 | 
						|
                                        PH->getParent()->getFirstNonPHI());
 | 
						|
      PH->replaceAllUsesWith(Conv);
 | 
						|
    }
 | 
						|
    RecursivelyDeleteTriviallyDeadInstructions(PH);
 | 
						|
  }
 | 
						|
 | 
						|
  // Add a new IVUsers entry for the newly-created integer PHI.
 | 
						|
  IU->AddUsersIfInteresting(NewPHI);
 | 
						|
}
 |