llvm-6502/lib/Target/CellSPU/SPUISelDAGToDAG.cpp
Scott Michel 58c5818c01 Forward progress: crtbegin.c now compiles successfully!
Fixed CellSPU's A-form (local store) address mode, so that all globals,
externals, constant pool and jump table symbols are now wrapped within
a SPUISD::AFormAddr pseudo-instruction. This now identifies all local
store memory addresses, although it requires a bit of legerdemain during
instruction selection to properly select loads to and stores from local
store, properly generating "LQA" instructions.

Also added mul_ops.ll test harness for exercising integer multiplication.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46142 91177308-0d34-0410-b5e6-96231b3b80d8
2008-01-17 20:38:41 +00:00

797 lines
25 KiB
C++

//===-- SPUISelDAGToDAG.cpp - CellSPU pattern matching inst selector ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a pattern matching instruction selector for the Cell SPU,
// converting from a legalized dag to a SPU-target dag.
//
//===----------------------------------------------------------------------===//
#include "SPU.h"
#include "SPUTargetMachine.h"
#include "SPUISelLowering.h"
#include "SPUHazardRecognizers.h"
#include "SPUFrameInfo.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Constants.h"
#include "llvm/GlobalValue.h"
#include "llvm/Intrinsics.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Compiler.h"
#include <iostream>
#include <queue>
#include <set>
using namespace llvm;
namespace {
//! ConstantSDNode predicate for i32 sign-extended, 10-bit immediates
bool
isI64IntS10Immediate(ConstantSDNode *CN)
{
return isS10Constant(CN->getValue());
}
//! ConstantSDNode predicate for i32 sign-extended, 10-bit immediates
bool
isI32IntS10Immediate(ConstantSDNode *CN)
{
return isS10Constant((int) CN->getValue());
}
#if 0
//! SDNode predicate for sign-extended, 10-bit immediate values
bool
isI32IntS10Immediate(SDNode *N)
{
return (N->getOpcode() == ISD::Constant
&& isI32IntS10Immediate(cast<ConstantSDNode>(N)));
}
#endif
//! ConstantSDNode predicate for i32 unsigned 10-bit immediate values
bool
isI32IntU10Immediate(ConstantSDNode *CN)
{
return isU10Constant((int) CN->getValue());
}
//! ConstantSDNode predicate for i16 sign-extended, 10-bit immediate values
bool
isI16IntS10Immediate(ConstantSDNode *CN)
{
return isS10Constant((short) CN->getValue());
}
//! SDNode predicate for i16 sign-extended, 10-bit immediate values
bool
isI16IntS10Immediate(SDNode *N)
{
return (N->getOpcode() == ISD::Constant
&& isI16IntS10Immediate(cast<ConstantSDNode>(N)));
}
//! ConstantSDNode predicate for i16 unsigned 10-bit immediate values
bool
isI16IntU10Immediate(ConstantSDNode *CN)
{
return isU10Constant((short) CN->getValue());
}
//! SDNode predicate for i16 sign-extended, 10-bit immediate values
bool
isI16IntU10Immediate(SDNode *N)
{
return (N->getOpcode() == ISD::Constant
&& isI16IntU10Immediate(cast<ConstantSDNode>(N)));
}
//! ConstantSDNode predicate for signed 16-bit values
/*!
\arg CN The constant SelectionDAG node holding the value
\arg Imm The returned 16-bit value, if returning true
This predicate tests the value in \a CN to see whether it can be
represented as a 16-bit, sign-extended quantity. Returns true if
this is the case.
*/
bool
isIntS16Immediate(ConstantSDNode *CN, short &Imm)
{
MVT::ValueType vt = CN->getValueType(0);
Imm = (short) CN->getValue();
if (vt >= MVT::i1 && vt <= MVT::i16) {
return true;
} else if (vt == MVT::i32) {
int32_t i_val = (int32_t) CN->getValue();
short s_val = (short) i_val;
return i_val == s_val;
} else {
int64_t i_val = (int64_t) CN->getValue();
short s_val = (short) i_val;
return i_val == s_val;
}
return false;
}
//! SDNode predicate for signed 16-bit values.
bool
isIntS16Immediate(SDNode *N, short &Imm)
{
return (N->getOpcode() == ISD::Constant
&& isIntS16Immediate(cast<ConstantSDNode>(N), Imm));
}
//! ConstantFPSDNode predicate for representing floats as 16-bit sign ext.
static bool
isFPS16Immediate(ConstantFPSDNode *FPN, short &Imm)
{
MVT::ValueType vt = FPN->getValueType(0);
if (vt == MVT::f32) {
int val = FloatToBits(FPN->getValueAPF().convertToFloat());
int sval = (int) ((val << 16) >> 16);
Imm = (short) val;
return val == sval;
}
return false;
}
//===------------------------------------------------------------------===//
//! MVT::ValueType to "useful stuff" mapping structure:
struct valtype_map_s {
MVT::ValueType VT;
unsigned ldresult_ins; /// LDRESULT instruction (0 = undefined)
int prefslot_byte; /// Byte offset of the "preferred" slot
unsigned brcc_eq_ins; /// br_cc equal instruction
unsigned brcc_neq_ins; /// br_cc not equal instruction
unsigned load_aform; /// A-form load instruction for this VT
unsigned store_aform; /// A-form store instruction for this VT
};
const valtype_map_s valtype_map[] = {
{ MVT::i1, 0, 3, 0, 0, 0,
0 },
{ MVT::i8, SPU::ORBIr8, 3, 0, 0, SPU::LQAr8,
SPU::STQAr8 },
{ MVT::i16, SPU::ORHIr16, 2, SPU::BRHZ, SPU::BRHNZ, SPU::LQAr16,
SPU::STQAr16 },
{ MVT::i32, SPU::ORIr32, 0, SPU::BRZ, SPU::BRNZ, SPU::LQAr32,
SPU::STQAr32 },
{ MVT::i64, SPU::ORIr64, 0, 0, 0, SPU::LQAr64,
SPU::STQAr64 },
{ MVT::f32, 0, 0, 0, 0, SPU::LQAf32,
SPU::STQAf32 },
{ MVT::f64, 0, 0, 0, 0, SPU::LQAf64,
SPU::STQAf64 },
// vector types... (sigh!)
{ MVT::v16i8, 0, 0, 0, 0, SPU::LQAv16i8,
SPU::STQAv16i8 },
{ MVT::v8i16, 0, 0, 0, 0, SPU::LQAv8i16,
SPU::STQAv8i16 },
{ MVT::v4i32, 0, 0, 0, 0, SPU::LQAv4i32,
SPU::STQAv4i32 },
{ MVT::v2i64, 0, 0, 0, 0, SPU::LQAv2i64,
SPU::STQAv2i64 },
{ MVT::v4f32, 0, 0, 0, 0, SPU::LQAv4f32,
SPU::STQAv4f32 },
{ MVT::v2f64, 0, 0, 0, 0, SPU::LQAv2f64,
SPU::STQAv2f64 },
};
const size_t n_valtype_map = sizeof(valtype_map) / sizeof(valtype_map[0]);
const valtype_map_s *getValueTypeMapEntry(MVT::ValueType VT)
{
const valtype_map_s *retval = 0;
for (size_t i = 0; i < n_valtype_map; ++i) {
if (valtype_map[i].VT == VT) {
retval = valtype_map + i;
break;
}
}
#ifndef NDEBUG
if (retval == 0) {
cerr << "SPUISelDAGToDAG.cpp: getValueTypeMapEntry returns NULL for "
<< MVT::getValueTypeString(VT)
<< "\n";
abort();
}
#endif
return retval;
}
}
//===--------------------------------------------------------------------===//
/// SPUDAGToDAGISel - Cell SPU-specific code to select SPU machine
/// instructions for SelectionDAG operations.
///
class SPUDAGToDAGISel :
public SelectionDAGISel
{
SPUTargetMachine &TM;
SPUTargetLowering &SPUtli;
unsigned GlobalBaseReg;
public:
SPUDAGToDAGISel(SPUTargetMachine &tm) :
SelectionDAGISel(*tm.getTargetLowering()),
TM(tm),
SPUtli(*tm.getTargetLowering())
{}
virtual bool runOnFunction(Function &Fn) {
// Make sure we re-emit a set of the global base reg if necessary
GlobalBaseReg = 0;
SelectionDAGISel::runOnFunction(Fn);
return true;
}
/// getI32Imm - Return a target constant with the specified value, of type
/// i32.
inline SDOperand getI32Imm(uint32_t Imm) {
return CurDAG->getTargetConstant(Imm, MVT::i32);
}
/// getI64Imm - Return a target constant with the specified value, of type
/// i64.
inline SDOperand getI64Imm(uint64_t Imm) {
return CurDAG->getTargetConstant(Imm, MVT::i64);
}
/// getSmallIPtrImm - Return a target constant of pointer type.
inline SDOperand getSmallIPtrImm(unsigned Imm) {
return CurDAG->getTargetConstant(Imm, SPUtli.getPointerTy());
}
/// Select - Convert the specified operand from a target-independent to a
/// target-specific node if it hasn't already been changed.
SDNode *Select(SDOperand Op);
/// Return true if the address N is a RI7 format address [r+imm]
bool SelectDForm2Addr(SDOperand Op, SDOperand N, SDOperand &Disp,
SDOperand &Base);
//! Returns true if the address N is an A-form (local store) address
bool SelectAFormAddr(SDOperand Op, SDOperand N, SDOperand &Base,
SDOperand &Index);
//! D-form address predicate
bool SelectDFormAddr(SDOperand Op, SDOperand N, SDOperand &Base,
SDOperand &Index);
//! Address predicate if N can be expressed as an indexed [r+r] operation.
bool SelectXFormAddr(SDOperand Op, SDOperand N, SDOperand &Base,
SDOperand &Index);
/// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
/// inline asm expressions.
virtual bool SelectInlineAsmMemoryOperand(const SDOperand &Op,
char ConstraintCode,
std::vector<SDOperand> &OutOps,
SelectionDAG &DAG) {
SDOperand Op0, Op1;
switch (ConstraintCode) {
default: return true;
case 'm': // memory
if (!SelectDFormAddr(Op, Op, Op0, Op1)
&& !SelectAFormAddr(Op, Op, Op0, Op1))
SelectXFormAddr(Op, Op, Op0, Op1);
break;
case 'o': // offsetable
if (!SelectDFormAddr(Op, Op, Op0, Op1)
&& !SelectAFormAddr(Op, Op, Op0, Op1)) {
Op0 = Op;
AddToISelQueue(Op0); // r+0.
Op1 = getSmallIPtrImm(0);
}
break;
case 'v': // not offsetable
#if 1
assert(0 && "InlineAsmMemoryOperand 'v' constraint not handled.");
#else
SelectAddrIdxOnly(Op, Op, Op0, Op1);
#endif
break;
}
OutOps.push_back(Op0);
OutOps.push_back(Op1);
return false;
}
/// InstructionSelectBasicBlock - This callback is invoked by
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
virtual const char *getPassName() const {
return "Cell SPU DAG->DAG Pattern Instruction Selection";
}
/// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
/// this target when scheduling the DAG.
virtual HazardRecognizer *CreateTargetHazardRecognizer() {
const TargetInstrInfo *II = SPUtli.getTargetMachine().getInstrInfo();
assert(II && "No InstrInfo?");
return new SPUHazardRecognizer(*II);
}
// Include the pieces autogenerated from the target description.
#include "SPUGenDAGISel.inc"
};
/// InstructionSelectBasicBlock - This callback is invoked by
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
void
SPUDAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG)
{
DEBUG(BB->dump());
// Select target instructions for the DAG.
DAG.setRoot(SelectRoot(DAG.getRoot()));
DAG.RemoveDeadNodes();
// Emit machine code to BB.
ScheduleAndEmitDAG(DAG);
}
bool
SPUDAGToDAGISel::SelectDForm2Addr(SDOperand Op, SDOperand N, SDOperand &Disp,
SDOperand &Base) {
unsigned Opc = N.getOpcode();
unsigned VT = N.getValueType();
MVT::ValueType PtrVT = SPUtli.getPointerTy();
ConstantSDNode *CN = 0;
int Imm;
if (Opc == ISD::ADD) {
SDOperand Op0 = N.getOperand(0);
SDOperand Op1 = N.getOperand(1);
if (Op1.getOpcode() == ISD::Constant ||
Op1.getOpcode() == ISD::TargetConstant) {
CN = cast<ConstantSDNode>(Op1);
Imm = int(CN->getValue());
if (Imm <= 0xff) {
Disp = CurDAG->getTargetConstant(Imm, SPUtli.getPointerTy());
Base = Op0;
return true;
}
}
} else if (Opc == ISD::GlobalAddress
|| Opc == ISD::TargetGlobalAddress
|| Opc == ISD::Register) {
// Plain old local store address:
Disp = CurDAG->getTargetConstant(0, VT);
Base = N;
return true;
} else if (Opc == SPUISD::DFormAddr) {
// D-Form address: This is pretty straightforward, naturally...
CN = cast<ConstantSDNode>(N.getOperand(1));
assert(CN != 0 && "SelectDFormAddr/SPUISD::DForm2Addr expecting constant");
Imm = unsigned(CN->getValue());
if (Imm < 0xff) {
Disp = CurDAG->getTargetConstant(CN->getValue(), PtrVT);
Base = N.getOperand(0);
return true;
}
}
return false;
}
/*!
\arg Op The ISD instructio operand
\arg N The address to be tested
\arg Base The base address
\arg Index The base address index
*/
bool
SPUDAGToDAGISel::SelectAFormAddr(SDOperand Op, SDOperand N, SDOperand &Base,
SDOperand &Index) {
// These match the addr256k operand type:
MVT::ValueType OffsVT = MVT::i16;
MVT::ValueType PtrVT = SPUtli.getPointerTy();
switch (N.getOpcode()) {
case ISD::Constant:
case ISD::ConstantPool:
case ISD::GlobalAddress:
cerr << "SPU SelectAFormAddr: Constant/Pool/Global not lowered.\n";
abort();
/*NOTREACHED*/
case ISD::TargetConstant: {
// Loading from a constant address.
ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
int Imm = (int)CN->getValue();
if (Imm < 0x3ffff && (Imm & 0x3) == 0) {
Base = CurDAG->getTargetConstant(Imm, PtrVT);
// Note that this operand will be ignored by the assembly printer...
Index = CurDAG->getTargetConstant(0, OffsVT);
return true;
}
}
case ISD::TargetGlobalAddress:
case ISD::TargetConstantPool:
case SPUISD::AFormAddr: {
// The address is in Base. N is a dummy that will be ignored by
// the assembly printer.
Base = N;
Index = CurDAG->getTargetConstant(0, OffsVT);
return true;
}
}
return false;
}
/*!
\arg Op The ISD instruction (ignored)
\arg N The address to be tested
\arg Base Base address register/pointer
\arg Index Base address index
Examine the input address by a base register plus a signed 10-bit
displacement, [r+I10] (D-form address).
\return true if \a N is a D-form address with \a Base and \a Index set
to non-empty SDOperand instances.
*/
bool
SPUDAGToDAGISel::SelectDFormAddr(SDOperand Op, SDOperand N, SDOperand &Base,
SDOperand &Index) {
unsigned Opc = N.getOpcode();
unsigned PtrTy = SPUtli.getPointerTy();
if (Opc == ISD::Register) {
Base = N;
Index = CurDAG->getTargetConstant(0, PtrTy);
return true;
} else if (Opc == ISD::FrameIndex) {
FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N);
DEBUG(cerr << "SelectDFormAddr: ISD::FrameIndex = "
<< FI->getIndex() << "\n");
if (FI->getIndex() < SPUFrameInfo::maxFrameOffset()) {
Base = CurDAG->getTargetConstant(0, PtrTy);
Index = CurDAG->getTargetFrameIndex(FI->getIndex(), PtrTy);
return true;
}
} else if (Opc == ISD::ADD) {
// Generated by getelementptr
const SDOperand Op0 = N.getOperand(0); // Frame index/base
const SDOperand Op1 = N.getOperand(1); // Offset within base
if ((Op1.getOpcode() == ISD::Constant
|| Op1.getOpcode() == ISD::TargetConstant)
&& Op0.getOpcode() != SPUISD::XFormAddr) {
ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op1);
assert(CN != 0 && "SelectDFormAddr: Expected a constant");
int32_t offset = (int32_t) CN->getSignExtended();
unsigned Opc0 = Op0.getOpcode();
if (Opc0 == ISD::FrameIndex) {
FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op0);
DEBUG(cerr << "SelectDFormAddr: ISD::ADD offset = " << offset
<< " frame index = " << FI->getIndex() << "\n");
if (FI->getIndex() < SPUFrameInfo::maxFrameOffset()) {
Base = CurDAG->getTargetConstant(offset, PtrTy);
Index = CurDAG->getTargetFrameIndex(FI->getIndex(), PtrTy);
return true;
}
} else if (offset > SPUFrameInfo::minFrameOffset()
&& offset < SPUFrameInfo::maxFrameOffset()) {
Base = CurDAG->getTargetConstant(offset, PtrTy);
if (Opc0 == ISD::GlobalAddress) {
// Convert global address to target global address
GlobalAddressSDNode *GV = dyn_cast<GlobalAddressSDNode>(Op0);
Index = CurDAG->getTargetGlobalAddress(GV->getGlobal(), PtrTy);
return true;
} else {
// Otherwise, just take operand 0
Index = Op0;
return true;
}
}
} else
return false;
} else if (Opc == SPUISD::DFormAddr) {
// D-Form address: This is pretty straightforward,
// naturally... but make sure that this isn't a D-form address
// with a X-form address embedded within:
const SDOperand Op0 = N.getOperand(0); // Frame index/base
const SDOperand Op1 = N.getOperand(1); // Offset within base
if (Op0.getOpcode() == ISD::Constant
|| Op0.getOpcode() == ISD::TargetConstant) {
ConstantSDNode *CN = cast<ConstantSDNode>(Op1);
assert(CN != 0 && "SelectDFormAddr/SPUISD::DFormAddr expecting constant");
Base = CurDAG->getTargetConstant(CN->getValue(), PtrTy);
Index = Op0;
return true;
}
} else if (Opc == ISD::FrameIndex) {
// Stack frame index must be less than 512 (divided by 16):
FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N);
DEBUG(cerr << "SelectDFormAddr: ISD::FrameIndex = "
<< FI->getIndex() << "\n");
if (FI->getIndex() < SPUFrameInfo::maxFrameOffset()) {
Base = CurDAG->getTargetConstant(0, PtrTy);
Index = CurDAG->getTargetFrameIndex(FI->getIndex(), PtrTy);
return true;
}
} else if (Opc == SPUISD::LDRESULT) {
// It's a load result dereference
Base = CurDAG->getTargetConstant(0, PtrTy);
Index = N.getOperand(0);
return true;
}
return false;
}
/*!
\arg Op The ISD instruction operand
\arg N The address operand
\arg Base The base pointer operand
\arg Index The offset/index operand
If the address \a N can be expressed as a [r + s10imm] address, returns false.
Otherwise, creates two operands, Base and Index that will become the [r+r]
address.
*/
bool
SPUDAGToDAGISel::SelectXFormAddr(SDOperand Op, SDOperand N, SDOperand &Base,
SDOperand &Index) {
if (SelectAFormAddr(Op, N, Base, Index)
|| SelectDFormAddr(Op, N, Base, Index))
return false;
unsigned Opc = N.getOpcode();
if (Opc == ISD::ADD) {
SDOperand N1 = N.getOperand(0);
SDOperand N2 = N.getOperand(1);
Base = N.getOperand(0);
Index = N.getOperand(1);
return true;
} else if (Opc == SPUISD::XFormAddr) {
Base = N;
Index = N.getOperand(1);
return true;
} else if (Opc == SPUISD::DFormAddr) {
// Must be a D-form address with an X-form address embedded
// within:
Base = N.getOperand(0);
Index = N.getOperand(1);
return true;
} else if (N.getNumOperands() == 2) {
SDOperand N1 = N.getOperand(0);
SDOperand N2 = N.getOperand(1);
unsigned N1Opc = N1.getOpcode();
unsigned N2Opc = N2.getOpcode();
if ((N1Opc == ISD::CopyToReg || N1Opc == ISD::Register)
&& (N2Opc == ISD::CopyToReg || N2Opc == ISD::Register)) {
Base = N.getOperand(0);
Index = N.getOperand(1);
return true;
/*UNREACHED*/
} else {
cerr << "SelectXFormAddr: 2-operand unhandled operand:\n";
N.Val->dump(CurDAG);
cerr << "\n";
abort();
/*UNREACHED*/
}
} else {
cerr << "SelectXFormAddr: Unhandled operand type:\n";
N.Val->dump(CurDAG);
cerr << "\n";
abort();
/*UNREACHED*/
}
return false;
}
//! Emit load for A-form addresses
/*
*/
SDNode *
Emit_LOAD_AFormAddr(SDOperand Op, SelectionDAG &CurDAG, SPUDAGToDAGISel &ISel)
{
SDNode *Result;
MVT::ValueType OpVT = Op.getValueType();
SDOperand Chain = Op.getOperand(0);
SDOperand Ptr = Op.getOperand(1);
SDOperand PtrArg = Ptr.getOperand(0);
SDOperand PtrOffs = Ptr.getOperand(1);
const valtype_map_s *vtm = getValueTypeMapEntry(OpVT);
if (PtrOffs.getOpcode() == ISD::Constant) {
ConstantSDNode *CN = cast<ConstantSDNode>(PtrOffs);
MVT::ValueType PVT = PtrOffs.getValueType();
PtrOffs = CurDAG.getTargetConstant(CN->getValue(), PVT);
}
ISel.AddToISelQueue(PtrArg);
ISel.AddToISelQueue(PtrOffs);
ISel.AddToISelQueue(Chain);
Result = CurDAG.getTargetNode(vtm->load_aform, OpVT, MVT::Other, PtrArg, PtrOffs, Chain);
Chain = SDOperand(Result, 1);
return Result;
}
//! Emit store for A-form addresses
/*
*/
SDNode *
Emit_STORE_AFormAddr(SDOperand Op, SelectionDAG &CurDAG, SPUDAGToDAGISel &ISel)
{
SDNode *Result;
SDOperand Chain = Op.getOperand(0);
SDOperand Val = Op.getOperand(1);
SDOperand Ptr = Op.getOperand(2);
SDOperand PtrArg = Ptr.getOperand(0);
SDOperand PtrOffs = Ptr.getOperand(1);
const valtype_map_s *vtm = getValueTypeMapEntry(Val.getValueType());
if (PtrOffs.getOpcode() == ISD::Constant) {
ConstantSDNode *CN = cast<ConstantSDNode>(PtrOffs);
MVT::ValueType PVT = PtrOffs.getValueType();
PtrOffs = CurDAG.getTargetConstant(CN->getValue(), PVT);
}
ISel.AddToISelQueue(Val);
ISel.AddToISelQueue(PtrArg);
ISel.AddToISelQueue(PtrOffs);
ISel.AddToISelQueue(Chain);
SDOperand Ops[4] = { Val, PtrArg, PtrOffs, Chain };
Result = CurDAG.getTargetNode(vtm->store_aform, MVT::Other, Ops, 4);
Chain = SDOperand(Result, 1);
return Result;
}
//! Convert the operand from a target-independent to a target-specific node
/*!
*/
SDNode *
SPUDAGToDAGISel::Select(SDOperand Op) {
SDNode *N = Op.Val;
unsigned Opc = N->getOpcode();
int n_ops = -1;
unsigned NewOpc;
MVT::ValueType OpVT = Op.getValueType();
SDOperand Ops[8];
if (Opc >= ISD::BUILTIN_OP_END && Opc < SPUISD::FIRST_NUMBER) {
return NULL; // Already selected.
} else if (Opc == ISD::FrameIndex) {
// Selects to AIr32 FI, 0 which in turn will become AIr32 SP, imm.
int FI = cast<FrameIndexSDNode>(N)->getIndex();
MVT::ValueType PtrVT = SPUtli.getPointerTy();
SDOperand Zero = CurDAG->getTargetConstant(0, PtrVT);
SDOperand TFI = CurDAG->getTargetFrameIndex(FI, PtrVT);
DEBUG(cerr << "SPUDAGToDAGISel: Replacing FrameIndex with AI32 <FI>, 0\n");
NewOpc = SPU::AIr32;
Ops[0] = TFI;
Ops[1] = Zero;
n_ops = 2;
} else if (Opc == ISD::LOAD
&& Op.getOperand(1).getOpcode() == SPUISD::AFormAddr) {
return Emit_LOAD_AFormAddr(Op, *CurDAG, *this);
} else if (Opc == ISD::STORE
&& Op.getOperand(2).getOpcode() == SPUISD::AFormAddr) {
return Emit_STORE_AFormAddr(Op, *CurDAG, *this);
} else if (Opc == ISD::ZERO_EXTEND) {
// (zero_extend:i16 (and:i8 <arg>, <const>))
const SDOperand &Op1 = N->getOperand(0);
if (Op.getValueType() == MVT::i16 && Op1.getValueType() == MVT::i8) {
if (Op1.getOpcode() == ISD::AND) {
// Fold this into a single ANDHI. This is often seen in expansions of i1
// to i8, then i8 to i16 in logical/branching operations.
DEBUG(cerr << "CellSPU: Coalescing (zero_extend:i16 (and:i8 "
"<arg>, <const>))\n");
NewOpc = SPU::ANDHI1To2;
Ops[0] = Op1.getOperand(0);
Ops[1] = Op1.getOperand(1);
n_ops = 2;
}
}
} else if (Opc == SPUISD::LDRESULT) {
// Custom select instructions for LDRESULT
unsigned VT = N->getValueType(0);
SDOperand Arg = N->getOperand(0);
SDOperand Chain = N->getOperand(1);
SDNode *Result;
AddToISelQueue(Arg);
if (!MVT::isFloatingPoint(VT)) {
SDOperand Zero = CurDAG->getTargetConstant(0, VT);
const valtype_map_s *vtm = getValueTypeMapEntry(VT);
if (vtm->ldresult_ins == 0) {
cerr << "LDRESULT for unsupported type: "
<< MVT::getValueTypeString(VT)
<< "\n";
abort();
} else
Opc = vtm->ldresult_ins;
AddToISelQueue(Zero);
Result = CurDAG->getTargetNode(Opc, VT, MVT::Other, Arg, Zero, Chain);
} else {
Opc = (VT == MVT::f32 ? SPU::ORf32 : SPU::ORf64);
Result = CurDAG->getTargetNode(Opc, MVT::Other, Arg, Arg, Chain);
}
Chain = SDOperand(Result, 1);
AddToISelQueue(Chain);
return Result;
} else if (Opc == SPUISD::XFormAddr) {
SDOperand Op0 = Op.getOperand(0);
if (Op0.getOpcode() == SPUISD::LDRESULT
|| Op0.getOpcode() == SPUISD::AFormAddr) {
// (XFormAddr (LDRESULT|AFormAddr, imm))
SDOperand Op1 = Op.getOperand(1);
MVT::ValueType VT = Op.getValueType();
DEBUG(cerr << "CellSPU: XFormAddr("
<< (Op0.getOpcode() == SPUISD::LDRESULT
? "LDRESULT"
: "AFormAddr")
<< ", imm):\nOp0 = ");
DEBUG(Op.getOperand(0).Val->dump(CurDAG));
DEBUG(cerr << "\nOp1 = ");
DEBUG(Op.getOperand(1).Val->dump(CurDAG));
DEBUG(cerr << "\n");
if (Op1.getOpcode() == ISD::Constant) {
ConstantSDNode *CN = cast<ConstantSDNode>(Op1);
Op1 = CurDAG->getTargetConstant(CN->getValue(), VT);
}
AddToISelQueue(Op0);
AddToISelQueue(Op1);
NewOpc = SPU::AIr32;
Ops[0] = Op0;
Ops[1] = Op1;
n_ops = 2;
}
}
if (n_ops > 0) {
if (N->hasOneUse())
return CurDAG->SelectNodeTo(N, NewOpc, OpVT, Ops, n_ops);
else
return CurDAG->getTargetNode(NewOpc, OpVT, Ops, n_ops);
} else
return SelectCode(Op);
}
/// createPPCISelDag - This pass converts a legalized DAG into a
/// SPU-specific DAG, ready for instruction scheduling.
///
FunctionPass *llvm::createSPUISelDag(SPUTargetMachine &TM) {
return new SPUDAGToDAGISel(TM);
}