mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-01 00:17:01 +00:00 
			
		
		
		
	and work better with VC++. Patch contributed by Morten Ofstad! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@17281 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			823 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			823 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- PassManagerT.h - Container for Passes --------------------*- C++ -*-===//
 | |
| // 
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the PassManagerT class.  This class is used to hold,
 | |
| // maintain, and optimize execution of Pass's.  The PassManager class ensures
 | |
| // that analysis results are available before a pass runs, and that Pass's are
 | |
| // destroyed when the PassManager is destroyed.
 | |
| //
 | |
| // The PassManagerT template is instantiated three times to do its job.  The
 | |
| // public PassManager class is a Pimpl around the PassManagerT<Module> interface
 | |
| // to avoid having all of the PassManager clients being exposed to the
 | |
| // implementation details herein.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_PASSMANAGER_T_H
 | |
| #define LLVM_PASSMANAGER_T_H
 | |
| 
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/LeakDetector.h"
 | |
| #include "llvm/Support/Timer.h"
 | |
| #include <algorithm>
 | |
| #include <iostream>
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Pass debugging information.  Often it is useful to find out what pass is
 | |
| // running when a crash occurs in a utility.  When this library is compiled with
 | |
| // debugging on, a command line option (--debug-pass) is enabled that causes the
 | |
| // pass name to be printed before it executes.
 | |
| //
 | |
| 
 | |
| // Different debug levels that can be enabled...
 | |
| enum PassDebugLevel {
 | |
|   None, Arguments, Structure, Executions, Details
 | |
| };
 | |
| 
 | |
| static cl::opt<enum PassDebugLevel>
 | |
| PassDebugging("debug-pass", cl::Hidden,
 | |
|               cl::desc("Print PassManager debugging information"),
 | |
|               cl::values(
 | |
|   clEnumVal(None      , "disable debug output"),
 | |
|   clEnumVal(Arguments , "print pass arguments to pass to 'opt'"),
 | |
|   clEnumVal(Structure , "print pass structure before run()"),
 | |
|   clEnumVal(Executions, "print pass name before it is executed"),
 | |
|   clEnumVal(Details   , "print pass details when it is executed"),
 | |
|                          clEnumValEnd));
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // PMDebug class - a set of debugging functions, that are not to be
 | |
| // instantiated by the template.
 | |
| //
 | |
| struct PMDebug {
 | |
|   static void PerformPassStartupStuff(Pass *P) {
 | |
|     // If debugging is enabled, print out argument information...
 | |
|     if (PassDebugging >= Arguments) {
 | |
|       std::cerr << "Pass Arguments: ";
 | |
|       PrintArgumentInformation(P);
 | |
|       std::cerr << "\n";
 | |
| 
 | |
|       // Print the pass execution structure
 | |
|       if (PassDebugging >= Structure)
 | |
|         P->dumpPassStructure();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   static void PrintArgumentInformation(const Pass *P);
 | |
|   static void PrintPassInformation(unsigned,const char*,Pass *, Module *);
 | |
|   static void PrintPassInformation(unsigned,const char*,Pass *, Function *);
 | |
|   static void PrintPassInformation(unsigned,const char*,Pass *, BasicBlock *);
 | |
|   static void PrintAnalysisSetInfo(unsigned,const char*,Pass *P,
 | |
|                                    const std::vector<AnalysisID> &);
 | |
| };
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // TimingInfo Class - This class is used to calculate information about the
 | |
| // amount of time each pass takes to execute.  This only happens when
 | |
| // -time-passes is enabled on the command line.
 | |
| //
 | |
| 
 | |
| class TimingInfo {
 | |
|   std::map<Pass*, Timer> TimingData;
 | |
|   TimerGroup TG;
 | |
| 
 | |
|   // Private ctor, must use 'create' member
 | |
|   TimingInfo() : TG("... Pass execution timing report ...") {}
 | |
| public:
 | |
|   // TimingDtor - Print out information about timing information
 | |
|   ~TimingInfo() {
 | |
|     // Delete all of the timers...
 | |
|     TimingData.clear();
 | |
|     // TimerGroup is deleted next, printing the report.
 | |
|   }
 | |
| 
 | |
|   // createTheTimeInfo - This method either initializes the TheTimeInfo pointer
 | |
|   // to a non null value (if the -time-passes option is enabled) or it leaves it
 | |
|   // null.  It may be called multiple times.
 | |
|   static void createTheTimeInfo();
 | |
| 
 | |
|   void passStarted(Pass *P) {
 | |
|     if (dynamic_cast<AnalysisResolver*>(P)) return;
 | |
|     std::map<Pass*, Timer>::iterator I = TimingData.find(P);
 | |
|     if (I == TimingData.end())
 | |
|       I=TimingData.insert(std::make_pair(P, Timer(P->getPassName(), TG))).first;
 | |
|     I->second.startTimer();
 | |
|   }
 | |
|   void passEnded(Pass *P) {
 | |
|     if (dynamic_cast<AnalysisResolver*>(P)) return;
 | |
|     std::map<Pass*, Timer>::iterator I = TimingData.find(P);
 | |
|     assert (I != TimingData.end() && "passStarted/passEnded not nested right!");
 | |
|     I->second.stopTimer();
 | |
|   }
 | |
| };
 | |
| 
 | |
| static TimingInfo *TheTimeInfo;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Declare the PassManagerTraits which will be specialized...
 | |
| //
 | |
| template<class UnitType> class PassManagerTraits;   // Do not define.
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // PassManagerT - Container object for passes.  The PassManagerT destructor
 | |
| // deletes all passes contained inside of the PassManagerT, so you shouldn't 
 | |
| // delete passes manually, and all passes should be dynamically allocated.
 | |
| //
 | |
| template<typename UnitType>
 | |
| class PassManagerT : public PassManagerTraits<UnitType>,public AnalysisResolver{
 | |
|   typedef PassManagerTraits<UnitType> Traits;
 | |
|   typedef typename Traits::PassClass       PassClass;
 | |
|   typedef typename Traits::SubPassClass SubPassClass;
 | |
|   typedef typename Traits::BatcherClass BatcherClass;
 | |
|   typedef typename Traits::ParentClass   ParentClass;
 | |
| 
 | |
| #ifndef _MSC_VER
 | |
|   friend class PassManagerTraits<UnitType>::PassClass;
 | |
|   friend class PassManagerTraits<UnitType>::SubPassClass;  
 | |
| #else
 | |
|   friend PassClass;
 | |
|   friend SubPassClass;
 | |
| #endif
 | |
|   friend class PassManagerTraits<UnitType>;
 | |
|   friend class ImmutablePass;
 | |
| 
 | |
|   std::vector<PassClass*> Passes;    // List of passes to run
 | |
|   std::vector<ImmutablePass*> ImmutablePasses;  // List of immutable passes
 | |
| 
 | |
|   // The parent of this pass manager...
 | |
|   ParentClass * const Parent;
 | |
| 
 | |
|   // The current batcher if one is in use, or null
 | |
|   BatcherClass *Batcher;
 | |
| 
 | |
|   // CurrentAnalyses - As the passes are being run, this map contains the
 | |
|   // analyses that are available to the current pass for use.  This is accessed
 | |
|   // through the getAnalysis() function in this class and in Pass.
 | |
|   //
 | |
|   std::map<AnalysisID, Pass*> CurrentAnalyses;
 | |
| 
 | |
|   // LastUseOf - This map keeps track of the last usage in our pipeline of a
 | |
|   // particular pass.  When executing passes, the memory for .first is free'd
 | |
|   // after .second is run.
 | |
|   //
 | |
|   std::map<Pass*, Pass*> LastUseOf;
 | |
| 
 | |
| public:
 | |
|   PassManagerT(ParentClass *Par = 0) : Parent(Par), Batcher(0) {}
 | |
|   ~PassManagerT() {
 | |
|     // Delete all of the contained passes...
 | |
|     for (typename std::vector<PassClass*>::iterator
 | |
|            I = Passes.begin(), E = Passes.end(); I != E; ++I)
 | |
|       delete *I;
 | |
| 
 | |
|     for (std::vector<ImmutablePass*>::iterator
 | |
|            I = ImmutablePasses.begin(), E = ImmutablePasses.end(); I != E; ++I)
 | |
|       delete *I;
 | |
|   }
 | |
| 
 | |
|   // run - Run all of the queued passes on the specified module in an optimal
 | |
|   // way.
 | |
|   virtual bool runOnUnit(UnitType *M) {
 | |
|     bool MadeChanges = false;
 | |
|     closeBatcher();
 | |
|     CurrentAnalyses.clear();
 | |
| 
 | |
|     TimingInfo::createTheTimeInfo();
 | |
| 
 | |
|     // Add any immutable passes to the CurrentAnalyses set...
 | |
|     for (unsigned i = 0, e = ImmutablePasses.size(); i != e; ++i) {
 | |
|       ImmutablePass *IPass = ImmutablePasses[i];
 | |
|       if (const PassInfo *PI = IPass->getPassInfo()) {
 | |
|         CurrentAnalyses[PI] = IPass;
 | |
| 
 | |
|         const std::vector<const PassInfo*> &II = PI->getInterfacesImplemented();
 | |
|         for (unsigned i = 0, e = II.size(); i != e; ++i)
 | |
|           CurrentAnalyses[II[i]] = IPass;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // LastUserOf - This contains the inverted LastUseOfMap...
 | |
|     std::map<Pass *, std::vector<Pass*> > LastUserOf;
 | |
|     for (std::map<Pass*, Pass*>::iterator I = LastUseOf.begin(),
 | |
|                                           E = LastUseOf.end(); I != E; ++I)
 | |
|       LastUserOf[I->second].push_back(I->first);
 | |
| 
 | |
|     // Output debug information...
 | |
|     if (Parent == 0) PMDebug::PerformPassStartupStuff(this);
 | |
| 
 | |
|     // Run all of the passes
 | |
|     for (unsigned i = 0, e = Passes.size(); i < e; ++i) {
 | |
|       PassClass *P = Passes[i];
 | |
|       
 | |
|       PMDebug::PrintPassInformation(getDepth(), "Executing Pass", P, M);
 | |
| 
 | |
|       // Get information about what analyses the pass uses...
 | |
|       AnalysisUsage AnUsage;
 | |
|       P->getAnalysisUsage(AnUsage);
 | |
|       PMDebug::PrintAnalysisSetInfo(getDepth(), "Required", P,
 | |
|                                     AnUsage.getRequiredSet());
 | |
| 
 | |
|       // All Required analyses should be available to the pass as it runs!  Here
 | |
|       // we fill in the AnalysisImpls member of the pass so that it can
 | |
|       // successfully use the getAnalysis() method to retrieve the
 | |
|       // implementations it needs.
 | |
|       //
 | |
|       P->AnalysisImpls.clear();
 | |
|       P->AnalysisImpls.reserve(AnUsage.getRequiredSet().size());
 | |
|       for (std::vector<const PassInfo *>::const_iterator
 | |
|              I = AnUsage.getRequiredSet().begin(), 
 | |
|              E = AnUsage.getRequiredSet().end(); I != E; ++I) {
 | |
|         Pass *Impl = getAnalysisOrNullUp(*I);
 | |
|         if (Impl == 0) {
 | |
|           std::cerr << "Analysis '" << (*I)->getPassName()
 | |
|                     << "' used but not available!";
 | |
|           assert(0 && "Analysis used but not available!");
 | |
|         } else if (PassDebugging == Details) {
 | |
|           if ((*I)->getPassName() != std::string(Impl->getPassName()))
 | |
|             std::cerr << "    Interface '" << (*I)->getPassName()
 | |
|                     << "' implemented by '" << Impl->getPassName() << "'\n";
 | |
|         }
 | |
|         P->AnalysisImpls.push_back(std::make_pair(*I, Impl));
 | |
|       }
 | |
| 
 | |
|       // Run the sub pass!
 | |
|       if (TheTimeInfo) TheTimeInfo->passStarted(P);
 | |
|       bool Changed = runPass(P, M);
 | |
|       if (TheTimeInfo) TheTimeInfo->passEnded(P);
 | |
|       MadeChanges |= Changed;
 | |
| 
 | |
|       // Check for memory leaks by the pass...
 | |
|       LeakDetector::checkForGarbage(std::string("after running pass '") +
 | |
|                                     P->getPassName() + "'");
 | |
| 
 | |
|       if (Changed)
 | |
|         PMDebug::PrintPassInformation(getDepth()+1, "Made Modification", P, M);
 | |
|       PMDebug::PrintAnalysisSetInfo(getDepth(), "Preserved", P,
 | |
|                                     AnUsage.getPreservedSet());
 | |
| 
 | |
| 
 | |
|       // Erase all analyses not in the preserved set...
 | |
|       if (!AnUsage.getPreservesAll()) {
 | |
|         const std::vector<AnalysisID> &PreservedSet = AnUsage.getPreservedSet();
 | |
|         for (std::map<AnalysisID, Pass*>::iterator I = CurrentAnalyses.begin(),
 | |
|                E = CurrentAnalyses.end(); I != E; )
 | |
|           if (std::find(PreservedSet.begin(), PreservedSet.end(), I->first) !=
 | |
|               PreservedSet.end())
 | |
|             ++I; // This analysis is preserved, leave it in the available set...
 | |
|           else {
 | |
|             if (!dynamic_cast<ImmutablePass*>(I->second)) {
 | |
|               std::map<AnalysisID, Pass*>::iterator J = I++;
 | |
|               CurrentAnalyses.erase(J);   // Analysis not preserved!
 | |
|             } else {
 | |
|               ++I;
 | |
|             }
 | |
|           }
 | |
|       }
 | |
| 
 | |
|       // Add the current pass to the set of passes that have been run, and are
 | |
|       // thus available to users.
 | |
|       //
 | |
|       if (const PassInfo *PI = P->getPassInfo()) {
 | |
|         CurrentAnalyses[PI] = P;
 | |
| 
 | |
|         // This pass is the current implementation of all of the interfaces it
 | |
|         // implements as well.
 | |
|         //
 | |
|         const std::vector<const PassInfo*> &II = PI->getInterfacesImplemented();
 | |
|         for (unsigned i = 0, e = II.size(); i != e; ++i)
 | |
|           CurrentAnalyses[II[i]] = P;
 | |
|       }
 | |
| 
 | |
|       // Free memory for any passes that we are the last use of...
 | |
|       std::vector<Pass*> &DeadPass = LastUserOf[P];
 | |
|       for (std::vector<Pass*>::iterator I = DeadPass.begin(),E = DeadPass.end();
 | |
|            I != E; ++I) {
 | |
|         PMDebug::PrintPassInformation(getDepth()+1, "Freeing Pass", *I, M);
 | |
|         (*I)->releaseMemory();
 | |
|       }
 | |
| 
 | |
|       // Make sure to remove dead passes from the CurrentAnalyses list...
 | |
|       for (std::map<AnalysisID, Pass*>::iterator I = CurrentAnalyses.begin();
 | |
|            I != CurrentAnalyses.end(); ) {
 | |
|         std::vector<Pass*>::iterator DPI = std::find(DeadPass.begin(),
 | |
|                                                      DeadPass.end(), I->second);
 | |
|         if (DPI != DeadPass.end()) {    // This pass is dead now... remove it
 | |
|           std::map<AnalysisID, Pass*>::iterator IDead = I++;
 | |
|           CurrentAnalyses.erase(IDead);
 | |
|         } else {
 | |
|           ++I;  // Move on to the next element...
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return MadeChanges;
 | |
|   }
 | |
| 
 | |
|   // dumpPassStructure - Implement the -debug-passes=PassStructure option
 | |
|   virtual void dumpPassStructure(unsigned Offset = 0) {
 | |
|     // Print out the immutable passes...
 | |
|     for (unsigned i = 0, e = ImmutablePasses.size(); i != e; ++i)
 | |
|       ImmutablePasses[i]->dumpPassStructure(0);
 | |
| 
 | |
|     std::cerr << std::string(Offset*2, ' ') << Traits::getPMName()
 | |
|               << " Pass Manager\n";
 | |
|     for (typename std::vector<PassClass*>::iterator
 | |
|            I = Passes.begin(), E = Passes.end(); I != E; ++I) {
 | |
|       PassClass *P = *I;
 | |
|       P->dumpPassStructure(Offset+1);
 | |
| 
 | |
|       // Loop through and see which classes are destroyed after this one...
 | |
|       for (std::map<Pass*, Pass*>::iterator I = LastUseOf.begin(),
 | |
|                                             E = LastUseOf.end(); I != E; ++I) {
 | |
|         if (P == I->second) {
 | |
|           std::cerr << "--" << std::string(Offset*2, ' ');
 | |
|           I->first->dumpPassStructure(0);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Pass *getImmutablePassOrNull(const PassInfo *ID) const {
 | |
|     for (unsigned i = 0, e = ImmutablePasses.size(); i != e; ++i) {
 | |
|       const PassInfo *IPID = ImmutablePasses[i]->getPassInfo();
 | |
|       if (IPID == ID)
 | |
|         return ImmutablePasses[i];
 | |
|       
 | |
|       // This pass is the current implementation of all of the interfaces it
 | |
|       // implements as well.
 | |
|       //
 | |
|       const std::vector<const PassInfo*> &II =
 | |
|         IPID->getInterfacesImplemented();
 | |
|       for (unsigned j = 0, e = II.size(); j != e; ++j)
 | |
|         if (II[j] == ID) return ImmutablePasses[i];
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   Pass *getAnalysisOrNullDown(const PassInfo *ID) const {
 | |
|     std::map<AnalysisID, Pass*>::const_iterator I = CurrentAnalyses.find(ID);
 | |
| 
 | |
|     if (I != CurrentAnalyses.end())
 | |
|       return I->second;  // Found it.
 | |
| 
 | |
|     if (Pass *P = getImmutablePassOrNull(ID))
 | |
|       return P;
 | |
| 
 | |
|     if (Batcher)
 | |
|       return ((AnalysisResolver*)Batcher)->getAnalysisOrNullDown(ID);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   Pass *getAnalysisOrNullUp(const PassInfo *ID) const {
 | |
|     std::map<AnalysisID, Pass*>::const_iterator I = CurrentAnalyses.find(ID);
 | |
|     if (I != CurrentAnalyses.end())
 | |
|       return I->second;  // Found it.
 | |
| 
 | |
|     if (Parent)          // Try scanning...
 | |
|       return Parent->getAnalysisOrNullUp(ID);
 | |
|     else if (!ImmutablePasses.empty())
 | |
|       return getImmutablePassOrNull(ID);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // markPassUsed - Inform higher level pass managers (and ourselves)
 | |
|   // that these analyses are being used by this pass.  This is used to
 | |
|   // make sure that analyses are not free'd before we have to use
 | |
|   // them...
 | |
|   //
 | |
|   void markPassUsed(const PassInfo *P, Pass *User) {
 | |
|     std::map<AnalysisID, Pass*>::const_iterator I = CurrentAnalyses.find(P);
 | |
| 
 | |
|     if (I != CurrentAnalyses.end()) {
 | |
|       LastUseOf[I->second] = User;    // Local pass, extend the lifetime
 | |
| 
 | |
|       // Prolong live range of analyses that are needed after an analysis pass
 | |
|       // is destroyed, for querying by subsequent passes
 | |
|       AnalysisUsage AnUsage;
 | |
|       I->second->getAnalysisUsage(AnUsage);
 | |
|       const std::vector<AnalysisID> &IDs = AnUsage.getRequiredTransitiveSet();
 | |
|       for (std::vector<AnalysisID>::const_iterator i = IDs.begin(),
 | |
|              e = IDs.end(); i != e; ++i)
 | |
|         markPassUsed(*i, User);
 | |
| 
 | |
|     } else {
 | |
|       // Pass not in current available set, must be a higher level pass
 | |
|       // available to us, propagate to parent pass manager...  We tell the
 | |
|       // parent that we (the passmanager) are using the analysis so that it
 | |
|       // frees the analysis AFTER this pass manager runs.
 | |
|       //
 | |
|       if (Parent) {
 | |
|         Parent->markPassUsed(P, this);
 | |
|       } else {
 | |
|         assert(getAnalysisOrNullUp(P) && 
 | |
|                dynamic_cast<ImmutablePass*>(getAnalysisOrNullUp(P)) &&
 | |
|                "Pass available but not found! "
 | |
|                "Perhaps this is a module pass requiring a function pass?");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Return the number of parent PassManagers that exist
 | |
|   virtual unsigned getDepth() const {
 | |
|     if (Parent == 0) return 0;
 | |
|     return 1 + Parent->getDepth();
 | |
|   }
 | |
| 
 | |
|   virtual unsigned getNumContainedPasses() const { return Passes.size(); }
 | |
|   virtual const Pass *getContainedPass(unsigned N) const {
 | |
|     assert(N < Passes.size() && "Pass number out of range!");
 | |
|     return Passes[N];
 | |
|   }
 | |
| 
 | |
|   // add - Add a pass to the queue of passes to run.  This gives ownership of
 | |
|   // the Pass to the PassManager.  When the PassManager is destroyed, the pass
 | |
|   // will be destroyed as well, so there is no need to delete the pass.  This
 | |
|   // implies that all passes MUST be new'd.
 | |
|   //
 | |
|   void add(PassClass *P) {
 | |
|     // Get information about what analyses the pass uses...
 | |
|     AnalysisUsage AnUsage;
 | |
|     P->getAnalysisUsage(AnUsage);
 | |
|     const std::vector<AnalysisID> &Required = AnUsage.getRequiredSet();
 | |
| 
 | |
|     // Loop over all of the analyses used by this pass,
 | |
|     for (std::vector<AnalysisID>::const_iterator I = Required.begin(),
 | |
|            E = Required.end(); I != E; ++I) {
 | |
|       if (getAnalysisOrNullDown(*I) == 0) {
 | |
|         Pass *AP = (*I)->createPass();
 | |
|         if (ImmutablePass *IP = dynamic_cast<ImmutablePass *> (AP)) { add(IP); }
 | |
|         else if (PassClass *RP = dynamic_cast<PassClass *> (AP)) { add(RP); }
 | |
|         else { assert (0 && "Wrong kind of pass for this PassManager"); }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Tell the pass to add itself to this PassManager... the way it does so
 | |
|     // depends on the class of the pass, and is critical to laying out passes in
 | |
|     // an optimal order..
 | |
|     //
 | |
|     P->addToPassManager(this, AnUsage);
 | |
|   }
 | |
| 
 | |
|   // add - H4x0r an ImmutablePass into a PassManager that might not be
 | |
|   // expecting one.
 | |
|   //
 | |
|   void add(ImmutablePass *P) {
 | |
|     // Get information about what analyses the pass uses...
 | |
|     AnalysisUsage AnUsage;
 | |
|     P->getAnalysisUsage(AnUsage);
 | |
|     const std::vector<AnalysisID> &Required = AnUsage.getRequiredSet();
 | |
| 
 | |
|     // Loop over all of the analyses used by this pass,
 | |
|     for (std::vector<AnalysisID>::const_iterator I = Required.begin(),
 | |
|            E = Required.end(); I != E; ++I) {
 | |
|       if (getAnalysisOrNullDown(*I) == 0) {
 | |
|         Pass *AP = (*I)->createPass();
 | |
|         if (ImmutablePass *IP = dynamic_cast<ImmutablePass *> (AP)) add(IP);
 | |
|         else if (PassClass *RP = dynamic_cast<PassClass *> (AP)) add(RP);
 | |
|         else assert (0 && "Wrong kind of pass for this PassManager");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Add the ImmutablePass to this PassManager.
 | |
|     addPass(P, AnUsage);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   // addPass - These functions are used to implement the subclass specific
 | |
|   // behaviors present in PassManager.  Basically the add(Pass*) method ends up
 | |
|   // reflecting its behavior into a Pass::addToPassManager call.  Subclasses of
 | |
|   // Pass override it specifically so that they can reflect the type
 | |
|   // information inherent in "this" back to the PassManager.
 | |
|   //
 | |
|   // For generic Pass subclasses (which are interprocedural passes), we simply
 | |
|   // add the pass to the end of the pass list and terminate any accumulation of
 | |
|   // FunctionPass's that are present.
 | |
|   //
 | |
|   void addPass(PassClass *P, AnalysisUsage &AnUsage) {
 | |
|     const std::vector<AnalysisID> &RequiredSet = AnUsage.getRequiredSet();
 | |
| 
 | |
|     // FIXME: If this pass being added isn't killed by any of the passes in the
 | |
|     // batcher class then we can reorder to pass to execute before the batcher
 | |
|     // does, which will potentially allow us to batch more passes!
 | |
|     //
 | |
|     //const std::vector<AnalysisID> &ProvidedSet = AnUsage.getProvidedSet();
 | |
|     if (Batcher /*&& ProvidedSet.empty()*/)
 | |
|       closeBatcher();                     // This pass cannot be batched!
 | |
|     
 | |
|     // Set the Resolver instance variable in the Pass so that it knows where to 
 | |
|     // find this object...
 | |
|     //
 | |
|     setAnalysisResolver(P, this);
 | |
|     Passes.push_back(P);
 | |
| 
 | |
|     // Inform higher level pass managers (and ourselves) that these analyses are
 | |
|     // being used by this pass.  This is used to make sure that analyses are not
 | |
|     // free'd before we have to use them...
 | |
|     //
 | |
|     for (std::vector<AnalysisID>::const_iterator I = RequiredSet.begin(),
 | |
|            E = RequiredSet.end(); I != E; ++I)
 | |
|       markPassUsed(*I, P);     // Mark *I as used by P
 | |
| 
 | |
|     // Erase all analyses not in the preserved set...
 | |
|     if (!AnUsage.getPreservesAll()) {
 | |
|       const std::vector<AnalysisID> &PreservedSet = AnUsage.getPreservedSet();
 | |
|       for (std::map<AnalysisID, Pass*>::iterator I = CurrentAnalyses.begin(),
 | |
|              E = CurrentAnalyses.end(); I != E; ) {
 | |
|         if (std::find(PreservedSet.begin(), PreservedSet.end(), I->first) ==
 | |
|             PreservedSet.end()) {             // Analysis not preserved!
 | |
|           CurrentAnalyses.erase(I);           // Remove from available analyses
 | |
|           I = CurrentAnalyses.begin();
 | |
|         } else {
 | |
|           ++I;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Add this pass to the currently available set...
 | |
|     if (const PassInfo *PI = P->getPassInfo()) {
 | |
|       CurrentAnalyses[PI] = P;
 | |
| 
 | |
|       // This pass is the current implementation of all of the interfaces it
 | |
|       // implements as well.
 | |
|       //
 | |
|       const std::vector<const PassInfo*> &II = PI->getInterfacesImplemented();
 | |
|       for (unsigned i = 0, e = II.size(); i != e; ++i)
 | |
|         CurrentAnalyses[II[i]] = P;
 | |
|     }
 | |
| 
 | |
|     // For now assume that our results are never used...
 | |
|     LastUseOf[P] = P;
 | |
|   }
 | |
|   
 | |
|   // For FunctionPass subclasses, we must be sure to batch the FunctionPass's
 | |
|   // together in a BatcherClass object so that all of the analyses are run
 | |
|   // together a function at a time.
 | |
|   //
 | |
|   void addPass(SubPassClass *MP, AnalysisUsage &AnUsage) {
 | |
|     if (Batcher == 0) // If we don't have a batcher yet, make one now.
 | |
|       Batcher = new BatcherClass(this);
 | |
|     // The Batcher will queue the passes up
 | |
|     MP->addToPassManager(Batcher, AnUsage);
 | |
|   }
 | |
| 
 | |
|   // closeBatcher - Terminate the batcher that is being worked on.
 | |
|   void closeBatcher() {
 | |
|     if (Batcher) {
 | |
|       Passes.push_back(Batcher);
 | |
|       Batcher = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   // When an ImmutablePass is added, it gets added to the top level pass
 | |
|   // manager.
 | |
|   void addPass(ImmutablePass *IP, AnalysisUsage &AU) {
 | |
|     if (Parent) { // Make sure this request goes to the top level passmanager...
 | |
|       Parent->addPass(IP, AU);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Set the Resolver instance variable in the Pass so that it knows where to 
 | |
|     // find this object...
 | |
|     //
 | |
|     setAnalysisResolver(IP, this);
 | |
|     ImmutablePasses.push_back(IP);
 | |
| 
 | |
|     // All Required analyses should be available to the pass as it initializes!
 | |
|     // Here we fill in the AnalysisImpls member of the pass so that it can
 | |
|     // successfully use the getAnalysis() method to retrieve the implementations
 | |
|     // it needs.
 | |
|     //
 | |
|     IP->AnalysisImpls.clear();
 | |
|     IP->AnalysisImpls.reserve(AU.getRequiredSet().size());
 | |
|     for (std::vector<const PassInfo *>::const_iterator 
 | |
|            I = AU.getRequiredSet().begin(),
 | |
|            E = AU.getRequiredSet().end(); I != E; ++I) {
 | |
|       Pass *Impl = getAnalysisOrNullUp(*I);
 | |
|       if (Impl == 0) {
 | |
|         std::cerr << "Analysis '" << (*I)->getPassName()
 | |
|                   << "' used but not available!";
 | |
|         assert(0 && "Analysis used but not available!");
 | |
|       } else if (PassDebugging == Details) {
 | |
|         if ((*I)->getPassName() != std::string(Impl->getPassName()))
 | |
|           std::cerr << "    Interface '" << (*I)->getPassName()
 | |
|                     << "' implemented by '" << Impl->getPassName() << "'\n";
 | |
|       }
 | |
|       IP->AnalysisImpls.push_back(std::make_pair(*I, Impl));
 | |
|     }
 | |
|     
 | |
|     // Initialize the immutable pass...
 | |
|     IP->initializePass();
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // PassManagerTraits<BasicBlock> Specialization
 | |
| //
 | |
| // This pass manager is used to group together all of the BasicBlockPass's
 | |
| // into a single unit.
 | |
| //
 | |
| template<> class PassManagerTraits<BasicBlock> : public BasicBlockPass {
 | |
| public:
 | |
|   // PassClass - The type of passes tracked by this PassManager
 | |
|   typedef BasicBlockPass PassClass;
 | |
| 
 | |
|   // SubPassClass - The types of classes that should be collated together
 | |
|   // This is impossible to match, so BasicBlock instantiations of PassManagerT
 | |
|   // do not collate.
 | |
|   //
 | |
|   typedef PassManagerT<Module> SubPassClass;
 | |
| 
 | |
|   // BatcherClass - The type to use for collation of subtypes... This class is
 | |
|   // never instantiated for the PassManager<BasicBlock>, but it must be an 
 | |
|   // instance of PassClass to typecheck.
 | |
|   //
 | |
|   typedef PassClass BatcherClass;
 | |
| 
 | |
|   // ParentClass - The type of the parent PassManager...
 | |
|   typedef PassManagerT<Function> ParentClass;
 | |
| 
 | |
|   // PMType - The type of the passmanager that subclasses this class
 | |
|   typedef PassManagerT<BasicBlock> PMType;
 | |
| 
 | |
|   // runPass - Specify how the pass should be run on the UnitType
 | |
|   static bool runPass(PassClass *P, BasicBlock *M) {
 | |
|     // todo, init and finalize
 | |
|     return P->runOnBasicBlock(*M);
 | |
|   }
 | |
| 
 | |
|   // getPMName() - Return the name of the unit the PassManager operates on for
 | |
|   // debugging.
 | |
|   const char *getPMName() const { return "BasicBlock"; }
 | |
|   virtual const char *getPassName() const { return "BasicBlock Pass Manager"; }
 | |
| 
 | |
|   // Implement the BasicBlockPass interface...
 | |
|   virtual bool doInitialization(Module &M);
 | |
|   virtual bool doInitialization(Function &F);
 | |
|   virtual bool runOnBasicBlock(BasicBlock &BB);
 | |
|   virtual bool doFinalization(Function &F);
 | |
|   virtual bool doFinalization(Module &M);
 | |
| 
 | |
|   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|     AU.setPreservesAll();
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // PassManagerTraits<Function> Specialization
 | |
| //
 | |
| // This pass manager is used to group together all of the FunctionPass's
 | |
| // into a single unit.
 | |
| //
 | |
| template<> class PassManagerTraits<Function> : public FunctionPass {
 | |
| public:
 | |
|   // PassClass - The type of passes tracked by this PassManager
 | |
|   typedef FunctionPass PassClass;
 | |
| 
 | |
|   // SubPassClass - The types of classes that should be collated together
 | |
|   typedef BasicBlockPass SubPassClass;
 | |
| 
 | |
|   // BatcherClass - The type to use for collation of subtypes...
 | |
|   typedef PassManagerT<BasicBlock> BatcherClass;
 | |
| 
 | |
|   // ParentClass - The type of the parent PassManager...
 | |
|   typedef PassManagerT<Module> ParentClass;
 | |
| 
 | |
|   // PMType - The type of the passmanager that subclasses this class
 | |
|   typedef PassManagerT<Function> PMType;
 | |
| 
 | |
|   // runPass - Specify how the pass should be run on the UnitType
 | |
|   static bool runPass(PassClass *P, Function *F) {
 | |
|     return P->runOnFunction(*F);
 | |
|   }
 | |
| 
 | |
|   // getPMName() - Return the name of the unit the PassManager operates on for
 | |
|   // debugging.
 | |
|   const char *getPMName() const { return "Function"; }
 | |
|   virtual const char *getPassName() const { return "Function Pass Manager"; }
 | |
| 
 | |
|   // Implement the FunctionPass interface...
 | |
|   virtual bool doInitialization(Module &M);
 | |
|   virtual bool runOnFunction(Function &F);
 | |
|   virtual bool doFinalization(Module &M);
 | |
| 
 | |
|   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|     AU.setPreservesAll();
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // PassManagerTraits<Module> Specialization
 | |
| //
 | |
| // This is the top level PassManager implementation that holds generic passes.
 | |
| //
 | |
| template<> class PassManagerTraits<Module> : public ModulePass {
 | |
| public:
 | |
|   // PassClass - The type of passes tracked by this PassManager
 | |
|   typedef ModulePass PassClass;
 | |
| 
 | |
|   // SubPassClass - The types of classes that should be collated together
 | |
|   typedef FunctionPass SubPassClass;
 | |
| 
 | |
|   // BatcherClass - The type to use for collation of subtypes...
 | |
|   typedef PassManagerT<Function> BatcherClass;
 | |
| 
 | |
|   // ParentClass - The type of the parent PassManager...
 | |
|   typedef AnalysisResolver ParentClass;
 | |
| 
 | |
|   // runPass - Specify how the pass should be run on the UnitType
 | |
|   static bool runPass(PassClass *P, Module *M) { return P->runOnModule(*M); }
 | |
| 
 | |
|   // getPMName() - Return the name of the unit the PassManager operates on for
 | |
|   // debugging.
 | |
|   const char *getPMName() const { return "Module"; }
 | |
|   virtual const char *getPassName() const { return "Module Pass Manager"; }
 | |
| 
 | |
|   // runOnModule - Implement the PassManager interface.
 | |
|   bool runOnModule(Module &M) {
 | |
|     return ((PassManagerT<Module>*)this)->runOnUnit(&M);
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // PassManagerTraits Method Implementations
 | |
| //
 | |
| 
 | |
| // PassManagerTraits<BasicBlock> Implementations
 | |
| //
 | |
| inline bool PassManagerTraits<BasicBlock>::doInitialization(Module &M) {
 | |
|   bool Changed = false;
 | |
|   for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i)
 | |
|     ((PMType*)this)->Passes[i]->doInitialization(M);
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| inline bool PassManagerTraits<BasicBlock>::doInitialization(Function &F) {
 | |
|   bool Changed = false;
 | |
|   for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i)
 | |
|     ((PMType*)this)->Passes[i]->doInitialization(F);
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| inline bool PassManagerTraits<BasicBlock>::runOnBasicBlock(BasicBlock &BB) {
 | |
|   return ((PMType*)this)->runOnUnit(&BB);
 | |
| }
 | |
| 
 | |
| inline bool PassManagerTraits<BasicBlock>::doFinalization(Function &F) {
 | |
|   bool Changed = false;
 | |
|   for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i)
 | |
|     ((PMType*)this)->Passes[i]->doFinalization(F);
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| inline bool PassManagerTraits<BasicBlock>::doFinalization(Module &M) {
 | |
|   bool Changed = false;
 | |
|   for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i)
 | |
|     ((PMType*)this)->Passes[i]->doFinalization(M);
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| 
 | |
| // PassManagerTraits<Function> Implementations
 | |
| //
 | |
| inline bool PassManagerTraits<Function>::doInitialization(Module &M) {
 | |
|   bool Changed = false;
 | |
|   for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i)
 | |
|     ((PMType*)this)->Passes[i]->doInitialization(M);
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| inline bool PassManagerTraits<Function>::runOnFunction(Function &F) {
 | |
|   return ((PMType*)this)->runOnUnit(&F);
 | |
| }
 | |
| 
 | |
| inline bool PassManagerTraits<Function>::doFinalization(Module &M) {
 | |
|   bool Changed = false;
 | |
|   for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i)
 | |
|     ((PMType*)this)->Passes[i]->doFinalization(M);
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| } // End llvm namespace
 | |
| 
 | |
| #endif
 |