mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	Followup based on review. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216436 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1102 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1102 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===---------- AArch64CollectLOH.cpp - AArch64 collect LOH pass --*- C++ -*-=//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file contains a pass that collect the Linker Optimization Hint (LOH).
 | 
						|
// This pass should be run at the very end of the compilation flow, just before
 | 
						|
// assembly printer.
 | 
						|
// To be useful for the linker, the LOH must be printed into the assembly file.
 | 
						|
//
 | 
						|
// A LOH describes a sequence of instructions that may be optimized by the
 | 
						|
// linker.
 | 
						|
// This same sequence cannot be optimized by the compiler because some of
 | 
						|
// the information will be known at link time.
 | 
						|
// For instance, consider the following sequence:
 | 
						|
//     L1: adrp xA, sym@PAGE
 | 
						|
//     L2: add xB, xA, sym@PAGEOFF
 | 
						|
//     L3: ldr xC, [xB, #imm]
 | 
						|
// This sequence can be turned into:
 | 
						|
// A literal load if sym@PAGE + sym@PAGEOFF + #imm - address(L3) is < 1MB:
 | 
						|
//     L3: ldr xC, sym+#imm
 | 
						|
// It may also be turned into either the following more efficient
 | 
						|
// code sequences:
 | 
						|
// - If sym@PAGEOFF + #imm fits the encoding space of L3.
 | 
						|
//     L1: adrp xA, sym@PAGE
 | 
						|
//     L3: ldr xC, [xB, sym@PAGEOFF + #imm]
 | 
						|
// - If sym@PAGE + sym@PAGEOFF - address(L1) < 1MB:
 | 
						|
//     L1: adr xA, sym
 | 
						|
//     L3: ldr xC, [xB, #imm]
 | 
						|
//
 | 
						|
// To be valid a LOH must meet all the requirements needed by all the related
 | 
						|
// possible linker transformations.
 | 
						|
// For instance, using the running example, the constraints to emit
 | 
						|
// ".loh AdrpAddLdr" are:
 | 
						|
// - L1, L2, and L3 instructions are of the expected type, i.e.,
 | 
						|
//   respectively ADRP, ADD (immediate), and LD.
 | 
						|
// - The result of L1 is used only by L2.
 | 
						|
// - The register argument (xA) used in the ADD instruction is defined
 | 
						|
//   only by L1.
 | 
						|
// - The result of L2 is used only by L3.
 | 
						|
// - The base address (xB) in L3 is defined only L2.
 | 
						|
// - The ADRP in L1 and the ADD in L2 must reference the same symbol using
 | 
						|
//   @PAGE/@PAGEOFF with no additional constants
 | 
						|
//
 | 
						|
// Currently supported LOHs are:
 | 
						|
// * So called non-ADRP-related:
 | 
						|
//   - .loh AdrpAddLdr L1, L2, L3:
 | 
						|
//     L1: adrp xA, sym@PAGE
 | 
						|
//     L2: add xB, xA, sym@PAGEOFF
 | 
						|
//     L3: ldr xC, [xB, #imm]
 | 
						|
//   - .loh AdrpLdrGotLdr L1, L2, L3:
 | 
						|
//     L1: adrp xA, sym@GOTPAGE
 | 
						|
//     L2: ldr xB, [xA, sym@GOTPAGEOFF]
 | 
						|
//     L3: ldr xC, [xB, #imm]
 | 
						|
//   - .loh AdrpLdr L1, L3:
 | 
						|
//     L1: adrp xA, sym@PAGE
 | 
						|
//     L3: ldr xC, [xA, sym@PAGEOFF]
 | 
						|
//   - .loh AdrpAddStr L1, L2, L3:
 | 
						|
//     L1: adrp xA, sym@PAGE
 | 
						|
//     L2: add xB, xA, sym@PAGEOFF
 | 
						|
//     L3: str xC, [xB, #imm]
 | 
						|
//   - .loh AdrpLdrGotStr L1, L2, L3:
 | 
						|
//     L1: adrp xA, sym@GOTPAGE
 | 
						|
//     L2: ldr xB, [xA, sym@GOTPAGEOFF]
 | 
						|
//     L3: str xC, [xB, #imm]
 | 
						|
//   - .loh AdrpAdd L1, L2:
 | 
						|
//     L1: adrp xA, sym@PAGE
 | 
						|
//     L2: add xB, xA, sym@PAGEOFF
 | 
						|
//   For all these LOHs, L1, L2, L3 form a simple chain:
 | 
						|
//   L1 result is used only by L2 and L2 result by L3.
 | 
						|
//   L3 LOH-related argument is defined only by L2 and L2 LOH-related argument
 | 
						|
//   by L1.
 | 
						|
// All these LOHs aim at using more efficient load/store patterns by folding
 | 
						|
// some instructions used to compute the address directly into the load/store.
 | 
						|
//
 | 
						|
// * So called ADRP-related:
 | 
						|
//  - .loh AdrpAdrp L2, L1:
 | 
						|
//    L2: ADRP xA, sym1@PAGE
 | 
						|
//    L1: ADRP xA, sym2@PAGE
 | 
						|
//    L2 dominates L1 and xA is not redifined between L2 and L1
 | 
						|
// This LOH aims at getting rid of redundant ADRP instructions.
 | 
						|
//
 | 
						|
// The overall design for emitting the LOHs is:
 | 
						|
// 1. AArch64CollectLOH (this pass) records the LOHs in the AArch64FunctionInfo.
 | 
						|
// 2. AArch64AsmPrinter reads the LOHs from AArch64FunctionInfo and it:
 | 
						|
//     1. Associates them a label.
 | 
						|
//     2. Emits them in a MCStreamer (EmitLOHDirective).
 | 
						|
//         - The MCMachOStreamer records them into the MCAssembler.
 | 
						|
//         - The MCAsmStreamer prints them.
 | 
						|
//         - Other MCStreamers ignore them.
 | 
						|
//     3. Closes the MCStreamer:
 | 
						|
//         - The MachObjectWriter gets them from the MCAssembler and writes
 | 
						|
//           them in the object file.
 | 
						|
//         - Other ObjectWriters ignore them.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "AArch64.h"
 | 
						|
#include "AArch64InstrInfo.h"
 | 
						|
#include "AArch64MachineFunctionInfo.h"
 | 
						|
#include "AArch64Subtarget.h"
 | 
						|
#include "MCTargetDesc/AArch64AddressingModes.h"
 | 
						|
#include "llvm/ADT/BitVector.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/MapVector.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/CodeGen/MachineBasicBlock.h"
 | 
						|
#include "llvm/CodeGen/MachineDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "aarch64-collect-loh"
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
PreCollectRegister("aarch64-collect-loh-pre-collect-register", cl::Hidden,
 | 
						|
                   cl::desc("Restrict analysis to registers invovled"
 | 
						|
                            " in LOHs"),
 | 
						|
                   cl::init(true));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
BasicBlockScopeOnly("aarch64-collect-loh-bb-only", cl::Hidden,
 | 
						|
                    cl::desc("Restrict analysis at basic block scope"),
 | 
						|
                    cl::init(true));
 | 
						|
 | 
						|
STATISTIC(NumADRPSimpleCandidate,
 | 
						|
          "Number of simplifiable ADRP dominate by another");
 | 
						|
STATISTIC(NumADRPComplexCandidate2,
 | 
						|
          "Number of simplifiable ADRP reachable by 2 defs");
 | 
						|
STATISTIC(NumADRPComplexCandidate3,
 | 
						|
          "Number of simplifiable ADRP reachable by 3 defs");
 | 
						|
STATISTIC(NumADRPComplexCandidateOther,
 | 
						|
          "Number of simplifiable ADRP reachable by 4 or more defs");
 | 
						|
STATISTIC(NumADDToSTRWithImm,
 | 
						|
          "Number of simplifiable STR with imm reachable by ADD");
 | 
						|
STATISTIC(NumLDRToSTRWithImm,
 | 
						|
          "Number of simplifiable STR with imm reachable by LDR");
 | 
						|
STATISTIC(NumADDToSTR, "Number of simplifiable STR reachable by ADD");
 | 
						|
STATISTIC(NumLDRToSTR, "Number of simplifiable STR reachable by LDR");
 | 
						|
STATISTIC(NumADDToLDRWithImm,
 | 
						|
          "Number of simplifiable LDR with imm reachable by ADD");
 | 
						|
STATISTIC(NumLDRToLDRWithImm,
 | 
						|
          "Number of simplifiable LDR with imm reachable by LDR");
 | 
						|
STATISTIC(NumADDToLDR, "Number of simplifiable LDR reachable by ADD");
 | 
						|
STATISTIC(NumLDRToLDR, "Number of simplifiable LDR reachable by LDR");
 | 
						|
STATISTIC(NumADRPToLDR, "Number of simplifiable LDR reachable by ADRP");
 | 
						|
STATISTIC(NumCplxLvl1, "Number of complex case of level 1");
 | 
						|
STATISTIC(NumTooCplxLvl1, "Number of too complex case of level 1");
 | 
						|
STATISTIC(NumCplxLvl2, "Number of complex case of level 2");
 | 
						|
STATISTIC(NumTooCplxLvl2, "Number of too complex case of level 2");
 | 
						|
STATISTIC(NumADRSimpleCandidate, "Number of simplifiable ADRP + ADD");
 | 
						|
STATISTIC(NumADRComplexCandidate, "Number of too complex ADRP + ADD");
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
void initializeAArch64CollectLOHPass(PassRegistry &);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
struct AArch64CollectLOH : public MachineFunctionPass {
 | 
						|
  static char ID;
 | 
						|
  AArch64CollectLOH() : MachineFunctionPass(ID) {
 | 
						|
    initializeAArch64CollectLOHPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnMachineFunction(MachineFunction &MF) override;
 | 
						|
 | 
						|
  const char *getPassName() const override {
 | 
						|
    return "AArch64 Collect Linker Optimization Hint (LOH)";
 | 
						|
  }
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.setPreservesAll();
 | 
						|
    MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
    AU.addRequired<MachineDominatorTree>();
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
};
 | 
						|
 | 
						|
/// A set of MachineInstruction.
 | 
						|
typedef SetVector<const MachineInstr *> SetOfMachineInstr;
 | 
						|
/// Map a basic block to a set of instructions per register.
 | 
						|
/// This is used to represent the exposed uses of a basic block
 | 
						|
/// per register.
 | 
						|
typedef MapVector<const MachineBasicBlock *,
 | 
						|
                  std::unique_ptr<SetOfMachineInstr[]>>
 | 
						|
BlockToSetOfInstrsPerColor;
 | 
						|
/// Map a basic block to an instruction per register.
 | 
						|
/// This is used to represent the live-out definitions of a basic block
 | 
						|
/// per register.
 | 
						|
typedef MapVector<const MachineBasicBlock *,
 | 
						|
                  std::unique_ptr<const MachineInstr *[]>>
 | 
						|
BlockToInstrPerColor;
 | 
						|
/// Map an instruction to a set of instructions. Used to represent the
 | 
						|
/// mapping def to reachable uses or use to definitions.
 | 
						|
typedef MapVector<const MachineInstr *, SetOfMachineInstr> InstrToInstrs;
 | 
						|
/// Map a basic block to a BitVector.
 | 
						|
/// This is used to record the kill registers per basic block.
 | 
						|
typedef MapVector<const MachineBasicBlock *, BitVector> BlockToRegSet;
 | 
						|
 | 
						|
/// Map a register to a dense id.
 | 
						|
typedef DenseMap<unsigned, unsigned> MapRegToId;
 | 
						|
/// Map a dense id to a register. Used for debug purposes.
 | 
						|
typedef SmallVector<unsigned, 32> MapIdToReg;
 | 
						|
} // end anonymous namespace.
 | 
						|
 | 
						|
char AArch64CollectLOH::ID = 0;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(AArch64CollectLOH, "aarch64-collect-loh",
 | 
						|
                      "AArch64 Collect Linker Optimization Hint (LOH)", false,
 | 
						|
                      false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
 | 
						|
INITIALIZE_PASS_END(AArch64CollectLOH, "aarch64-collect-loh",
 | 
						|
                    "AArch64 Collect Linker Optimization Hint (LOH)", false,
 | 
						|
                    false)
 | 
						|
 | 
						|
/// Given a couple (MBB, reg) get the corresponding set of instruction from
 | 
						|
/// the given "sets".
 | 
						|
/// If this couple does not reference any set, an empty set is added to "sets"
 | 
						|
/// for this couple and returned.
 | 
						|
/// \param nbRegs is used internally allocate some memory. It must be consistent
 | 
						|
/// with the way sets is used.
 | 
						|
static SetOfMachineInstr &getSet(BlockToSetOfInstrsPerColor &sets,
 | 
						|
                                 const MachineBasicBlock &MBB, unsigned reg,
 | 
						|
                                 unsigned nbRegs) {
 | 
						|
  SetOfMachineInstr *result;
 | 
						|
  BlockToSetOfInstrsPerColor::iterator it = sets.find(&MBB);
 | 
						|
  if (it != sets.end())
 | 
						|
    result = it->second.get();
 | 
						|
  else
 | 
						|
    result = (sets[&MBB] = make_unique<SetOfMachineInstr[]>(nbRegs)).get();
 | 
						|
 | 
						|
  return result[reg];
 | 
						|
}
 | 
						|
 | 
						|
/// Given a couple (reg, MI) get the corresponding set of instructions from the
 | 
						|
/// the given "sets".
 | 
						|
/// This is used to get the uses record in sets of a definition identified by
 | 
						|
/// MI and reg, i.e., MI defines reg.
 | 
						|
/// If the couple does not reference anything, an empty set is added to
 | 
						|
/// "sets[reg]".
 | 
						|
/// \pre set[reg] is valid.
 | 
						|
static SetOfMachineInstr &getUses(InstrToInstrs *sets, unsigned reg,
 | 
						|
                                  const MachineInstr &MI) {
 | 
						|
  return sets[reg][&MI];
 | 
						|
}
 | 
						|
 | 
						|
/// Same as getUses but does not modify the input map: sets.
 | 
						|
/// \return NULL if the couple (reg, MI) is not in sets.
 | 
						|
static const SetOfMachineInstr *getUses(const InstrToInstrs *sets, unsigned reg,
 | 
						|
                                        const MachineInstr &MI) {
 | 
						|
  InstrToInstrs::const_iterator Res = sets[reg].find(&MI);
 | 
						|
  if (Res != sets[reg].end())
 | 
						|
    return &(Res->second);
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Initialize the reaching definition algorithm:
 | 
						|
/// For each basic block BB in MF, record:
 | 
						|
/// - its kill set.
 | 
						|
/// - its reachable uses (uses that are exposed to BB's predecessors).
 | 
						|
/// - its the generated definitions.
 | 
						|
/// \param DummyOp if not NULL, specifies a Dummy Operation to be added to
 | 
						|
/// the list of uses of exposed defintions.
 | 
						|
/// \param ADRPMode specifies to only consider ADRP instructions for generated
 | 
						|
/// definition. It also consider definitions of ADRP instructions as uses and
 | 
						|
/// ignore other uses. The ADRPMode is used to collect the information for LHO
 | 
						|
/// that involve ADRP operation only.
 | 
						|
static void initReachingDef(MachineFunction &MF,
 | 
						|
                            InstrToInstrs *ColorOpToReachedUses,
 | 
						|
                            BlockToInstrPerColor &Gen, BlockToRegSet &Kill,
 | 
						|
                            BlockToSetOfInstrsPerColor &ReachableUses,
 | 
						|
                            const MapRegToId &RegToId,
 | 
						|
                            const MachineInstr *DummyOp, bool ADRPMode) {
 | 
						|
  const TargetMachine &TM = MF.getTarget();
 | 
						|
  const TargetRegisterInfo *TRI = TM.getSubtargetImpl()->getRegisterInfo();
 | 
						|
 | 
						|
  unsigned NbReg = RegToId.size();
 | 
						|
 | 
						|
  for (MachineBasicBlock &MBB : MF) {
 | 
						|
    auto &BBGen = Gen[&MBB];
 | 
						|
    BBGen = make_unique<const MachineInstr *[]>(NbReg);
 | 
						|
    std::fill(BBGen.get(), BBGen.get() + NbReg, nullptr);
 | 
						|
 | 
						|
    BitVector &BBKillSet = Kill[&MBB];
 | 
						|
    BBKillSet.resize(NbReg);
 | 
						|
    for (const MachineInstr &MI : MBB) {
 | 
						|
      bool IsADRP = MI.getOpcode() == AArch64::ADRP;
 | 
						|
 | 
						|
      // Process uses first.
 | 
						|
      if (IsADRP || !ADRPMode)
 | 
						|
        for (const MachineOperand &MO : MI.operands()) {
 | 
						|
          // Treat ADRP def as use, as the goal of the analysis is to find
 | 
						|
          // ADRP defs reached by other ADRP defs.
 | 
						|
          if (!MO.isReg() || (!ADRPMode && !MO.isUse()) ||
 | 
						|
              (ADRPMode && (!IsADRP || !MO.isDef())))
 | 
						|
            continue;
 | 
						|
          unsigned CurReg = MO.getReg();
 | 
						|
          MapRegToId::const_iterator ItCurRegId = RegToId.find(CurReg);
 | 
						|
          if (ItCurRegId == RegToId.end())
 | 
						|
            continue;
 | 
						|
          CurReg = ItCurRegId->second;
 | 
						|
 | 
						|
          // if CurReg has not been defined, this use is reachable.
 | 
						|
          if (!BBGen[CurReg] && !BBKillSet.test(CurReg))
 | 
						|
            getSet(ReachableUses, MBB, CurReg, NbReg).insert(&MI);
 | 
						|
          // current basic block definition for this color, if any, is in Gen.
 | 
						|
          if (BBGen[CurReg])
 | 
						|
            getUses(ColorOpToReachedUses, CurReg, *BBGen[CurReg]).insert(&MI);
 | 
						|
        }
 | 
						|
 | 
						|
      // Process clobbers.
 | 
						|
      for (const MachineOperand &MO : MI.operands()) {
 | 
						|
        if (!MO.isRegMask())
 | 
						|
          continue;
 | 
						|
        // Clobbers kill the related colors.
 | 
						|
        const uint32_t *PreservedRegs = MO.getRegMask();
 | 
						|
 | 
						|
        // Set generated regs.
 | 
						|
        for (const auto Entry : RegToId) {
 | 
						|
          unsigned Reg = Entry.second;
 | 
						|
          // Use the global register ID when querying APIs external to this
 | 
						|
          // pass.
 | 
						|
          if (MachineOperand::clobbersPhysReg(PreservedRegs, Entry.first)) {
 | 
						|
            // Do not register clobbered definition for no ADRP.
 | 
						|
            // This definition is not used anyway (otherwise register
 | 
						|
            // allocation is wrong).
 | 
						|
            BBGen[Reg] = ADRPMode ? &MI : nullptr;
 | 
						|
            BBKillSet.set(Reg);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Process register defs.
 | 
						|
      for (const MachineOperand &MO : MI.operands()) {
 | 
						|
        if (!MO.isReg() || !MO.isDef())
 | 
						|
          continue;
 | 
						|
        unsigned CurReg = MO.getReg();
 | 
						|
        MapRegToId::const_iterator ItCurRegId = RegToId.find(CurReg);
 | 
						|
        if (ItCurRegId == RegToId.end())
 | 
						|
          continue;
 | 
						|
 | 
						|
        for (MCRegAliasIterator AI(CurReg, TRI, true); AI.isValid(); ++AI) {
 | 
						|
          MapRegToId::const_iterator ItRegId = RegToId.find(*AI);
 | 
						|
          assert(ItRegId != RegToId.end() &&
 | 
						|
                 "Sub-register of an "
 | 
						|
                 "involved register, not recorded as involved!");
 | 
						|
          BBKillSet.set(ItRegId->second);
 | 
						|
          BBGen[ItRegId->second] = &MI;
 | 
						|
        }
 | 
						|
        BBGen[ItCurRegId->second] = &MI;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If we restrict our analysis to basic block scope, conservatively add a
 | 
						|
    // dummy
 | 
						|
    // use for each generated value.
 | 
						|
    if (!ADRPMode && DummyOp && !MBB.succ_empty())
 | 
						|
      for (unsigned CurReg = 0; CurReg < NbReg; ++CurReg)
 | 
						|
        if (BBGen[CurReg])
 | 
						|
          getUses(ColorOpToReachedUses, CurReg, *BBGen[CurReg]).insert(DummyOp);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Reaching def core algorithm:
 | 
						|
/// while an Out has changed
 | 
						|
///    for each bb
 | 
						|
///       for each color
 | 
						|
///           In[bb][color] = U Out[bb.predecessors][color]
 | 
						|
///           insert reachableUses[bb][color] in each in[bb][color]
 | 
						|
///                 op.reachedUses
 | 
						|
///
 | 
						|
///           Out[bb] = Gen[bb] U (In[bb] - Kill[bb])
 | 
						|
static void reachingDefAlgorithm(MachineFunction &MF,
 | 
						|
                                 InstrToInstrs *ColorOpToReachedUses,
 | 
						|
                                 BlockToSetOfInstrsPerColor &In,
 | 
						|
                                 BlockToSetOfInstrsPerColor &Out,
 | 
						|
                                 BlockToInstrPerColor &Gen, BlockToRegSet &Kill,
 | 
						|
                                 BlockToSetOfInstrsPerColor &ReachableUses,
 | 
						|
                                 unsigned NbReg) {
 | 
						|
  bool HasChanged;
 | 
						|
  do {
 | 
						|
    HasChanged = false;
 | 
						|
    for (MachineBasicBlock &MBB : MF) {
 | 
						|
      unsigned CurReg;
 | 
						|
      for (CurReg = 0; CurReg < NbReg; ++CurReg) {
 | 
						|
        SetOfMachineInstr &BBInSet = getSet(In, MBB, CurReg, NbReg);
 | 
						|
        SetOfMachineInstr &BBReachableUses =
 | 
						|
            getSet(ReachableUses, MBB, CurReg, NbReg);
 | 
						|
        SetOfMachineInstr &BBOutSet = getSet(Out, MBB, CurReg, NbReg);
 | 
						|
        unsigned Size = BBOutSet.size();
 | 
						|
        //   In[bb][color] = U Out[bb.predecessors][color]
 | 
						|
        for (MachineBasicBlock *PredMBB : MBB.predecessors()) {
 | 
						|
          SetOfMachineInstr &PredOutSet = getSet(Out, *PredMBB, CurReg, NbReg);
 | 
						|
          BBInSet.insert(PredOutSet.begin(), PredOutSet.end());
 | 
						|
        }
 | 
						|
        //   insert reachableUses[bb][color] in each in[bb][color] op.reachedses
 | 
						|
        for (const MachineInstr *MI : BBInSet) {
 | 
						|
          SetOfMachineInstr &OpReachedUses =
 | 
						|
              getUses(ColorOpToReachedUses, CurReg, *MI);
 | 
						|
          OpReachedUses.insert(BBReachableUses.begin(), BBReachableUses.end());
 | 
						|
        }
 | 
						|
        //           Out[bb] = Gen[bb] U (In[bb] - Kill[bb])
 | 
						|
        if (!Kill[&MBB].test(CurReg))
 | 
						|
          BBOutSet.insert(BBInSet.begin(), BBInSet.end());
 | 
						|
        if (Gen[&MBB][CurReg])
 | 
						|
          BBOutSet.insert(Gen[&MBB][CurReg]);
 | 
						|
        HasChanged |= BBOutSet.size() != Size;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } while (HasChanged);
 | 
						|
}
 | 
						|
 | 
						|
/// Reaching definition algorithm.
 | 
						|
/// \param MF function on which the algorithm will operate.
 | 
						|
/// \param[out] ColorOpToReachedUses will contain the result of the reaching
 | 
						|
/// def algorithm.
 | 
						|
/// \param ADRPMode specify whether the reaching def algorithm should be tuned
 | 
						|
/// for ADRP optimization. \see initReachingDef for more details.
 | 
						|
/// \param DummyOp if not NULL, the algorithm will work at
 | 
						|
/// basic block scope and will set for every exposed definition a use to
 | 
						|
/// @p DummyOp.
 | 
						|
/// \pre ColorOpToReachedUses is an array of at least number of registers of
 | 
						|
/// InstrToInstrs.
 | 
						|
static void reachingDef(MachineFunction &MF,
 | 
						|
                        InstrToInstrs *ColorOpToReachedUses,
 | 
						|
                        const MapRegToId &RegToId, bool ADRPMode = false,
 | 
						|
                        const MachineInstr *DummyOp = nullptr) {
 | 
						|
  // structures:
 | 
						|
  // For each basic block.
 | 
						|
  // Out: a set per color of definitions that reach the
 | 
						|
  //      out boundary of this block.
 | 
						|
  // In: Same as Out but for in boundary.
 | 
						|
  // Gen: generated color in this block (one operation per color).
 | 
						|
  // Kill: register set of killed color in this block.
 | 
						|
  // ReachableUses: a set per color of uses (operation) reachable
 | 
						|
  //                for "In" definitions.
 | 
						|
  BlockToSetOfInstrsPerColor Out, In, ReachableUses;
 | 
						|
  BlockToInstrPerColor Gen;
 | 
						|
  BlockToRegSet Kill;
 | 
						|
 | 
						|
  // Initialize Gen, kill and reachableUses.
 | 
						|
  initReachingDef(MF, ColorOpToReachedUses, Gen, Kill, ReachableUses, RegToId,
 | 
						|
                  DummyOp, ADRPMode);
 | 
						|
 | 
						|
  // Algo.
 | 
						|
  if (!DummyOp)
 | 
						|
    reachingDefAlgorithm(MF, ColorOpToReachedUses, In, Out, Gen, Kill,
 | 
						|
                         ReachableUses, RegToId.size());
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
/// print the result of the reaching definition algorithm.
 | 
						|
static void printReachingDef(const InstrToInstrs *ColorOpToReachedUses,
 | 
						|
                             unsigned NbReg, const TargetRegisterInfo *TRI,
 | 
						|
                             const MapIdToReg &IdToReg) {
 | 
						|
  unsigned CurReg;
 | 
						|
  for (CurReg = 0; CurReg < NbReg; ++CurReg) {
 | 
						|
    if (ColorOpToReachedUses[CurReg].empty())
 | 
						|
      continue;
 | 
						|
    DEBUG(dbgs() << "*** Reg " << PrintReg(IdToReg[CurReg], TRI) << " ***\n");
 | 
						|
 | 
						|
    for (const auto &DefsIt : ColorOpToReachedUses[CurReg]) {
 | 
						|
      DEBUG(dbgs() << "Def:\n");
 | 
						|
      DEBUG(DefsIt.first->print(dbgs()));
 | 
						|
      DEBUG(dbgs() << "Reachable uses:\n");
 | 
						|
      for (const MachineInstr *MI : DefsIt.second) {
 | 
						|
        DEBUG(MI->print(dbgs()));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif // NDEBUG
 | 
						|
 | 
						|
/// Answer the following question: Can Def be one of the definition
 | 
						|
/// involved in a part of a LOH?
 | 
						|
static bool canDefBePartOfLOH(const MachineInstr *Def) {
 | 
						|
  unsigned Opc = Def->getOpcode();
 | 
						|
  // Accept ADRP, ADDLow and LOADGot.
 | 
						|
  switch (Opc) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  case AArch64::ADRP:
 | 
						|
    return true;
 | 
						|
  case AArch64::ADDXri:
 | 
						|
    // Check immediate to see if the immediate is an address.
 | 
						|
    switch (Def->getOperand(2).getType()) {
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
    case MachineOperand::MO_GlobalAddress:
 | 
						|
    case MachineOperand::MO_JumpTableIndex:
 | 
						|
    case MachineOperand::MO_ConstantPoolIndex:
 | 
						|
    case MachineOperand::MO_BlockAddress:
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  case AArch64::LDRXui:
 | 
						|
    // Check immediate to see if the immediate is an address.
 | 
						|
    switch (Def->getOperand(2).getType()) {
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
    case MachineOperand::MO_GlobalAddress:
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Unreachable.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Check whether the given instruction can the end of a LOH chain involving a
 | 
						|
/// store.
 | 
						|
static bool isCandidateStore(const MachineInstr *Instr) {
 | 
						|
  switch (Instr->getOpcode()) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  case AArch64::STRBui:
 | 
						|
  case AArch64::STRHui:
 | 
						|
  case AArch64::STRWui:
 | 
						|
  case AArch64::STRXui:
 | 
						|
  case AArch64::STRSui:
 | 
						|
  case AArch64::STRDui:
 | 
						|
  case AArch64::STRQui:
 | 
						|
    // In case we have str xA, [xA, #imm], this is two different uses
 | 
						|
    // of xA and we cannot fold, otherwise the xA stored may be wrong,
 | 
						|
    // even if #imm == 0.
 | 
						|
    if (Instr->getOperand(0).getReg() != Instr->getOperand(1).getReg())
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Given the result of a reaching definition algorithm in ColorOpToReachedUses,
 | 
						|
/// Build the Use to Defs information and filter out obvious non-LOH candidates.
 | 
						|
/// In ADRPMode, non-LOH candidates are "uses" with non-ADRP definitions.
 | 
						|
/// In non-ADRPMode, non-LOH candidates are "uses" with several definition,
 | 
						|
/// i.e., no simple chain.
 | 
						|
/// \param ADRPMode -- \see initReachingDef.
 | 
						|
static void reachedUsesToDefs(InstrToInstrs &UseToReachingDefs,
 | 
						|
                              const InstrToInstrs *ColorOpToReachedUses,
 | 
						|
                              const MapRegToId &RegToId,
 | 
						|
                              bool ADRPMode = false) {
 | 
						|
 | 
						|
  SetOfMachineInstr NotCandidate;
 | 
						|
  unsigned NbReg = RegToId.size();
 | 
						|
  MapRegToId::const_iterator EndIt = RegToId.end();
 | 
						|
  for (unsigned CurReg = 0; CurReg < NbReg; ++CurReg) {
 | 
						|
    // If this color is never defined, continue.
 | 
						|
    if (ColorOpToReachedUses[CurReg].empty())
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (const auto &DefsIt : ColorOpToReachedUses[CurReg]) {
 | 
						|
      for (const MachineInstr *MI : DefsIt.second) {
 | 
						|
        const MachineInstr *Def = DefsIt.first;
 | 
						|
        MapRegToId::const_iterator It;
 | 
						|
        // if all the reaching defs are not adrp, this use will not be
 | 
						|
        // simplifiable.
 | 
						|
        if ((ADRPMode && Def->getOpcode() != AArch64::ADRP) ||
 | 
						|
            (!ADRPMode && !canDefBePartOfLOH(Def)) ||
 | 
						|
            (!ADRPMode && isCandidateStore(MI) &&
 | 
						|
             // store are LOH candidate iff the end of the chain is used as
 | 
						|
             // base.
 | 
						|
             ((It = RegToId.find((MI)->getOperand(1).getReg())) == EndIt ||
 | 
						|
              It->second != CurReg))) {
 | 
						|
          NotCandidate.insert(MI);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        // Do not consider self reaching as a simplifiable case for ADRP.
 | 
						|
        if (!ADRPMode || MI != DefsIt.first) {
 | 
						|
          UseToReachingDefs[MI].insert(DefsIt.first);
 | 
						|
          // If UsesIt has several reaching definitions, it is not
 | 
						|
          // candidate for simplificaton in non-ADRPMode.
 | 
						|
          if (!ADRPMode && UseToReachingDefs[MI].size() > 1)
 | 
						|
            NotCandidate.insert(MI);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for (const MachineInstr *Elem : NotCandidate) {
 | 
						|
    DEBUG(dbgs() << "Too many reaching defs: " << *Elem << "\n");
 | 
						|
    // It would have been better if we could just remove the entry
 | 
						|
    // from the map.  Because of that, we have to filter the garbage
 | 
						|
    // (second.empty) in the subsequence analysis.
 | 
						|
    UseToReachingDefs[Elem].clear();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Based on the use to defs information (in ADRPMode), compute the
 | 
						|
/// opportunities of LOH ADRP-related.
 | 
						|
static void computeADRP(const InstrToInstrs &UseToDefs,
 | 
						|
                        AArch64FunctionInfo &AArch64FI,
 | 
						|
                        const MachineDominatorTree *MDT) {
 | 
						|
  DEBUG(dbgs() << "*** Compute LOH for ADRP\n");
 | 
						|
  for (const auto &Entry : UseToDefs) {
 | 
						|
    unsigned Size = Entry.second.size();
 | 
						|
    if (Size == 0)
 | 
						|
      continue;
 | 
						|
    if (Size == 1) {
 | 
						|
      const MachineInstr *L2 = *Entry.second.begin();
 | 
						|
      const MachineInstr *L1 = Entry.first;
 | 
						|
      if (!MDT->dominates(L2, L1)) {
 | 
						|
        DEBUG(dbgs() << "Dominance check failed:\n" << *L2 << '\n' << *L1
 | 
						|
                     << '\n');
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      DEBUG(dbgs() << "Record AdrpAdrp:\n" << *L2 << '\n' << *L1 << '\n');
 | 
						|
      SmallVector<const MachineInstr *, 2> Args;
 | 
						|
      Args.push_back(L2);
 | 
						|
      Args.push_back(L1);
 | 
						|
      AArch64FI.addLOHDirective(MCLOH_AdrpAdrp, Args);
 | 
						|
      ++NumADRPSimpleCandidate;
 | 
						|
    }
 | 
						|
#ifdef DEBUG
 | 
						|
    else if (Size == 2)
 | 
						|
      ++NumADRPComplexCandidate2;
 | 
						|
    else if (Size == 3)
 | 
						|
      ++NumADRPComplexCandidate3;
 | 
						|
    else
 | 
						|
      ++NumADRPComplexCandidateOther;
 | 
						|
#endif
 | 
						|
    // if Size < 1, the use should have been removed from the candidates
 | 
						|
    assert(Size >= 1 && "No reaching defs for that use!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Check whether the given instruction can be the end of a LOH chain
 | 
						|
/// involving a load.
 | 
						|
static bool isCandidateLoad(const MachineInstr *Instr) {
 | 
						|
  switch (Instr->getOpcode()) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  case AArch64::LDRSBWui:
 | 
						|
  case AArch64::LDRSBXui:
 | 
						|
  case AArch64::LDRSHWui:
 | 
						|
  case AArch64::LDRSHXui:
 | 
						|
  case AArch64::LDRSWui:
 | 
						|
  case AArch64::LDRBui:
 | 
						|
  case AArch64::LDRHui:
 | 
						|
  case AArch64::LDRWui:
 | 
						|
  case AArch64::LDRXui:
 | 
						|
  case AArch64::LDRSui:
 | 
						|
  case AArch64::LDRDui:
 | 
						|
  case AArch64::LDRQui:
 | 
						|
    if (Instr->getOperand(2).getTargetFlags() & AArch64II::MO_GOT)
 | 
						|
      return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  // Unreachable.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Check whether the given instruction can load a litteral.
 | 
						|
static bool supportLoadFromLiteral(const MachineInstr *Instr) {
 | 
						|
  switch (Instr->getOpcode()) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  case AArch64::LDRSWui:
 | 
						|
  case AArch64::LDRWui:
 | 
						|
  case AArch64::LDRXui:
 | 
						|
  case AArch64::LDRSui:
 | 
						|
  case AArch64::LDRDui:
 | 
						|
  case AArch64::LDRQui:
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  // Unreachable.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Check whether the given instruction is a LOH candidate.
 | 
						|
/// \param UseToDefs is used to check that Instr is at the end of LOH supported
 | 
						|
/// chain.
 | 
						|
/// \pre UseToDefs contains only on def per use, i.e., obvious non candidate are
 | 
						|
/// already been filtered out.
 | 
						|
static bool isCandidate(const MachineInstr *Instr,
 | 
						|
                        const InstrToInstrs &UseToDefs,
 | 
						|
                        const MachineDominatorTree *MDT) {
 | 
						|
  if (!isCandidateLoad(Instr) && !isCandidateStore(Instr))
 | 
						|
    return false;
 | 
						|
 | 
						|
  const MachineInstr *Def = *UseToDefs.find(Instr)->second.begin();
 | 
						|
  if (Def->getOpcode() != AArch64::ADRP) {
 | 
						|
    // At this point, Def is ADDXri or LDRXui of the right type of
 | 
						|
    // symbol, because we filtered out the uses that were not defined
 | 
						|
    // by these kind of instructions (+ ADRP).
 | 
						|
 | 
						|
    // Check if this forms a simple chain: each intermediate node must
 | 
						|
    // dominates the next one.
 | 
						|
    if (!MDT->dominates(Def, Instr))
 | 
						|
      return false;
 | 
						|
    // Move one node up in the simple chain.
 | 
						|
    if (UseToDefs.find(Def) ==
 | 
						|
            UseToDefs.end()
 | 
						|
            // The map may contain garbage we have to ignore.
 | 
						|
        ||
 | 
						|
        UseToDefs.find(Def)->second.empty())
 | 
						|
      return false;
 | 
						|
    Instr = Def;
 | 
						|
    Def = *UseToDefs.find(Def)->second.begin();
 | 
						|
  }
 | 
						|
  // Check if we reached the top of the simple chain:
 | 
						|
  // - top is ADRP.
 | 
						|
  // - check the simple chain property: each intermediate node must
 | 
						|
  // dominates the next one.
 | 
						|
  if (Def->getOpcode() == AArch64::ADRP)
 | 
						|
    return MDT->dominates(Def, Instr);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool registerADRCandidate(const MachineInstr &Use,
 | 
						|
                                 const InstrToInstrs &UseToDefs,
 | 
						|
                                 const InstrToInstrs *DefsPerColorToUses,
 | 
						|
                                 AArch64FunctionInfo &AArch64FI,
 | 
						|
                                 SetOfMachineInstr *InvolvedInLOHs,
 | 
						|
                                 const MapRegToId &RegToId) {
 | 
						|
  // Look for opportunities to turn ADRP -> ADD or
 | 
						|
  // ADRP -> LDR GOTPAGEOFF into ADR.
 | 
						|
  // If ADRP has more than one use. Give up.
 | 
						|
  if (Use.getOpcode() != AArch64::ADDXri &&
 | 
						|
      (Use.getOpcode() != AArch64::LDRXui ||
 | 
						|
       !(Use.getOperand(2).getTargetFlags() & AArch64II::MO_GOT)))
 | 
						|
    return false;
 | 
						|
  InstrToInstrs::const_iterator It = UseToDefs.find(&Use);
 | 
						|
  // The map may contain garbage that we need to ignore.
 | 
						|
  if (It == UseToDefs.end() || It->second.empty())
 | 
						|
    return false;
 | 
						|
  const MachineInstr &Def = **It->second.begin();
 | 
						|
  if (Def.getOpcode() != AArch64::ADRP)
 | 
						|
    return false;
 | 
						|
  // Check the number of users of ADRP.
 | 
						|
  const SetOfMachineInstr *Users =
 | 
						|
      getUses(DefsPerColorToUses,
 | 
						|
              RegToId.find(Def.getOperand(0).getReg())->second, Def);
 | 
						|
  if (Users->size() > 1) {
 | 
						|
    ++NumADRComplexCandidate;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  ++NumADRSimpleCandidate;
 | 
						|
  assert((!InvolvedInLOHs || InvolvedInLOHs->insert(&Def)) &&
 | 
						|
         "ADRP already involved in LOH.");
 | 
						|
  assert((!InvolvedInLOHs || InvolvedInLOHs->insert(&Use)) &&
 | 
						|
         "ADD already involved in LOH.");
 | 
						|
  DEBUG(dbgs() << "Record AdrpAdd\n" << Def << '\n' << Use << '\n');
 | 
						|
 | 
						|
  SmallVector<const MachineInstr *, 2> Args;
 | 
						|
  Args.push_back(&Def);
 | 
						|
  Args.push_back(&Use);
 | 
						|
 | 
						|
  AArch64FI.addLOHDirective(Use.getOpcode() == AArch64::ADDXri ? MCLOH_AdrpAdd
 | 
						|
                                                           : MCLOH_AdrpLdrGot,
 | 
						|
                          Args);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Based on the use to defs information (in non-ADRPMode), compute the
 | 
						|
/// opportunities of LOH non-ADRP-related
 | 
						|
static void computeOthers(const InstrToInstrs &UseToDefs,
 | 
						|
                          const InstrToInstrs *DefsPerColorToUses,
 | 
						|
                          AArch64FunctionInfo &AArch64FI, const MapRegToId &RegToId,
 | 
						|
                          const MachineDominatorTree *MDT) {
 | 
						|
  SetOfMachineInstr *InvolvedInLOHs = nullptr;
 | 
						|
#ifdef DEBUG
 | 
						|
  SetOfMachineInstr InvolvedInLOHsStorage;
 | 
						|
  InvolvedInLOHs = &InvolvedInLOHsStorage;
 | 
						|
#endif // DEBUG
 | 
						|
  DEBUG(dbgs() << "*** Compute LOH for Others\n");
 | 
						|
  // ADRP -> ADD/LDR -> LDR/STR pattern.
 | 
						|
  // Fall back to ADRP -> ADD pattern if we fail to catch the bigger pattern.
 | 
						|
 | 
						|
  // FIXME: When the statistics are not important,
 | 
						|
  // This initial filtering loop can be merged into the next loop.
 | 
						|
  // Currently, we didn't do it to have the same code for both DEBUG and
 | 
						|
  // NDEBUG builds. Indeed, the iterator of the second loop would need
 | 
						|
  // to be changed.
 | 
						|
  SetOfMachineInstr PotentialCandidates;
 | 
						|
  SetOfMachineInstr PotentialADROpportunities;
 | 
						|
  for (auto &Use : UseToDefs) {
 | 
						|
    // If no definition is available, this is a non candidate.
 | 
						|
    if (Use.second.empty())
 | 
						|
      continue;
 | 
						|
    // Keep only instructions that are load or store and at the end of
 | 
						|
    // a ADRP -> ADD/LDR/Nothing chain.
 | 
						|
    // We already filtered out the no-chain cases.
 | 
						|
    if (!isCandidate(Use.first, UseToDefs, MDT)) {
 | 
						|
      PotentialADROpportunities.insert(Use.first);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    PotentialCandidates.insert(Use.first);
 | 
						|
  }
 | 
						|
 | 
						|
  // Make the following distinctions for statistics as the linker does
 | 
						|
  // know how to decode instructions:
 | 
						|
  // - ADD/LDR/Nothing make there different patterns.
 | 
						|
  // - LDR/STR make two different patterns.
 | 
						|
  // Hence, 6 - 1 base patterns.
 | 
						|
  // (because ADRP-> Nothing -> STR is not simplifiable)
 | 
						|
 | 
						|
  // The linker is only able to have a simple semantic, i.e., if pattern A
 | 
						|
  // do B.
 | 
						|
  // However, we want to see the opportunity we may miss if we were able to
 | 
						|
  // catch more complex cases.
 | 
						|
 | 
						|
  // PotentialCandidates are result of a chain ADRP -> ADD/LDR ->
 | 
						|
  // A potential candidate becomes a candidate, if its current immediate
 | 
						|
  // operand is zero and all nodes of the chain have respectively only one user
 | 
						|
#ifdef DEBUG
 | 
						|
  SetOfMachineInstr DefsOfPotentialCandidates;
 | 
						|
#endif
 | 
						|
  for (const MachineInstr *Candidate : PotentialCandidates) {
 | 
						|
    // Get the definition of the candidate i.e., ADD or LDR.
 | 
						|
    const MachineInstr *Def = *UseToDefs.find(Candidate)->second.begin();
 | 
						|
    // Record the elements of the chain.
 | 
						|
    const MachineInstr *L1 = Def;
 | 
						|
    const MachineInstr *L2 = nullptr;
 | 
						|
    unsigned ImmediateDefOpc = Def->getOpcode();
 | 
						|
    if (Def->getOpcode() != AArch64::ADRP) {
 | 
						|
      // Check the number of users of this node.
 | 
						|
      const SetOfMachineInstr *Users =
 | 
						|
          getUses(DefsPerColorToUses,
 | 
						|
                  RegToId.find(Def->getOperand(0).getReg())->second, *Def);
 | 
						|
      if (Users->size() > 1) {
 | 
						|
#ifdef DEBUG
 | 
						|
        // if all the uses of this def are in potential candidate, this is
 | 
						|
        // a complex candidate of level 2.
 | 
						|
        bool IsLevel2 = true;
 | 
						|
        for (const MachineInstr *MI : *Users) {
 | 
						|
          if (!PotentialCandidates.count(MI)) {
 | 
						|
            ++NumTooCplxLvl2;
 | 
						|
            IsLevel2 = false;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        if (IsLevel2)
 | 
						|
          ++NumCplxLvl2;
 | 
						|
#endif // DEBUG
 | 
						|
        PotentialADROpportunities.insert(Def);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      L2 = Def;
 | 
						|
      Def = *UseToDefs.find(Def)->second.begin();
 | 
						|
      L1 = Def;
 | 
						|
    } // else the element in the middle of the chain is nothing, thus
 | 
						|
      // Def already contains the first element of the chain.
 | 
						|
 | 
						|
    // Check the number of users of the first node in the chain, i.e., ADRP
 | 
						|
    const SetOfMachineInstr *Users =
 | 
						|
        getUses(DefsPerColorToUses,
 | 
						|
                RegToId.find(Def->getOperand(0).getReg())->second, *Def);
 | 
						|
    if (Users->size() > 1) {
 | 
						|
#ifdef DEBUG
 | 
						|
      // if all the uses of this def are in the defs of the potential candidate,
 | 
						|
      // this is a complex candidate of level 1
 | 
						|
      if (DefsOfPotentialCandidates.empty()) {
 | 
						|
        // lazy init
 | 
						|
        DefsOfPotentialCandidates = PotentialCandidates;
 | 
						|
        for (const MachineInstr *Candidate : PotentialCandidates) {
 | 
						|
          if (!UseToDefs.find(Candidate)->second.empty())
 | 
						|
            DefsOfPotentialCandidates.insert(
 | 
						|
                *UseToDefs.find(Candidate)->second.begin());
 | 
						|
        }
 | 
						|
      }
 | 
						|
      bool Found = false;
 | 
						|
      for (auto &Use : *Users) {
 | 
						|
        if (!DefsOfPotentialCandidates.count(Use)) {
 | 
						|
          ++NumTooCplxLvl1;
 | 
						|
          Found = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (!Found)
 | 
						|
        ++NumCplxLvl1;
 | 
						|
#endif // DEBUG
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    bool IsL2Add = (ImmediateDefOpc == AArch64::ADDXri);
 | 
						|
    // If the chain is three instructions long and ldr is the second element,
 | 
						|
    // then this ldr must load form GOT, otherwise this is not a correct chain.
 | 
						|
    if (L2 && !IsL2Add && L2->getOperand(2).getTargetFlags() != AArch64II::MO_GOT)
 | 
						|
      continue;
 | 
						|
    SmallVector<const MachineInstr *, 3> Args;
 | 
						|
    MCLOHType Kind;
 | 
						|
    if (isCandidateLoad(Candidate)) {
 | 
						|
      if (!L2) {
 | 
						|
        // At this point, the candidate LOH indicates that the ldr instruction
 | 
						|
        // may use a direct access to the symbol. There is not such encoding
 | 
						|
        // for loads of byte and half.
 | 
						|
        if (!supportLoadFromLiteral(Candidate))
 | 
						|
          continue;
 | 
						|
 | 
						|
        DEBUG(dbgs() << "Record AdrpLdr:\n" << *L1 << '\n' << *Candidate
 | 
						|
                     << '\n');
 | 
						|
        Kind = MCLOH_AdrpLdr;
 | 
						|
        Args.push_back(L1);
 | 
						|
        Args.push_back(Candidate);
 | 
						|
        assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) &&
 | 
						|
               "L1 already involved in LOH.");
 | 
						|
        assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) &&
 | 
						|
               "Candidate already involved in LOH.");
 | 
						|
        ++NumADRPToLDR;
 | 
						|
      } else {
 | 
						|
        DEBUG(dbgs() << "Record Adrp" << (IsL2Add ? "Add" : "LdrGot")
 | 
						|
                     << "Ldr:\n" << *L1 << '\n' << *L2 << '\n' << *Candidate
 | 
						|
                     << '\n');
 | 
						|
 | 
						|
        Kind = IsL2Add ? MCLOH_AdrpAddLdr : MCLOH_AdrpLdrGotLdr;
 | 
						|
        Args.push_back(L1);
 | 
						|
        Args.push_back(L2);
 | 
						|
        Args.push_back(Candidate);
 | 
						|
 | 
						|
        PotentialADROpportunities.remove(L2);
 | 
						|
        assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) &&
 | 
						|
               "L1 already involved in LOH.");
 | 
						|
        assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L2)) &&
 | 
						|
               "L2 already involved in LOH.");
 | 
						|
        assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) &&
 | 
						|
               "Candidate already involved in LOH.");
 | 
						|
#ifdef DEBUG
 | 
						|
        // get the immediate of the load
 | 
						|
        if (Candidate->getOperand(2).getImm() == 0)
 | 
						|
          if (ImmediateDefOpc == AArch64::ADDXri)
 | 
						|
            ++NumADDToLDR;
 | 
						|
          else
 | 
						|
            ++NumLDRToLDR;
 | 
						|
        else if (ImmediateDefOpc == AArch64::ADDXri)
 | 
						|
          ++NumADDToLDRWithImm;
 | 
						|
        else
 | 
						|
          ++NumLDRToLDRWithImm;
 | 
						|
#endif // DEBUG
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      if (ImmediateDefOpc == AArch64::ADRP)
 | 
						|
        continue;
 | 
						|
      else {
 | 
						|
 | 
						|
        DEBUG(dbgs() << "Record Adrp" << (IsL2Add ? "Add" : "LdrGot")
 | 
						|
                     << "Str:\n" << *L1 << '\n' << *L2 << '\n' << *Candidate
 | 
						|
                     << '\n');
 | 
						|
 | 
						|
        Kind = IsL2Add ? MCLOH_AdrpAddStr : MCLOH_AdrpLdrGotStr;
 | 
						|
        Args.push_back(L1);
 | 
						|
        Args.push_back(L2);
 | 
						|
        Args.push_back(Candidate);
 | 
						|
 | 
						|
        PotentialADROpportunities.remove(L2);
 | 
						|
        assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) &&
 | 
						|
               "L1 already involved in LOH.");
 | 
						|
        assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L2)) &&
 | 
						|
               "L2 already involved in LOH.");
 | 
						|
        assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) &&
 | 
						|
               "Candidate already involved in LOH.");
 | 
						|
#ifdef DEBUG
 | 
						|
        // get the immediate of the store
 | 
						|
        if (Candidate->getOperand(2).getImm() == 0)
 | 
						|
          if (ImmediateDefOpc == AArch64::ADDXri)
 | 
						|
            ++NumADDToSTR;
 | 
						|
          else
 | 
						|
            ++NumLDRToSTR;
 | 
						|
        else if (ImmediateDefOpc == AArch64::ADDXri)
 | 
						|
          ++NumADDToSTRWithImm;
 | 
						|
        else
 | 
						|
          ++NumLDRToSTRWithImm;
 | 
						|
#endif // DEBUG
 | 
						|
      }
 | 
						|
    }
 | 
						|
    AArch64FI.addLOHDirective(Kind, Args);
 | 
						|
  }
 | 
						|
 | 
						|
  // Now, we grabbed all the big patterns, check ADR opportunities.
 | 
						|
  for (const MachineInstr *Candidate : PotentialADROpportunities)
 | 
						|
    registerADRCandidate(*Candidate, UseToDefs, DefsPerColorToUses, AArch64FI,
 | 
						|
                         InvolvedInLOHs, RegToId);
 | 
						|
}
 | 
						|
 | 
						|
/// Look for every register defined by potential LOHs candidates.
 | 
						|
/// Map these registers with dense id in @p RegToId and vice-versa in
 | 
						|
/// @p IdToReg. @p IdToReg is populated only in DEBUG mode.
 | 
						|
static void collectInvolvedReg(MachineFunction &MF, MapRegToId &RegToId,
 | 
						|
                               MapIdToReg &IdToReg,
 | 
						|
                               const TargetRegisterInfo *TRI) {
 | 
						|
  unsigned CurRegId = 0;
 | 
						|
  if (!PreCollectRegister) {
 | 
						|
    unsigned NbReg = TRI->getNumRegs();
 | 
						|
    for (; CurRegId < NbReg; ++CurRegId) {
 | 
						|
      RegToId[CurRegId] = CurRegId;
 | 
						|
      DEBUG(IdToReg.push_back(CurRegId));
 | 
						|
      DEBUG(assert(IdToReg[CurRegId] == CurRegId && "Reg index mismatches"));
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "** Collect Involved Register\n");
 | 
						|
  for (const auto &MBB : MF) {
 | 
						|
    for (const MachineInstr &MI : MBB) {
 | 
						|
      if (!canDefBePartOfLOH(&MI))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Process defs
 | 
						|
      for (MachineInstr::const_mop_iterator IO = MI.operands_begin(),
 | 
						|
                                            IOEnd = MI.operands_end();
 | 
						|
           IO != IOEnd; ++IO) {
 | 
						|
        if (!IO->isReg() || !IO->isDef())
 | 
						|
          continue;
 | 
						|
        unsigned CurReg = IO->getReg();
 | 
						|
        for (MCRegAliasIterator AI(CurReg, TRI, true); AI.isValid(); ++AI)
 | 
						|
          if (RegToId.find(*AI) == RegToId.end()) {
 | 
						|
            DEBUG(IdToReg.push_back(*AI);
 | 
						|
                  assert(IdToReg[CurRegId] == *AI &&
 | 
						|
                         "Reg index mismatches insertion index."));
 | 
						|
            RegToId[*AI] = CurRegId++;
 | 
						|
            DEBUG(dbgs() << "Register: " << PrintReg(*AI, TRI) << '\n');
 | 
						|
          }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool AArch64CollectLOH::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  const TargetMachine &TM = MF.getTarget();
 | 
						|
  const TargetRegisterInfo *TRI = TM.getSubtargetImpl()->getRegisterInfo();
 | 
						|
  const MachineDominatorTree *MDT = &getAnalysis<MachineDominatorTree>();
 | 
						|
 | 
						|
  MapRegToId RegToId;
 | 
						|
  MapIdToReg IdToReg;
 | 
						|
  AArch64FunctionInfo *AArch64FI = MF.getInfo<AArch64FunctionInfo>();
 | 
						|
  assert(AArch64FI && "No MachineFunctionInfo for this function!");
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Looking for LOH in " << MF.getName() << '\n');
 | 
						|
 | 
						|
  collectInvolvedReg(MF, RegToId, IdToReg, TRI);
 | 
						|
  if (RegToId.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineInstr *DummyOp = nullptr;
 | 
						|
  if (BasicBlockScopeOnly) {
 | 
						|
    const AArch64InstrInfo *TII = static_cast<const AArch64InstrInfo *>(
 | 
						|
        TM.getSubtargetImpl()->getInstrInfo());
 | 
						|
    // For local analysis, create a dummy operation to record uses that are not
 | 
						|
    // local.
 | 
						|
    DummyOp = MF.CreateMachineInstr(TII->get(AArch64::COPY), DebugLoc());
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned NbReg = RegToId.size();
 | 
						|
  bool Modified = false;
 | 
						|
 | 
						|
  // Start with ADRP.
 | 
						|
  InstrToInstrs *ColorOpToReachedUses = new InstrToInstrs[NbReg];
 | 
						|
 | 
						|
  // Compute the reaching def in ADRP mode, meaning ADRP definitions
 | 
						|
  // are first considered as uses.
 | 
						|
  reachingDef(MF, ColorOpToReachedUses, RegToId, true, DummyOp);
 | 
						|
  DEBUG(dbgs() << "ADRP reaching defs\n");
 | 
						|
  DEBUG(printReachingDef(ColorOpToReachedUses, NbReg, TRI, IdToReg));
 | 
						|
 | 
						|
  // Translate the definition to uses map into a use to definitions map to ease
 | 
						|
  // statistic computation.
 | 
						|
  InstrToInstrs ADRPToReachingDefs;
 | 
						|
  reachedUsesToDefs(ADRPToReachingDefs, ColorOpToReachedUses, RegToId, true);
 | 
						|
 | 
						|
  // Compute LOH for ADRP.
 | 
						|
  computeADRP(ADRPToReachingDefs, *AArch64FI, MDT);
 | 
						|
  delete[] ColorOpToReachedUses;
 | 
						|
 | 
						|
  // Continue with general ADRP -> ADD/LDR -> LDR/STR pattern.
 | 
						|
  ColorOpToReachedUses = new InstrToInstrs[NbReg];
 | 
						|
 | 
						|
  // first perform a regular reaching def analysis.
 | 
						|
  reachingDef(MF, ColorOpToReachedUses, RegToId, false, DummyOp);
 | 
						|
  DEBUG(dbgs() << "All reaching defs\n");
 | 
						|
  DEBUG(printReachingDef(ColorOpToReachedUses, NbReg, TRI, IdToReg));
 | 
						|
 | 
						|
  // Turn that into a use to defs to ease statistic computation.
 | 
						|
  InstrToInstrs UsesToReachingDefs;
 | 
						|
  reachedUsesToDefs(UsesToReachingDefs, ColorOpToReachedUses, RegToId, false);
 | 
						|
 | 
						|
  // Compute other than AdrpAdrp LOH.
 | 
						|
  computeOthers(UsesToReachingDefs, ColorOpToReachedUses, *AArch64FI, RegToId,
 | 
						|
                MDT);
 | 
						|
  delete[] ColorOpToReachedUses;
 | 
						|
 | 
						|
  if (BasicBlockScopeOnly)
 | 
						|
    MF.DeleteMachineInstr(DummyOp);
 | 
						|
 | 
						|
  return Modified;
 | 
						|
}
 | 
						|
 | 
						|
/// createAArch64CollectLOHPass - returns an instance of the Statistic for
 | 
						|
/// linker optimization pass.
 | 
						|
FunctionPass *llvm::createAArch64CollectLOHPass() {
 | 
						|
  return new AArch64CollectLOH();
 | 
						|
}
 |