mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@34803 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2112 lines
		
	
	
		
			75 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2112 lines
		
	
	
		
			75 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- Reader.cpp - Code to read bytecode files ---------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This library implements the functionality defined in llvm/Bytecode/Reader.h
 | |
| //
 | |
| // Note that this library should be as fast as possible, reentrant, and
 | |
| // threadsafe!!
 | |
| //
 | |
| // TODO: Allow passing in an option to ignore the symbol table
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "Reader.h"
 | |
| #include "llvm/Bytecode/BytecodeHandler.h"
 | |
| #include "llvm/BasicBlock.h"
 | |
| #include "llvm/CallingConv.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/InlineAsm.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/TypeSymbolTable.h"
 | |
| #include "llvm/Bytecode/Format.h"
 | |
| #include "llvm/Config/alloca.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include <sstream>
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   /// @brief A class for maintaining the slot number definition
 | |
|   /// as a placeholder for the actual definition for forward constants defs.
 | |
|   class ConstantPlaceHolder : public ConstantExpr {
 | |
|     ConstantPlaceHolder();                       // DO NOT IMPLEMENT
 | |
|     void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
 | |
|   public:
 | |
|     Use Op;
 | |
|     ConstantPlaceHolder(const Type *Ty)
 | |
|       : ConstantExpr(Ty, Instruction::UserOp1, &Op, 1),
 | |
|         Op(UndefValue::get(Type::Int32Ty), this) {
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| // Provide some details on error
 | |
| inline void BytecodeReader::error(const std::string& err) {
 | |
|   ErrorMsg = err + " (Vers=" + itostr(RevisionNum) + ", Pos=" 
 | |
|     + itostr(At-MemStart) + ")";
 | |
|   if (Handler) Handler->handleError(ErrorMsg);
 | |
|   longjmp(context,1);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Bytecode Reading Methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// Determine if the current block being read contains any more data.
 | |
| inline bool BytecodeReader::moreInBlock() {
 | |
|   return At < BlockEnd;
 | |
| }
 | |
| 
 | |
| /// Throw an error if we've read past the end of the current block
 | |
| inline void BytecodeReader::checkPastBlockEnd(const char * block_name) {
 | |
|   if (At > BlockEnd)
 | |
|     error(std::string("Attempt to read past the end of ") + block_name +
 | |
|           " block.");
 | |
| }
 | |
| 
 | |
| /// Read a whole unsigned integer
 | |
| inline unsigned BytecodeReader::read_uint() {
 | |
|   if (At+4 > BlockEnd)
 | |
|     error("Ran out of data reading uint!");
 | |
|   At += 4;
 | |
|   return At[-4] | (At[-3] << 8) | (At[-2] << 16) | (At[-1] << 24);
 | |
| }
 | |
| 
 | |
| /// Read a variable-bit-rate encoded unsigned integer
 | |
| inline unsigned BytecodeReader::read_vbr_uint() {
 | |
|   unsigned Shift = 0;
 | |
|   unsigned Result = 0;
 | |
| 
 | |
|   do {
 | |
|     if (At == BlockEnd)
 | |
|       error("Ran out of data reading vbr_uint!");
 | |
|     Result |= (unsigned)((*At++) & 0x7F) << Shift;
 | |
|     Shift += 7;
 | |
|   } while (At[-1] & 0x80);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// Read a variable-bit-rate encoded unsigned 64-bit integer.
 | |
| inline uint64_t BytecodeReader::read_vbr_uint64() {
 | |
|   unsigned Shift = 0;
 | |
|   uint64_t Result = 0;
 | |
| 
 | |
|   do {
 | |
|     if (At == BlockEnd)
 | |
|       error("Ran out of data reading vbr_uint64!");
 | |
|     Result |= (uint64_t)((*At++) & 0x7F) << Shift;
 | |
|     Shift += 7;
 | |
|   } while (At[-1] & 0x80);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// Read a variable-bit-rate encoded signed 64-bit integer.
 | |
| inline int64_t BytecodeReader::read_vbr_int64() {
 | |
|   uint64_t R = read_vbr_uint64();
 | |
|   if (R & 1) {
 | |
|     if (R != 1)
 | |
|       return -(int64_t)(R >> 1);
 | |
|     else   // There is no such thing as -0 with integers.  "-0" really means
 | |
|            // 0x8000000000000000.
 | |
|       return 1LL << 63;
 | |
|   } else
 | |
|     return  (int64_t)(R >> 1);
 | |
| }
 | |
| 
 | |
| /// Read a pascal-style string (length followed by text)
 | |
| inline std::string BytecodeReader::read_str() {
 | |
|   unsigned Size = read_vbr_uint();
 | |
|   const unsigned char *OldAt = At;
 | |
|   At += Size;
 | |
|   if (At > BlockEnd)             // Size invalid?
 | |
|     error("Ran out of data reading a string!");
 | |
|   return std::string((char*)OldAt, Size);
 | |
| }
 | |
| 
 | |
| void BytecodeReader::read_str(SmallVectorImpl<char> &StrData) {
 | |
|   StrData.clear();
 | |
|   unsigned Size = read_vbr_uint();
 | |
|   const unsigned char *OldAt = At;
 | |
|   At += Size;
 | |
|   if (At > BlockEnd)             // Size invalid?
 | |
|     error("Ran out of data reading a string!");
 | |
|   StrData.append(OldAt, At);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Read an arbitrary block of data
 | |
| inline void BytecodeReader::read_data(void *Ptr, void *End) {
 | |
|   unsigned char *Start = (unsigned char *)Ptr;
 | |
|   unsigned Amount = (unsigned char *)End - Start;
 | |
|   if (At+Amount > BlockEnd)
 | |
|     error("Ran out of data!");
 | |
|   std::copy(At, At+Amount, Start);
 | |
|   At += Amount;
 | |
| }
 | |
| 
 | |
| /// Read a float value in little-endian order
 | |
| inline void BytecodeReader::read_float(float& FloatVal) {
 | |
|   /// FIXME: This isn't optimal, it has size problems on some platforms
 | |
|   /// where FP is not IEEE.
 | |
|   FloatVal = BitsToFloat(At[0] | (At[1] << 8) | (At[2] << 16) | (At[3] << 24));
 | |
|   At+=sizeof(uint32_t);
 | |
| }
 | |
| 
 | |
| /// Read a double value in little-endian order
 | |
| inline void BytecodeReader::read_double(double& DoubleVal) {
 | |
|   /// FIXME: This isn't optimal, it has size problems on some platforms
 | |
|   /// where FP is not IEEE.
 | |
|   DoubleVal = BitsToDouble((uint64_t(At[0]) <<  0) | (uint64_t(At[1]) << 8) |
 | |
|                            (uint64_t(At[2]) << 16) | (uint64_t(At[3]) << 24) |
 | |
|                            (uint64_t(At[4]) << 32) | (uint64_t(At[5]) << 40) |
 | |
|                            (uint64_t(At[6]) << 48) | (uint64_t(At[7]) << 56));
 | |
|   At+=sizeof(uint64_t);
 | |
| }
 | |
| 
 | |
| /// Read a block header and obtain its type and size
 | |
| inline void BytecodeReader::read_block(unsigned &Type, unsigned &Size) {
 | |
|   Size = read_uint(); // Read the header
 | |
|   Type = Size & 0x1F; // mask low order five bits to get type
 | |
|   Size >>= 5;         // high order 27 bits is the size
 | |
|   BlockStart = At;
 | |
|   if (At + Size > BlockEnd)
 | |
|     error("Attempt to size a block past end of memory");
 | |
|   BlockEnd = At + Size;
 | |
|   if (Handler) Handler->handleBlock(Type, BlockStart, Size);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // IR Lookup Methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// Determine if a type id has an implicit null value
 | |
| inline bool BytecodeReader::hasImplicitNull(unsigned TyID) {
 | |
|   return TyID != Type::LabelTyID && TyID != Type::VoidTyID;
 | |
| }
 | |
| 
 | |
| /// Obtain a type given a typeid and account for things like function level vs 
 | |
| /// module level, and the offsetting for the primitive types.
 | |
| const Type *BytecodeReader::getType(unsigned ID) {
 | |
|   if (ID <= Type::LastPrimitiveTyID)
 | |
|     if (const Type *T = Type::getPrimitiveType((Type::TypeID)ID))
 | |
|       return T;   // Asked for a primitive type...
 | |
| 
 | |
|   // Otherwise, derived types need offset...
 | |
|   ID -= Type::FirstDerivedTyID;
 | |
| 
 | |
|   // Is it a module-level type?
 | |
|   if (ID < ModuleTypes.size())
 | |
|     return ModuleTypes[ID].get();
 | |
| 
 | |
|   // Nope, is it a function-level type?
 | |
|   ID -= ModuleTypes.size();
 | |
|   if (ID < FunctionTypes.size())
 | |
|     return FunctionTypes[ID].get();
 | |
| 
 | |
|   error("Illegal type reference!");
 | |
|   return Type::VoidTy;
 | |
| }
 | |
| 
 | |
| /// This method just saves some coding. It uses read_vbr_uint to read in a 
 | |
| /// type id, errors that its not the type type, and then calls getType to 
 | |
| /// return the type value.
 | |
| inline const Type* BytecodeReader::readType() {
 | |
|   return getType(read_vbr_uint());
 | |
| }
 | |
| 
 | |
| /// Get the slot number associated with a type accounting for primitive
 | |
| /// types and function level vs module level.
 | |
| unsigned BytecodeReader::getTypeSlot(const Type *Ty) {
 | |
|   if (Ty->isPrimitiveType())
 | |
|     return Ty->getTypeID();
 | |
| 
 | |
|   // Check the function level types first...
 | |
|   TypeListTy::iterator I = std::find(FunctionTypes.begin(),
 | |
|                                      FunctionTypes.end(), Ty);
 | |
| 
 | |
|   if (I != FunctionTypes.end())
 | |
|     return Type::FirstDerivedTyID + ModuleTypes.size() +
 | |
|            (&*I - &FunctionTypes[0]);
 | |
| 
 | |
|   // If we don't have our cache yet, build it now.
 | |
|   if (ModuleTypeIDCache.empty()) {
 | |
|     unsigned N = 0;
 | |
|     ModuleTypeIDCache.reserve(ModuleTypes.size());
 | |
|     for (TypeListTy::iterator I = ModuleTypes.begin(), E = ModuleTypes.end();
 | |
|          I != E; ++I, ++N)
 | |
|       ModuleTypeIDCache.push_back(std::make_pair(*I, N));
 | |
|     
 | |
|     std::sort(ModuleTypeIDCache.begin(), ModuleTypeIDCache.end());
 | |
|   }
 | |
|   
 | |
|   // Binary search the cache for the entry.
 | |
|   std::vector<std::pair<const Type*, unsigned> >::iterator IT =
 | |
|     std::lower_bound(ModuleTypeIDCache.begin(), ModuleTypeIDCache.end(),
 | |
|                      std::make_pair(Ty, 0U));
 | |
|   if (IT == ModuleTypeIDCache.end() || IT->first != Ty)
 | |
|     error("Didn't find type in ModuleTypes.");
 | |
|     
 | |
|   return Type::FirstDerivedTyID + IT->second;
 | |
| }
 | |
| 
 | |
| /// Retrieve a value of a given type and slot number, possibly creating
 | |
| /// it if it doesn't already exist.
 | |
| Value * BytecodeReader::getValue(unsigned type, unsigned oNum, bool Create) {
 | |
|   assert(type != Type::LabelTyID && "getValue() cannot get blocks!");
 | |
|   unsigned Num = oNum;
 | |
| 
 | |
|   // By default, the global type id is the type id passed in
 | |
|   unsigned GlobalTyID = type;
 | |
| 
 | |
|   if (hasImplicitNull(GlobalTyID)) {
 | |
|     const Type *Ty = getType(type);
 | |
|     if (!isa<OpaqueType>(Ty)) {
 | |
|       if (Num == 0)
 | |
|         return Constant::getNullValue(Ty);
 | |
|       --Num;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (GlobalTyID < ModuleValues.size() && ModuleValues[GlobalTyID]) {
 | |
|     if (Num < ModuleValues[GlobalTyID]->size())
 | |
|       return ModuleValues[GlobalTyID]->getOperand(Num);
 | |
|     Num -= ModuleValues[GlobalTyID]->size();
 | |
|   }
 | |
| 
 | |
|   if (FunctionValues.size() > type &&
 | |
|       FunctionValues[type] &&
 | |
|       Num < FunctionValues[type]->size())
 | |
|     return FunctionValues[type]->getOperand(Num);
 | |
| 
 | |
|   if (!Create) return 0;  // Do not create a placeholder?
 | |
| 
 | |
|   // Did we already create a place holder?
 | |
|   std::pair<unsigned,unsigned> KeyValue(type, oNum);
 | |
|   ForwardReferenceMap::iterator I = ForwardReferences.lower_bound(KeyValue);
 | |
|   if (I != ForwardReferences.end() && I->first == KeyValue)
 | |
|     return I->second;   // We have already created this placeholder
 | |
| 
 | |
|   // If the type exists (it should)
 | |
|   if (const Type* Ty = getType(type)) {
 | |
|     // Create the place holder
 | |
|     Value *Val = new Argument(Ty);
 | |
|     ForwardReferences.insert(I, std::make_pair(KeyValue, Val));
 | |
|     return Val;
 | |
|   }
 | |
|   error("Can't create placeholder for value of type slot #" + utostr(type));
 | |
|   return 0; // just silence warning, error calls longjmp
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Just like getValue, except that it returns a null pointer
 | |
| /// only on error.  It always returns a constant (meaning that if the value is
 | |
| /// defined, but is not a constant, that is an error).  If the specified
 | |
| /// constant hasn't been parsed yet, a placeholder is defined and used.
 | |
| /// Later, after the real value is parsed, the placeholder is eliminated.
 | |
| Constant* BytecodeReader::getConstantValue(unsigned TypeSlot, unsigned Slot) {
 | |
|   if (Value *V = getValue(TypeSlot, Slot, false))
 | |
|     if (Constant *C = dyn_cast<Constant>(V))
 | |
|       return C;   // If we already have the value parsed, just return it
 | |
|     else
 | |
|       error("Value for slot " + utostr(Slot) +
 | |
|             " is expected to be a constant!");
 | |
| 
 | |
|   std::pair<unsigned, unsigned> Key(TypeSlot, Slot);
 | |
|   ConstantRefsType::iterator I = ConstantFwdRefs.lower_bound(Key);
 | |
| 
 | |
|   if (I != ConstantFwdRefs.end() && I->first == Key) {
 | |
|     return I->second;
 | |
|   } else {
 | |
|     // Create a placeholder for the constant reference and
 | |
|     // keep track of the fact that we have a forward ref to recycle it
 | |
|     Constant *C = new ConstantPlaceHolder(getType(TypeSlot));
 | |
| 
 | |
|     // Keep track of the fact that we have a forward ref to recycle it
 | |
|     ConstantFwdRefs.insert(I, std::make_pair(Key, C));
 | |
|     return C;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // IR Construction Methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// As values are created, they are inserted into the appropriate place
 | |
| /// with this method. The ValueTable argument must be one of ModuleValues
 | |
| /// or FunctionValues data members of this class.
 | |
| unsigned BytecodeReader::insertValue(Value *Val, unsigned type,
 | |
|                                       ValueTable &ValueTab) {
 | |
|   if (ValueTab.size() <= type)
 | |
|     ValueTab.resize(type+1);
 | |
| 
 | |
|   if (!ValueTab[type]) ValueTab[type] = new ValueList();
 | |
| 
 | |
|   ValueTab[type]->push_back(Val);
 | |
| 
 | |
|   bool HasOffset = hasImplicitNull(type) && !isa<OpaqueType>(Val->getType());
 | |
|   return ValueTab[type]->size()-1 + HasOffset;
 | |
| }
 | |
| 
 | |
| /// Insert the arguments of a function as new values in the reader.
 | |
| void BytecodeReader::insertArguments(Function* F) {
 | |
|   const FunctionType *FT = F->getFunctionType();
 | |
|   Function::arg_iterator AI = F->arg_begin();
 | |
|   for (FunctionType::param_iterator It = FT->param_begin();
 | |
|        It != FT->param_end(); ++It, ++AI)
 | |
|     insertValue(AI, getTypeSlot(AI->getType()), FunctionValues);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Bytecode Parsing Methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// This method parses a single instruction. The instruction is
 | |
| /// inserted at the end of the \p BB provided. The arguments of
 | |
| /// the instruction are provided in the \p Oprnds vector.
 | |
| void BytecodeReader::ParseInstruction(SmallVector<unsigned, 8> &Oprnds,
 | |
|                                       BasicBlock* BB) {
 | |
|   BufPtr SaveAt = At;
 | |
| 
 | |
|   // Clear instruction data
 | |
|   Oprnds.clear();
 | |
|   unsigned iType = 0;
 | |
|   unsigned Opcode = 0;
 | |
|   unsigned Op = read_uint();
 | |
| 
 | |
|   // bits   Instruction format:        Common to all formats
 | |
|   // --------------------------
 | |
|   // 01-00: Opcode type, fixed to 1.
 | |
|   // 07-02: Opcode
 | |
|   Opcode    = (Op >> 2) & 63;
 | |
|   Oprnds.resize((Op >> 0) & 03);
 | |
| 
 | |
|   // Extract the operands
 | |
|   switch (Oprnds.size()) {
 | |
|   case 1:
 | |
|     // bits   Instruction format:
 | |
|     // --------------------------
 | |
|     // 19-08: Resulting type plane
 | |
|     // 31-20: Operand #1 (if set to (2^12-1), then zero operands)
 | |
|     //
 | |
|     iType   = (Op >>  8) & 4095;
 | |
|     Oprnds[0] = (Op >> 20) & 4095;
 | |
|     if (Oprnds[0] == 4095)    // Handle special encoding for 0 operands...
 | |
|       Oprnds.resize(0);
 | |
|     break;
 | |
|   case 2:
 | |
|     // bits   Instruction format:
 | |
|     // --------------------------
 | |
|     // 15-08: Resulting type plane
 | |
|     // 23-16: Operand #1
 | |
|     // 31-24: Operand #2
 | |
|     //
 | |
|     iType   = (Op >>  8) & 255;
 | |
|     Oprnds[0] = (Op >> 16) & 255;
 | |
|     Oprnds[1] = (Op >> 24) & 255;
 | |
|     break;
 | |
|   case 3:
 | |
|     // bits   Instruction format:
 | |
|     // --------------------------
 | |
|     // 13-08: Resulting type plane
 | |
|     // 19-14: Operand #1
 | |
|     // 25-20: Operand #2
 | |
|     // 31-26: Operand #3
 | |
|     //
 | |
|     iType   = (Op >>  8) & 63;
 | |
|     Oprnds[0] = (Op >> 14) & 63;
 | |
|     Oprnds[1] = (Op >> 20) & 63;
 | |
|     Oprnds[2] = (Op >> 26) & 63;
 | |
|     break;
 | |
|   case 0:
 | |
|     At -= 4;  // Hrm, try this again...
 | |
|     Opcode = read_vbr_uint();
 | |
|     Opcode >>= 2;
 | |
|     iType = read_vbr_uint();
 | |
| 
 | |
|     unsigned NumOprnds = read_vbr_uint();
 | |
|     Oprnds.resize(NumOprnds);
 | |
| 
 | |
|     if (NumOprnds == 0)
 | |
|       error("Zero-argument instruction found; this is invalid.");
 | |
| 
 | |
|     for (unsigned i = 0; i != NumOprnds; ++i)
 | |
|       Oprnds[i] = read_vbr_uint();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   const Type *InstTy = getType(iType);
 | |
| 
 | |
|   // Make the necessary adjustments for dealing with backwards compatibility
 | |
|   // of opcodes.
 | |
|   Instruction* Result = 0;
 | |
| 
 | |
|   // First, handle the easy binary operators case
 | |
|   if (Opcode >= Instruction::BinaryOpsBegin &&
 | |
|       Opcode <  Instruction::BinaryOpsEnd  && Oprnds.size() == 2) {
 | |
|     Result = BinaryOperator::create(Instruction::BinaryOps(Opcode),
 | |
|                                     getValue(iType, Oprnds[0]),
 | |
|                                     getValue(iType, Oprnds[1]));
 | |
|   } else {
 | |
|     // Indicate that we don't think this is a call instruction (yet).
 | |
|     // Process based on the Opcode read
 | |
|     switch (Opcode) {
 | |
|     default: // There was an error, this shouldn't happen.
 | |
|       if (Result == 0)
 | |
|         error("Illegal instruction read!");
 | |
|       break;
 | |
|     case Instruction::VAArg:
 | |
|       if (Oprnds.size() != 2)
 | |
|         error("Invalid VAArg instruction!");
 | |
|       Result = new VAArgInst(getValue(iType, Oprnds[0]),
 | |
|                              getType(Oprnds[1]));
 | |
|       break;
 | |
|     case Instruction::ExtractElement: {
 | |
|       if (Oprnds.size() != 2)
 | |
|         error("Invalid extractelement instruction!");
 | |
|       Value *V1 = getValue(iType, Oprnds[0]);
 | |
|       Value *V2 = getValue(Int32TySlot, Oprnds[1]);
 | |
|       
 | |
|       if (!ExtractElementInst::isValidOperands(V1, V2))
 | |
|         error("Invalid extractelement instruction!");
 | |
| 
 | |
|       Result = new ExtractElementInst(V1, V2);
 | |
|       break;
 | |
|     }
 | |
|     case Instruction::InsertElement: {
 | |
|       const VectorType *VectorTy = dyn_cast<VectorType>(InstTy);
 | |
|       if (!VectorTy || Oprnds.size() != 3)
 | |
|         error("Invalid insertelement instruction!");
 | |
|       
 | |
|       Value *V1 = getValue(iType, Oprnds[0]);
 | |
|       Value *V2 = getValue(getTypeSlot(VectorTy->getElementType()),Oprnds[1]);
 | |
|       Value *V3 = getValue(Int32TySlot, Oprnds[2]);
 | |
|         
 | |
|       if (!InsertElementInst::isValidOperands(V1, V2, V3))
 | |
|         error("Invalid insertelement instruction!");
 | |
|       Result = new InsertElementInst(V1, V2, V3);
 | |
|       break;
 | |
|     }
 | |
|     case Instruction::ShuffleVector: {
 | |
|       const VectorType *VectorTy = dyn_cast<VectorType>(InstTy);
 | |
|       if (!VectorTy || Oprnds.size() != 3)
 | |
|         error("Invalid shufflevector instruction!");
 | |
|       Value *V1 = getValue(iType, Oprnds[0]);
 | |
|       Value *V2 = getValue(iType, Oprnds[1]);
 | |
|       const VectorType *EltTy = 
 | |
|         VectorType::get(Type::Int32Ty, VectorTy->getNumElements());
 | |
|       Value *V3 = getValue(getTypeSlot(EltTy), Oprnds[2]);
 | |
|       if (!ShuffleVectorInst::isValidOperands(V1, V2, V3))
 | |
|         error("Invalid shufflevector instruction!");
 | |
|       Result = new ShuffleVectorInst(V1, V2, V3);
 | |
|       break;
 | |
|     }
 | |
|     case Instruction::Trunc:
 | |
|       if (Oprnds.size() != 2)
 | |
|         error("Invalid cast instruction!");
 | |
|       Result = new TruncInst(getValue(iType, Oprnds[0]), 
 | |
|                              getType(Oprnds[1]));
 | |
|       break;
 | |
|     case Instruction::ZExt:
 | |
|       if (Oprnds.size() != 2)
 | |
|         error("Invalid cast instruction!");
 | |
|       Result = new ZExtInst(getValue(iType, Oprnds[0]), 
 | |
|                             getType(Oprnds[1]));
 | |
|       break;
 | |
|     case Instruction::SExt:
 | |
|       if (Oprnds.size() != 2)
 | |
|         error("Invalid Cast instruction!");
 | |
|       Result = new SExtInst(getValue(iType, Oprnds[0]),
 | |
|                             getType(Oprnds[1]));
 | |
|       break;
 | |
|     case Instruction::FPTrunc:
 | |
|       if (Oprnds.size() != 2)
 | |
|         error("Invalid cast instruction!");
 | |
|       Result = new FPTruncInst(getValue(iType, Oprnds[0]), 
 | |
|                                getType(Oprnds[1]));
 | |
|       break;
 | |
|     case Instruction::FPExt:
 | |
|       if (Oprnds.size() != 2)
 | |
|         error("Invalid cast instruction!");
 | |
|       Result = new FPExtInst(getValue(iType, Oprnds[0]), 
 | |
|                              getType(Oprnds[1]));
 | |
|       break;
 | |
|     case Instruction::UIToFP:
 | |
|       if (Oprnds.size() != 2)
 | |
|         error("Invalid cast instruction!");
 | |
|       Result = new UIToFPInst(getValue(iType, Oprnds[0]), 
 | |
|                               getType(Oprnds[1]));
 | |
|       break;
 | |
|     case Instruction::SIToFP:
 | |
|       if (Oprnds.size() != 2)
 | |
|         error("Invalid cast instruction!");
 | |
|       Result = new SIToFPInst(getValue(iType, Oprnds[0]), 
 | |
|                               getType(Oprnds[1]));
 | |
|       break;
 | |
|     case Instruction::FPToUI:
 | |
|       if (Oprnds.size() != 2)
 | |
|         error("Invalid cast instruction!");
 | |
|       Result = new FPToUIInst(getValue(iType, Oprnds[0]), 
 | |
|                               getType(Oprnds[1]));
 | |
|       break;
 | |
|     case Instruction::FPToSI:
 | |
|       if (Oprnds.size() != 2)
 | |
|         error("Invalid cast instruction!");
 | |
|       Result = new FPToSIInst(getValue(iType, Oprnds[0]), 
 | |
|                               getType(Oprnds[1]));
 | |
|       break;
 | |
|     case Instruction::IntToPtr:
 | |
|       if (Oprnds.size() != 2)
 | |
|         error("Invalid cast instruction!");
 | |
|       Result = new IntToPtrInst(getValue(iType, Oprnds[0]), 
 | |
|                                 getType(Oprnds[1]));
 | |
|       break;
 | |
|     case Instruction::PtrToInt:
 | |
|       if (Oprnds.size() != 2)
 | |
|         error("Invalid cast instruction!");
 | |
|       Result = new PtrToIntInst(getValue(iType, Oprnds[0]), 
 | |
|                                 getType(Oprnds[1]));
 | |
|       break;
 | |
|     case Instruction::BitCast:
 | |
|       if (Oprnds.size() != 2)
 | |
|         error("Invalid cast instruction!");
 | |
|       Result = new BitCastInst(getValue(iType, Oprnds[0]),
 | |
|                                getType(Oprnds[1]));
 | |
|       break;
 | |
|     case Instruction::Select:
 | |
|       if (Oprnds.size() != 3)
 | |
|         error("Invalid Select instruction!");
 | |
|       Result = new SelectInst(getValue(BoolTySlot, Oprnds[0]),
 | |
|                               getValue(iType, Oprnds[1]),
 | |
|                               getValue(iType, Oprnds[2]));
 | |
|       break;
 | |
|     case Instruction::PHI: {
 | |
|       if (Oprnds.size() == 0 || (Oprnds.size() & 1))
 | |
|         error("Invalid phi node encountered!");
 | |
| 
 | |
|       PHINode *PN = new PHINode(InstTy);
 | |
|       PN->reserveOperandSpace(Oprnds.size());
 | |
|       for (unsigned i = 0, e = Oprnds.size(); i != e; i += 2)
 | |
|         PN->addIncoming(
 | |
|           getValue(iType, Oprnds[i]), getBasicBlock(Oprnds[i+1]));
 | |
|       Result = PN;
 | |
|       break;
 | |
|     }
 | |
|     case Instruction::ICmp:
 | |
|     case Instruction::FCmp:
 | |
|       if (Oprnds.size() != 3)
 | |
|         error("Cmp instructions requires 3 operands");
 | |
|       // These instructions encode the comparison predicate as the 3rd operand.
 | |
|       Result = CmpInst::create(Instruction::OtherOps(Opcode),
 | |
|           static_cast<unsigned short>(Oprnds[2]),
 | |
|           getValue(iType, Oprnds[0]), getValue(iType, Oprnds[1]));
 | |
|       break;
 | |
|     case Instruction::Ret:
 | |
|       if (Oprnds.size() == 0)
 | |
|         Result = new ReturnInst();
 | |
|       else if (Oprnds.size() == 1)
 | |
|         Result = new ReturnInst(getValue(iType, Oprnds[0]));
 | |
|       else
 | |
|         error("Unrecognized instruction!");
 | |
|       break;
 | |
| 
 | |
|     case Instruction::Br:
 | |
|       if (Oprnds.size() == 1)
 | |
|         Result = new BranchInst(getBasicBlock(Oprnds[0]));
 | |
|       else if (Oprnds.size() == 3)
 | |
|         Result = new BranchInst(getBasicBlock(Oprnds[0]),
 | |
|             getBasicBlock(Oprnds[1]), getValue(BoolTySlot, Oprnds[2]));
 | |
|       else
 | |
|         error("Invalid number of operands for a 'br' instruction!");
 | |
|       break;
 | |
|     case Instruction::Switch: {
 | |
|       if (Oprnds.size() & 1)
 | |
|         error("Switch statement with odd number of arguments!");
 | |
| 
 | |
|       SwitchInst *I = new SwitchInst(getValue(iType, Oprnds[0]),
 | |
|                                      getBasicBlock(Oprnds[1]),
 | |
|                                      Oprnds.size()/2-1);
 | |
|       for (unsigned i = 2, e = Oprnds.size(); i != e; i += 2)
 | |
|         I->addCase(cast<ConstantInt>(getValue(iType, Oprnds[i])),
 | |
|                    getBasicBlock(Oprnds[i+1]));
 | |
|       Result = I;
 | |
|       break;
 | |
|     }
 | |
|     case 58:                   // Call with extra operand for calling conv
 | |
|     case 59:                   // tail call, Fast CC
 | |
|     case 60:                   // normal call, Fast CC
 | |
|     case 61:                   // tail call, C Calling Conv
 | |
|     case Instruction::Call: {  // Normal Call, C Calling Convention
 | |
|       if (Oprnds.size() == 0)
 | |
|         error("Invalid call instruction encountered!");
 | |
|       Value *F = getValue(iType, Oprnds[0]);
 | |
| 
 | |
|       unsigned CallingConv = CallingConv::C;
 | |
|       bool isTailCall = false;
 | |
| 
 | |
|       if (Opcode == 61 || Opcode == 59)
 | |
|         isTailCall = true;
 | |
|       
 | |
|       if (Opcode == 58) {
 | |
|         isTailCall = Oprnds.back() & 1;
 | |
|         CallingConv = Oprnds.back() >> 1;
 | |
|         Oprnds.pop_back();
 | |
|       } else if (Opcode == 59 || Opcode == 60) {
 | |
|         CallingConv = CallingConv::Fast;
 | |
|       }
 | |
|       
 | |
|       // Check to make sure we have a pointer to function type
 | |
|       const PointerType *PTy = dyn_cast<PointerType>(F->getType());
 | |
|       if (PTy == 0) error("Call to non function pointer value!");
 | |
|       const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType());
 | |
|       if (FTy == 0) error("Call to non function pointer value!");
 | |
| 
 | |
|       SmallVector<Value *, 8> Params;
 | |
|       if (!FTy->isVarArg()) {
 | |
|         FunctionType::param_iterator It = FTy->param_begin();
 | |
| 
 | |
|         for (unsigned i = 1, e = Oprnds.size(); i != e; ++i) {
 | |
|           if (It == FTy->param_end())
 | |
|             error("Invalid call instruction!");
 | |
|           Params.push_back(getValue(getTypeSlot(*It++), Oprnds[i]));
 | |
|         }
 | |
|         if (It != FTy->param_end())
 | |
|           error("Invalid call instruction!");
 | |
|       } else {
 | |
|         Oprnds.erase(Oprnds.begin(), Oprnds.begin()+1);
 | |
| 
 | |
|         unsigned FirstVariableOperand;
 | |
|         if (Oprnds.size() < FTy->getNumParams())
 | |
|           error("Call instruction missing operands!");
 | |
| 
 | |
|         // Read all of the fixed arguments
 | |
|         for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
 | |
|           Params.push_back(
 | |
|             getValue(getTypeSlot(FTy->getParamType(i)),Oprnds[i]));
 | |
| 
 | |
|         FirstVariableOperand = FTy->getNumParams();
 | |
| 
 | |
|         if ((Oprnds.size()-FirstVariableOperand) & 1)
 | |
|           error("Invalid call instruction!");   // Must be pairs of type/value
 | |
| 
 | |
|         for (unsigned i = FirstVariableOperand, e = Oprnds.size();
 | |
|              i != e; i += 2)
 | |
|           Params.push_back(getValue(Oprnds[i], Oprnds[i+1]));
 | |
|       }
 | |
| 
 | |
|       Result = new CallInst(F, &Params[0], Params.size());
 | |
|       if (isTailCall) cast<CallInst>(Result)->setTailCall();
 | |
|       if (CallingConv) cast<CallInst>(Result)->setCallingConv(CallingConv);
 | |
|       break;
 | |
|     }
 | |
|     case Instruction::Invoke: {  // Invoke C CC
 | |
|       if (Oprnds.size() < 3)
 | |
|         error("Invalid invoke instruction!");
 | |
|       Value *F = getValue(iType, Oprnds[0]);
 | |
| 
 | |
|       // Check to make sure we have a pointer to function type
 | |
|       const PointerType *PTy = dyn_cast<PointerType>(F->getType());
 | |
|       if (PTy == 0)
 | |
|         error("Invoke to non function pointer value!");
 | |
|       const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType());
 | |
|       if (FTy == 0)
 | |
|         error("Invoke to non function pointer value!");
 | |
| 
 | |
|       SmallVector<Value *, 8> Params;
 | |
|       BasicBlock *Normal, *Except;
 | |
|       unsigned CallingConv = Oprnds.back();
 | |
|       Oprnds.pop_back();
 | |
| 
 | |
|       if (!FTy->isVarArg()) {
 | |
|         Normal = getBasicBlock(Oprnds[1]);
 | |
|         Except = getBasicBlock(Oprnds[2]);
 | |
| 
 | |
|         FunctionType::param_iterator It = FTy->param_begin();
 | |
|         for (unsigned i = 3, e = Oprnds.size(); i != e; ++i) {
 | |
|           if (It == FTy->param_end())
 | |
|             error("Invalid invoke instruction!");
 | |
|           Params.push_back(getValue(getTypeSlot(*It++), Oprnds[i]));
 | |
|         }
 | |
|         if (It != FTy->param_end())
 | |
|           error("Invalid invoke instruction!");
 | |
|       } else {
 | |
|         Oprnds.erase(Oprnds.begin(), Oprnds.begin()+1);
 | |
| 
 | |
|         Normal = getBasicBlock(Oprnds[0]);
 | |
|         Except = getBasicBlock(Oprnds[1]);
 | |
| 
 | |
|         unsigned FirstVariableArgument = FTy->getNumParams()+2;
 | |
|         for (unsigned i = 2; i != FirstVariableArgument; ++i)
 | |
|           Params.push_back(getValue(getTypeSlot(FTy->getParamType(i-2)),
 | |
|                                     Oprnds[i]));
 | |
| 
 | |
|         // Must be type/value pairs. If not, error out.
 | |
|         if (Oprnds.size()-FirstVariableArgument & 1) 
 | |
|           error("Invalid invoke instruction!");
 | |
| 
 | |
|         for (unsigned i = FirstVariableArgument; i < Oprnds.size(); i += 2)
 | |
|           Params.push_back(getValue(Oprnds[i], Oprnds[i+1]));
 | |
|       }
 | |
| 
 | |
|       Result = new InvokeInst(F, Normal, Except, &Params[0], Params.size());
 | |
|       if (CallingConv) cast<InvokeInst>(Result)->setCallingConv(CallingConv);
 | |
|       break;
 | |
|     }
 | |
|     case Instruction::Malloc: {
 | |
|       unsigned Align = 0;
 | |
|       if (Oprnds.size() == 2)
 | |
|         Align = (1 << Oprnds[1]) >> 1;
 | |
|       else if (Oprnds.size() > 2)
 | |
|         error("Invalid malloc instruction!");
 | |
|       if (!isa<PointerType>(InstTy))
 | |
|         error("Invalid malloc instruction!");
 | |
| 
 | |
|       Result = new MallocInst(cast<PointerType>(InstTy)->getElementType(),
 | |
|                               getValue(Int32TySlot, Oprnds[0]), Align);
 | |
|       break;
 | |
|     }
 | |
|     case Instruction::Alloca: {
 | |
|       unsigned Align = 0;
 | |
|       if (Oprnds.size() == 2)
 | |
|         Align = (1 << Oprnds[1]) >> 1;
 | |
|       else if (Oprnds.size() > 2)
 | |
|         error("Invalid alloca instruction!");
 | |
|       if (!isa<PointerType>(InstTy))
 | |
|         error("Invalid alloca instruction!");
 | |
| 
 | |
|       Result = new AllocaInst(cast<PointerType>(InstTy)->getElementType(),
 | |
|                               getValue(Int32TySlot, Oprnds[0]), Align);
 | |
|       break;
 | |
|     }
 | |
|     case Instruction::Free:
 | |
|       if (!isa<PointerType>(InstTy))
 | |
|         error("Invalid free instruction!");
 | |
|       Result = new FreeInst(getValue(iType, Oprnds[0]));
 | |
|       break;
 | |
|     case Instruction::GetElementPtr: {
 | |
|       if (Oprnds.size() == 0 || !isa<PointerType>(InstTy))
 | |
|         error("Invalid getelementptr instruction!");
 | |
| 
 | |
|       SmallVector<Value*, 8> Idx;
 | |
| 
 | |
|       const Type *NextTy = InstTy;
 | |
|       for (unsigned i = 1, e = Oprnds.size(); i != e; ++i) {
 | |
|         const CompositeType *TopTy = dyn_cast_or_null<CompositeType>(NextTy);
 | |
|         if (!TopTy)
 | |
|           error("Invalid getelementptr instruction!");
 | |
| 
 | |
|         unsigned ValIdx = Oprnds[i];
 | |
|         unsigned IdxTy = 0;
 | |
|         // Struct indices are always uints, sequential type indices can be 
 | |
|         // any of the 32 or 64-bit integer types.  The actual choice of 
 | |
|         // type is encoded in the low bit of the slot number.
 | |
|         if (isa<StructType>(TopTy))
 | |
|           IdxTy = Int32TySlot;
 | |
|         else {
 | |
|           switch (ValIdx & 1) {
 | |
|           default:
 | |
|           case 0: IdxTy = Int32TySlot; break;
 | |
|           case 1: IdxTy = Int64TySlot; break;
 | |
|           }
 | |
|           ValIdx >>= 1;
 | |
|         }
 | |
|         Idx.push_back(getValue(IdxTy, ValIdx));
 | |
|         NextTy = GetElementPtrInst::getIndexedType(InstTy, &Idx[0], Idx.size(),
 | |
|                                                    true);
 | |
|       }
 | |
| 
 | |
|       Result = new GetElementPtrInst(getValue(iType, Oprnds[0]),
 | |
|                                      &Idx[0], Idx.size());
 | |
|       break;
 | |
|     }
 | |
|     case 62:   // volatile load
 | |
|     case Instruction::Load:
 | |
|       if (Oprnds.size() != 1 || !isa<PointerType>(InstTy))
 | |
|         error("Invalid load instruction!");
 | |
|       Result = new LoadInst(getValue(iType, Oprnds[0]), "", Opcode == 62);
 | |
|       break;
 | |
|     case 63:   // volatile store
 | |
|     case Instruction::Store: {
 | |
|       if (!isa<PointerType>(InstTy) || Oprnds.size() != 2)
 | |
|         error("Invalid store instruction!");
 | |
| 
 | |
|       Value *Ptr = getValue(iType, Oprnds[1]);
 | |
|       const Type *ValTy = cast<PointerType>(Ptr->getType())->getElementType();
 | |
|       Result = new StoreInst(getValue(getTypeSlot(ValTy), Oprnds[0]), Ptr,
 | |
|                              Opcode == 63);
 | |
|       break;
 | |
|     }
 | |
|     case Instruction::Unwind:
 | |
|       if (Oprnds.size() != 0) error("Invalid unwind instruction!");
 | |
|       Result = new UnwindInst();
 | |
|       break;
 | |
|     case Instruction::Unreachable:
 | |
|       if (Oprnds.size() != 0) error("Invalid unreachable instruction!");
 | |
|       Result = new UnreachableInst();
 | |
|       break;
 | |
|     }  // end switch(Opcode)
 | |
|   } // end if !Result
 | |
| 
 | |
|   BB->getInstList().push_back(Result);
 | |
| 
 | |
|   unsigned TypeSlot;
 | |
|   if (Result->getType() == InstTy)
 | |
|     TypeSlot = iType;
 | |
|   else
 | |
|     TypeSlot = getTypeSlot(Result->getType());
 | |
| 
 | |
|   // We have enough info to inform the handler now.
 | |
|   if (Handler) 
 | |
|     Handler->handleInstruction(Opcode, InstTy, &Oprnds[0], Oprnds.size(),
 | |
|                                Result, At-SaveAt);
 | |
| 
 | |
|   insertValue(Result, TypeSlot, FunctionValues);
 | |
| }
 | |
| 
 | |
| /// Get a particular numbered basic block, which might be a forward reference.
 | |
| /// This works together with ParseInstructionList to handle these forward 
 | |
| /// references in a clean manner.  This function is used when constructing 
 | |
| /// phi, br, switch, and other instructions that reference basic blocks. 
 | |
| /// Blocks are numbered sequentially as they appear in the function.
 | |
| BasicBlock *BytecodeReader::getBasicBlock(unsigned ID) {
 | |
|   // Make sure there is room in the table...
 | |
|   if (ParsedBasicBlocks.size() <= ID) ParsedBasicBlocks.resize(ID+1);
 | |
| 
 | |
|   // First check to see if this is a backwards reference, i.e. this block
 | |
|   // has already been created, or if the forward reference has already
 | |
|   // been created.
 | |
|   if (ParsedBasicBlocks[ID])
 | |
|     return ParsedBasicBlocks[ID];
 | |
| 
 | |
|   // Otherwise, the basic block has not yet been created.  Do so and add it to
 | |
|   // the ParsedBasicBlocks list.
 | |
|   return ParsedBasicBlocks[ID] = new BasicBlock();
 | |
| }
 | |
| 
 | |
| /// Parse all of the BasicBlock's & Instruction's in the body of a function.
 | |
| /// In post 1.0 bytecode files, we no longer emit basic block individually,
 | |
| /// in order to avoid per-basic-block overhead.
 | |
| /// @returns the number of basic blocks encountered.
 | |
| unsigned BytecodeReader::ParseInstructionList(Function* F) {
 | |
|   unsigned BlockNo = 0;
 | |
|   SmallVector<unsigned, 8> Args;
 | |
| 
 | |
|   while (moreInBlock()) {
 | |
|     if (Handler) Handler->handleBasicBlockBegin(BlockNo);
 | |
|     BasicBlock *BB;
 | |
|     if (ParsedBasicBlocks.size() == BlockNo)
 | |
|       ParsedBasicBlocks.push_back(BB = new BasicBlock());
 | |
|     else if (ParsedBasicBlocks[BlockNo] == 0)
 | |
|       BB = ParsedBasicBlocks[BlockNo] = new BasicBlock();
 | |
|     else
 | |
|       BB = ParsedBasicBlocks[BlockNo];
 | |
|     ++BlockNo;
 | |
|     F->getBasicBlockList().push_back(BB);
 | |
| 
 | |
|     // Read instructions into this basic block until we get to a terminator
 | |
|     while (moreInBlock() && !BB->getTerminator())
 | |
|       ParseInstruction(Args, BB);
 | |
| 
 | |
|     if (!BB->getTerminator())
 | |
|       error("Non-terminated basic block found!");
 | |
| 
 | |
|     if (Handler) Handler->handleBasicBlockEnd(BlockNo-1);
 | |
|   }
 | |
| 
 | |
|   return BlockNo;
 | |
| }
 | |
| 
 | |
| /// Parse a type symbol table.
 | |
| void BytecodeReader::ParseTypeSymbolTable(TypeSymbolTable *TST) {
 | |
|   // Type Symtab block header: [num entries]
 | |
|   unsigned NumEntries = read_vbr_uint();
 | |
|   for (unsigned i = 0; i < NumEntries; ++i) {
 | |
|     // Symtab entry: [type slot #][name]
 | |
|     unsigned slot = read_vbr_uint();
 | |
|     std::string Name = read_str();
 | |
|     const Type* T = getType(slot);
 | |
|     TST->insert(Name, T);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Parse a value symbol table. This works for both module level and function
 | |
| /// level symbol tables.  For function level symbol tables, the CurrentFunction
 | |
| /// parameter must be non-zero and the ST parameter must correspond to
 | |
| /// CurrentFunction's symbol table. For Module level symbol tables, the
 | |
| /// CurrentFunction argument must be zero.
 | |
| void BytecodeReader::ParseValueSymbolTable(Function *CurrentFunction,
 | |
|                                            ValueSymbolTable *VST) {
 | |
|                                       
 | |
|   if (Handler) Handler->handleValueSymbolTableBegin(CurrentFunction,VST);
 | |
| 
 | |
|   // Allow efficient basic block lookup by number.
 | |
|   SmallVector<BasicBlock*, 32> BBMap;
 | |
|   if (CurrentFunction)
 | |
|     for (Function::iterator I = CurrentFunction->begin(),
 | |
|            E = CurrentFunction->end(); I != E; ++I)
 | |
|       BBMap.push_back(I);
 | |
| 
 | |
|   SmallVector<char, 32> NameStr;
 | |
|   
 | |
|   while (moreInBlock()) {
 | |
|     // Symtab block header: [num entries][type id number]
 | |
|     unsigned NumEntries = read_vbr_uint();
 | |
|     unsigned Typ = read_vbr_uint();
 | |
| 
 | |
|     for (unsigned i = 0; i != NumEntries; ++i) {
 | |
|       // Symtab entry: [def slot #][name]
 | |
|       unsigned slot = read_vbr_uint();
 | |
|       read_str(NameStr);
 | |
|       Value *V = 0;
 | |
|       if (Typ == LabelTySlot) {
 | |
|         V = (slot < BBMap.size()) ? BBMap[slot] : 0;
 | |
|       } else {
 | |
|         V = getValue(Typ, slot, false); // Find mapping.
 | |
|       }
 | |
|       if (Handler) Handler->handleSymbolTableValue(Typ, slot,
 | |
|                                                    &NameStr[0], NameStr.size());
 | |
|       if (V == 0)
 | |
|         error("Failed value look-up for name '" + 
 | |
|               std::string(NameStr.begin(), NameStr.end()) + "', type #" + 
 | |
|               utostr(Typ) + " slot #" + utostr(slot));
 | |
|       V->setName(&NameStr[0], NameStr.size());
 | |
|       
 | |
|       NameStr.clear();
 | |
|     }
 | |
|   }
 | |
|   checkPastBlockEnd("Symbol Table");
 | |
|   if (Handler) Handler->handleValueSymbolTableEnd();
 | |
| }
 | |
| 
 | |
| // Parse a single type. The typeid is read in first. If its a primitive type
 | |
| // then nothing else needs to be read, we know how to instantiate it. If its
 | |
| // a derived type, then additional data is read to fill out the type
 | |
| // definition.
 | |
| const Type *BytecodeReader::ParseType() {
 | |
|   unsigned PrimType = read_vbr_uint();
 | |
|   const Type *Result = 0;
 | |
|   if ((Result = Type::getPrimitiveType((Type::TypeID)PrimType)))
 | |
|     return Result;
 | |
| 
 | |
|   switch (PrimType) {
 | |
|   case Type::IntegerTyID: {
 | |
|     unsigned NumBits = read_vbr_uint();
 | |
|     Result = IntegerType::get(NumBits);
 | |
|     break;
 | |
|   }
 | |
|   case Type::FunctionTyID: {
 | |
|     const Type *RetType = readType();
 | |
|     unsigned RetAttr = read_vbr_uint();
 | |
| 
 | |
|     unsigned NumParams = read_vbr_uint();
 | |
| 
 | |
|     std::vector<const Type*> Params;
 | |
|     std::vector<FunctionType::ParameterAttributes> Attrs;
 | |
|     Attrs.push_back(FunctionType::ParameterAttributes(RetAttr));
 | |
|     while (NumParams--) {
 | |
|       Params.push_back(readType());
 | |
|       if (Params.back() != Type::VoidTy)
 | |
|         Attrs.push_back(FunctionType::ParameterAttributes(read_vbr_uint()));
 | |
|     }
 | |
| 
 | |
|     bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
 | |
|     if (isVarArg) Params.pop_back();
 | |
| 
 | |
|     Result = FunctionType::get(RetType, Params, isVarArg, Attrs);
 | |
|     break;
 | |
|   }
 | |
|   case Type::ArrayTyID: {
 | |
|     const Type *ElementType = readType();
 | |
|     unsigned NumElements = read_vbr_uint();
 | |
|     Result =  ArrayType::get(ElementType, NumElements);
 | |
|     break;
 | |
|   }
 | |
|   case Type::VectorTyID: {
 | |
|     const Type *ElementType = readType();
 | |
|     unsigned NumElements = read_vbr_uint();
 | |
|     Result =  VectorType::get(ElementType, NumElements);
 | |
|     break;
 | |
|   }
 | |
|   case Type::StructTyID: {
 | |
|     std::vector<const Type*> Elements;
 | |
|     unsigned Typ = read_vbr_uint();
 | |
|     while (Typ) {         // List is terminated by void/0 typeid
 | |
|       Elements.push_back(getType(Typ));
 | |
|       Typ = read_vbr_uint();
 | |
|     }
 | |
| 
 | |
|     Result = StructType::get(Elements, false);
 | |
|     break;
 | |
|   }
 | |
|   case Type::PackedStructTyID: {
 | |
|     std::vector<const Type*> Elements;
 | |
|     unsigned Typ = read_vbr_uint();
 | |
|     while (Typ) {         // List is terminated by void/0 typeid
 | |
|       Elements.push_back(getType(Typ));
 | |
|       Typ = read_vbr_uint();
 | |
|     }
 | |
| 
 | |
|     Result = StructType::get(Elements, true);
 | |
|     break;
 | |
|   }
 | |
|   case Type::PointerTyID: {
 | |
|     Result = PointerType::get(readType());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::OpaqueTyID: {
 | |
|     Result = OpaqueType::get();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   default:
 | |
|     error("Don't know how to deserialize primitive type " + utostr(PrimType));
 | |
|     break;
 | |
|   }
 | |
|   if (Handler) Handler->handleType(Result);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| // ParseTypes - We have to use this weird code to handle recursive
 | |
| // types.  We know that recursive types will only reference the current slab of
 | |
| // values in the type plane, but they can forward reference types before they
 | |
| // have been read.  For example, Type #0 might be '{ Ty#1 }' and Type #1 might
 | |
| // be 'Ty#0*'.  When reading Type #0, type number one doesn't exist.  To fix
 | |
| // this ugly problem, we pessimistically insert an opaque type for each type we
 | |
| // are about to read.  This means that forward references will resolve to
 | |
| // something and when we reread the type later, we can replace the opaque type
 | |
| // with a new resolved concrete type.
 | |
| //
 | |
| void BytecodeReader::ParseTypes(TypeListTy &Tab, unsigned NumEntries){
 | |
|   assert(Tab.size() == 0 && "should not have read type constants in before!");
 | |
| 
 | |
|   // Insert a bunch of opaque types to be resolved later...
 | |
|   Tab.reserve(NumEntries);
 | |
|   for (unsigned i = 0; i != NumEntries; ++i)
 | |
|     Tab.push_back(OpaqueType::get());
 | |
| 
 | |
|   if (Handler)
 | |
|     Handler->handleTypeList(NumEntries);
 | |
| 
 | |
|   // If we are about to resolve types, make sure the type cache is clear.
 | |
|   if (NumEntries)
 | |
|     ModuleTypeIDCache.clear();
 | |
|   
 | |
|   // Loop through reading all of the types.  Forward types will make use of the
 | |
|   // opaque types just inserted.
 | |
|   //
 | |
|   for (unsigned i = 0; i != NumEntries; ++i) {
 | |
|     const Type* NewTy = ParseType();
 | |
|     const Type* OldTy = Tab[i].get();
 | |
|     if (NewTy == 0)
 | |
|       error("Couldn't parse type!");
 | |
| 
 | |
|     // Don't directly push the new type on the Tab. Instead we want to replace
 | |
|     // the opaque type we previously inserted with the new concrete value. This
 | |
|     // approach helps with forward references to types. The refinement from the
 | |
|     // abstract (opaque) type to the new type causes all uses of the abstract
 | |
|     // type to use the concrete type (NewTy). This will also cause the opaque
 | |
|     // type to be deleted.
 | |
|     cast<DerivedType>(const_cast<Type*>(OldTy))->refineAbstractTypeTo(NewTy);
 | |
| 
 | |
|     // This should have replaced the old opaque type with the new type in the
 | |
|     // value table... or with a preexisting type that was already in the system.
 | |
|     // Let's just make sure it did.
 | |
|     assert(Tab[i] != OldTy && "refineAbstractType didn't work!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Parse a single constant value
 | |
| Value *BytecodeReader::ParseConstantPoolValue(unsigned TypeID) {
 | |
|   // We must check for a ConstantExpr before switching by type because
 | |
|   // a ConstantExpr can be of any type, and has no explicit value.
 | |
|   //
 | |
|   // 0 if not expr; numArgs if is expr
 | |
|   unsigned isExprNumArgs = read_vbr_uint();
 | |
| 
 | |
|   if (isExprNumArgs) {
 | |
|     // 'undef' is encoded with 'exprnumargs' == 1.
 | |
|     if (isExprNumArgs == 1)
 | |
|       return UndefValue::get(getType(TypeID));
 | |
| 
 | |
|     // Inline asm is encoded with exprnumargs == ~0U.
 | |
|     if (isExprNumArgs == ~0U) {
 | |
|       std::string AsmStr = read_str();
 | |
|       std::string ConstraintStr = read_str();
 | |
|       unsigned Flags = read_vbr_uint();
 | |
|       
 | |
|       const PointerType *PTy = dyn_cast<PointerType>(getType(TypeID));
 | |
|       const FunctionType *FTy = 
 | |
|         PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
 | |
| 
 | |
|       if (!FTy || !InlineAsm::Verify(FTy, ConstraintStr))
 | |
|         error("Invalid constraints for inline asm");
 | |
|       if (Flags & ~1U)
 | |
|         error("Invalid flags for inline asm");
 | |
|       bool HasSideEffects = Flags & 1;
 | |
|       return InlineAsm::get(FTy, AsmStr, ConstraintStr, HasSideEffects);
 | |
|     }
 | |
|     
 | |
|     --isExprNumArgs;
 | |
| 
 | |
|     // FIXME: Encoding of constant exprs could be much more compact!
 | |
|     SmallVector<Constant*, 8> ArgVec;
 | |
|     ArgVec.reserve(isExprNumArgs);
 | |
|     unsigned Opcode = read_vbr_uint();
 | |
| 
 | |
|     // Read the slot number and types of each of the arguments
 | |
|     for (unsigned i = 0; i != isExprNumArgs; ++i) {
 | |
|       unsigned ArgValSlot = read_vbr_uint();
 | |
|       unsigned ArgTypeSlot = read_vbr_uint();
 | |
| 
 | |
|       // Get the arg value from its slot if it exists, otherwise a placeholder
 | |
|       ArgVec.push_back(getConstantValue(ArgTypeSlot, ArgValSlot));
 | |
|     }
 | |
| 
 | |
|     // Construct a ConstantExpr of the appropriate kind
 | |
|     if (isExprNumArgs == 1) {           // All one-operand expressions
 | |
|       if (!Instruction::isCast(Opcode))
 | |
|         error("Only cast instruction has one argument for ConstantExpr");
 | |
| 
 | |
|       Constant *Result = ConstantExpr::getCast(Opcode, ArgVec[0], 
 | |
|                                                getType(TypeID));
 | |
|       if (Handler) Handler->handleConstantExpression(Opcode, &ArgVec[0],
 | |
|                                                      ArgVec.size(), Result);
 | |
|       return Result;
 | |
|     } else if (Opcode == Instruction::GetElementPtr) { // GetElementPtr
 | |
|       Constant *Result = ConstantExpr::getGetElementPtr(ArgVec[0], &ArgVec[1],
 | |
|                                                         ArgVec.size()-1);
 | |
|       if (Handler) Handler->handleConstantExpression(Opcode, &ArgVec[0],
 | |
|                                                      ArgVec.size(), Result);
 | |
|       return Result;
 | |
|     } else if (Opcode == Instruction::Select) {
 | |
|       if (ArgVec.size() != 3)
 | |
|         error("Select instruction must have three arguments.");
 | |
|       Constant* Result = ConstantExpr::getSelect(ArgVec[0], ArgVec[1],
 | |
|                                                  ArgVec[2]);
 | |
|       if (Handler) Handler->handleConstantExpression(Opcode, &ArgVec[0],
 | |
|                                                      ArgVec.size(), Result);
 | |
|       return Result;
 | |
|     } else if (Opcode == Instruction::ExtractElement) {
 | |
|       if (ArgVec.size() != 2 ||
 | |
|           !ExtractElementInst::isValidOperands(ArgVec[0], ArgVec[1]))
 | |
|         error("Invalid extractelement constand expr arguments");
 | |
|       Constant* Result = ConstantExpr::getExtractElement(ArgVec[0], ArgVec[1]);
 | |
|       if (Handler) Handler->handleConstantExpression(Opcode, &ArgVec[0],
 | |
|                                                      ArgVec.size(), Result);
 | |
|       return Result;
 | |
|     } else if (Opcode == Instruction::InsertElement) {
 | |
|       if (ArgVec.size() != 3 ||
 | |
|           !InsertElementInst::isValidOperands(ArgVec[0], ArgVec[1], ArgVec[2]))
 | |
|         error("Invalid insertelement constand expr arguments");
 | |
|         
 | |
|       Constant *Result = 
 | |
|         ConstantExpr::getInsertElement(ArgVec[0], ArgVec[1], ArgVec[2]);
 | |
|       if (Handler) Handler->handleConstantExpression(Opcode, &ArgVec[0],
 | |
|                                                      ArgVec.size(), Result);
 | |
|       return Result;
 | |
|     } else if (Opcode == Instruction::ShuffleVector) {
 | |
|       if (ArgVec.size() != 3 ||
 | |
|           !ShuffleVectorInst::isValidOperands(ArgVec[0], ArgVec[1], ArgVec[2]))
 | |
|         error("Invalid shufflevector constant expr arguments.");
 | |
|       Constant *Result = 
 | |
|         ConstantExpr::getShuffleVector(ArgVec[0], ArgVec[1], ArgVec[2]);
 | |
|       if (Handler) Handler->handleConstantExpression(Opcode, &ArgVec[0],
 | |
|                                                      ArgVec.size(), Result);
 | |
|       return Result;
 | |
|     } else if (Opcode == Instruction::ICmp) {
 | |
|       if (ArgVec.size() != 2) 
 | |
|         error("Invalid ICmp constant expr arguments.");
 | |
|       unsigned predicate = read_vbr_uint();
 | |
|       Constant *Result = ConstantExpr::getICmp(predicate, ArgVec[0], ArgVec[1]);
 | |
|       if (Handler) Handler->handleConstantExpression(Opcode, &ArgVec[0],
 | |
|                                                      ArgVec.size(), Result);
 | |
|       return Result;
 | |
|     } else if (Opcode == Instruction::FCmp) {
 | |
|       if (ArgVec.size() != 2) 
 | |
|         error("Invalid FCmp constant expr arguments.");
 | |
|       unsigned predicate = read_vbr_uint();
 | |
|       Constant *Result = ConstantExpr::getFCmp(predicate, ArgVec[0], ArgVec[1]);
 | |
|       if (Handler) Handler->handleConstantExpression(Opcode, &ArgVec[0], 
 | |
|                                                      ArgVec.size(), Result);
 | |
|       return Result;
 | |
|     } else {                            // All other 2-operand expressions
 | |
|       Constant* Result = ConstantExpr::get(Opcode, ArgVec[0], ArgVec[1]);
 | |
|       if (Handler) Handler->handleConstantExpression(Opcode, &ArgVec[0], 
 | |
|                                                      ArgVec.size(), Result);
 | |
|       return Result;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Ok, not an ConstantExpr.  We now know how to read the given type...
 | |
|   const Type *Ty = getType(TypeID);
 | |
|   Constant *Result = 0;
 | |
|   switch (Ty->getTypeID()) {
 | |
|   case Type::IntegerTyID: {
 | |
|     const IntegerType *IT = cast<IntegerType>(Ty);
 | |
|     if (IT->getBitWidth() <= 32) {
 | |
|       uint32_t Val = read_vbr_uint();
 | |
|       if (!ConstantInt::isValueValidForType(Ty, uint64_t(Val)))
 | |
|         error("Integer value read is invalid for type.");
 | |
|       Result = ConstantInt::get(IT, Val);
 | |
|       if (Handler) Handler->handleConstantValue(Result);
 | |
|     } else if (IT->getBitWidth() <= 64) {
 | |
|       uint64_t Val = read_vbr_uint64();
 | |
|       if (!ConstantInt::isValueValidForType(Ty, Val))
 | |
|         error("Invalid constant integer read.");
 | |
|       Result = ConstantInt::get(IT, Val);
 | |
|       if (Handler) Handler->handleConstantValue(Result);
 | |
|     } else {
 | |
|       uint32_t numWords = read_vbr_uint();
 | |
|       uint64_t *data = new uint64_t[numWords];
 | |
|       for (uint32_t i = 0; i < numWords; ++i)
 | |
|         data[i] = read_vbr_uint64();
 | |
|       Result = ConstantInt::get(APInt(IT->getBitWidth(), numWords, data));
 | |
|       if (Handler) Handler->handleConstantValue(Result);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Type::FloatTyID: {
 | |
|     float Val;
 | |
|     read_float(Val);
 | |
|     Result = ConstantFP::get(Ty, Val);
 | |
|     if (Handler) Handler->handleConstantValue(Result);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::DoubleTyID: {
 | |
|     double Val;
 | |
|     read_double(Val);
 | |
|     Result = ConstantFP::get(Ty, Val);
 | |
|     if (Handler) Handler->handleConstantValue(Result);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::ArrayTyID: {
 | |
|     const ArrayType *AT = cast<ArrayType>(Ty);
 | |
|     unsigned NumElements = AT->getNumElements();
 | |
|     unsigned TypeSlot = getTypeSlot(AT->getElementType());
 | |
|     std::vector<Constant*> Elements;
 | |
|     Elements.reserve(NumElements);
 | |
|     while (NumElements--)     // Read all of the elements of the constant.
 | |
|       Elements.push_back(getConstantValue(TypeSlot,
 | |
|                                           read_vbr_uint()));
 | |
|     Result = ConstantArray::get(AT, Elements);
 | |
|     if (Handler) Handler->handleConstantArray(AT, &Elements[0], Elements.size(),
 | |
|                                               TypeSlot, Result);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::StructTyID: {
 | |
|     const StructType *ST = cast<StructType>(Ty);
 | |
| 
 | |
|     std::vector<Constant *> Elements;
 | |
|     Elements.reserve(ST->getNumElements());
 | |
|     for (unsigned i = 0; i != ST->getNumElements(); ++i)
 | |
|       Elements.push_back(getConstantValue(ST->getElementType(i),
 | |
|                                           read_vbr_uint()));
 | |
| 
 | |
|     Result = ConstantStruct::get(ST, Elements);
 | |
|     if (Handler) Handler->handleConstantStruct(ST, &Elements[0],Elements.size(),
 | |
|                                                Result);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::VectorTyID: {
 | |
|     const VectorType *PT = cast<VectorType>(Ty);
 | |
|     unsigned NumElements = PT->getNumElements();
 | |
|     unsigned TypeSlot = getTypeSlot(PT->getElementType());
 | |
|     std::vector<Constant*> Elements;
 | |
|     Elements.reserve(NumElements);
 | |
|     while (NumElements--)     // Read all of the elements of the constant.
 | |
|       Elements.push_back(getConstantValue(TypeSlot,
 | |
|                                           read_vbr_uint()));
 | |
|     Result = ConstantVector::get(PT, Elements);
 | |
|     if (Handler) Handler->handleConstantVector(PT, &Elements[0],Elements.size(),
 | |
|                                                TypeSlot, Result);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::PointerTyID: {  // ConstantPointerRef value (backwards compat).
 | |
|     const PointerType *PT = cast<PointerType>(Ty);
 | |
|     unsigned Slot = read_vbr_uint();
 | |
| 
 | |
|     // Check to see if we have already read this global variable...
 | |
|     Value *Val = getValue(TypeID, Slot, false);
 | |
|     if (Val) {
 | |
|       GlobalValue *GV = dyn_cast<GlobalValue>(Val);
 | |
|       if (!GV) error("GlobalValue not in ValueTable!");
 | |
|       if (Handler) Handler->handleConstantPointer(PT, Slot, GV);
 | |
|       return GV;
 | |
|     } else {
 | |
|       error("Forward references are not allowed here.");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   default:
 | |
|     error("Don't know how to deserialize constant value of type '" +
 | |
|                       Ty->getDescription());
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   // Check that we didn't read a null constant if they are implicit for this
 | |
|   // type plane.  Do not do this check for constantexprs, as they may be folded
 | |
|   // to a null value in a way that isn't predicted when a .bc file is initially
 | |
|   // produced.
 | |
|   assert((!isa<Constant>(Result) || !cast<Constant>(Result)->isNullValue()) ||
 | |
|          !hasImplicitNull(TypeID) && "Cannot read null values from bytecode!");
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// Resolve references for constants. This function resolves the forward
 | |
| /// referenced constants in the ConstantFwdRefs map. It uses the
 | |
| /// replaceAllUsesWith method of Value class to substitute the placeholder
 | |
| /// instance with the actual instance.
 | |
| void BytecodeReader::ResolveReferencesToConstant(Constant *NewV, unsigned Typ,
 | |
|                                                  unsigned Slot) {
 | |
|   ConstantRefsType::iterator I =
 | |
|     ConstantFwdRefs.find(std::make_pair(Typ, Slot));
 | |
|   if (I == ConstantFwdRefs.end()) return;   // Never forward referenced?
 | |
| 
 | |
|   Value *PH = I->second;   // Get the placeholder...
 | |
|   PH->replaceAllUsesWith(NewV);
 | |
|   delete PH;                               // Delete the old placeholder
 | |
|   ConstantFwdRefs.erase(I);                // Remove the map entry for it
 | |
| }
 | |
| 
 | |
| /// Parse the constant strings section.
 | |
| void BytecodeReader::ParseStringConstants(unsigned NumEntries, ValueTable &Tab){
 | |
|   for (; NumEntries; --NumEntries) {
 | |
|     unsigned Typ = read_vbr_uint();
 | |
|     const Type *Ty = getType(Typ);
 | |
|     if (!isa<ArrayType>(Ty))
 | |
|       error("String constant data invalid!");
 | |
| 
 | |
|     const ArrayType *ATy = cast<ArrayType>(Ty);
 | |
|     if (ATy->getElementType() != Type::Int8Ty &&
 | |
|         ATy->getElementType() != Type::Int8Ty)
 | |
|       error("String constant data invalid!");
 | |
| 
 | |
|     // Read character data.  The type tells us how long the string is.
 | |
|     char *Data = reinterpret_cast<char *>(alloca(ATy->getNumElements()));
 | |
|     read_data(Data, Data+ATy->getNumElements());
 | |
| 
 | |
|     std::vector<Constant*> Elements(ATy->getNumElements());
 | |
|     const Type* ElemType = ATy->getElementType();
 | |
|     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
 | |
|       Elements[i] = ConstantInt::get(ElemType, (unsigned char)Data[i]);
 | |
| 
 | |
|     // Create the constant, inserting it as needed.
 | |
|     Constant *C = ConstantArray::get(ATy, Elements);
 | |
|     unsigned Slot = insertValue(C, Typ, Tab);
 | |
|     ResolveReferencesToConstant(C, Typ, Slot);
 | |
|     if (Handler) Handler->handleConstantString(cast<ConstantArray>(C));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Parse the constant pool.
 | |
| void BytecodeReader::ParseConstantPool(ValueTable &Tab,
 | |
|                                        TypeListTy &TypeTab,
 | |
|                                        bool isFunction) {
 | |
|   if (Handler) Handler->handleGlobalConstantsBegin();
 | |
| 
 | |
|   /// In LLVM 1.3 Type does not derive from Value so the types
 | |
|   /// do not occupy a plane. Consequently, we read the types
 | |
|   /// first in the constant pool.
 | |
|   if (isFunction) {
 | |
|     unsigned NumEntries = read_vbr_uint();
 | |
|     ParseTypes(TypeTab, NumEntries);
 | |
|   }
 | |
| 
 | |
|   while (moreInBlock()) {
 | |
|     unsigned NumEntries = read_vbr_uint();
 | |
|     unsigned Typ = read_vbr_uint();
 | |
| 
 | |
|     if (Typ == Type::VoidTyID) {
 | |
|       /// Use of Type::VoidTyID is a misnomer. It actually means
 | |
|       /// that the following plane is constant strings
 | |
|       assert(&Tab == &ModuleValues && "Cannot read strings in functions!");
 | |
|       ParseStringConstants(NumEntries, Tab);
 | |
|     } else {
 | |
|       for (unsigned i = 0; i < NumEntries; ++i) {
 | |
|         Value *V = ParseConstantPoolValue(Typ);
 | |
|         assert(V && "ParseConstantPoolValue returned NULL!");
 | |
|         unsigned Slot = insertValue(V, Typ, Tab);
 | |
| 
 | |
|         // If we are reading a function constant table, make sure that we adjust
 | |
|         // the slot number to be the real global constant number.
 | |
|         //
 | |
|         if (&Tab != &ModuleValues && Typ < ModuleValues.size() &&
 | |
|             ModuleValues[Typ])
 | |
|           Slot += ModuleValues[Typ]->size();
 | |
|         if (Constant *C = dyn_cast<Constant>(V))
 | |
|           ResolveReferencesToConstant(C, Typ, Slot);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // After we have finished parsing the constant pool, we had better not have
 | |
|   // any dangling references left.
 | |
|   if (!ConstantFwdRefs.empty()) {
 | |
|     ConstantRefsType::const_iterator I = ConstantFwdRefs.begin();
 | |
|     Constant* missingConst = I->second;
 | |
|     error(utostr(ConstantFwdRefs.size()) +
 | |
|           " unresolved constant reference exist. First one is '" +
 | |
|           missingConst->getName() + "' of type '" +
 | |
|           missingConst->getType()->getDescription() + "'.");
 | |
|   }
 | |
| 
 | |
|   checkPastBlockEnd("Constant Pool");
 | |
|   if (Handler) Handler->handleGlobalConstantsEnd();
 | |
| }
 | |
| 
 | |
| /// Parse the contents of a function. Note that this function can be
 | |
| /// called lazily by materializeFunction
 | |
| /// @see materializeFunction
 | |
| void BytecodeReader::ParseFunctionBody(Function* F) {
 | |
| 
 | |
|   unsigned FuncSize = BlockEnd - At;
 | |
|   GlobalValue::LinkageTypes Linkage = GlobalValue::ExternalLinkage;
 | |
|   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
 | |
| 
 | |
|   unsigned rWord = read_vbr_uint();
 | |
|   unsigned LinkageID =  rWord & 65535;
 | |
|   unsigned VisibilityID = rWord >> 16;
 | |
|   switch (LinkageID) {
 | |
|   case 0: Linkage = GlobalValue::ExternalLinkage; break;
 | |
|   case 1: Linkage = GlobalValue::WeakLinkage; break;
 | |
|   case 2: Linkage = GlobalValue::AppendingLinkage; break;
 | |
|   case 3: Linkage = GlobalValue::InternalLinkage; break;
 | |
|   case 4: Linkage = GlobalValue::LinkOnceLinkage; break;
 | |
|   case 5: Linkage = GlobalValue::DLLImportLinkage; break;
 | |
|   case 6: Linkage = GlobalValue::DLLExportLinkage; break;
 | |
|   case 7: Linkage = GlobalValue::ExternalWeakLinkage; break;
 | |
|   default:
 | |
|     error("Invalid linkage type for Function.");
 | |
|     Linkage = GlobalValue::InternalLinkage;
 | |
|     break;
 | |
|   }
 | |
|   switch (VisibilityID) {
 | |
|   case 0: Visibility = GlobalValue::DefaultVisibility; break;
 | |
|   case 1: Visibility = GlobalValue::HiddenVisibility; break;
 | |
|   default:
 | |
|    error("Unknown visibility type: " + utostr(VisibilityID));
 | |
|    Visibility = GlobalValue::DefaultVisibility;
 | |
|    break;
 | |
|   }
 | |
| 
 | |
|   F->setLinkage(Linkage);
 | |
|   F->setVisibility(Visibility);
 | |
|   if (Handler) Handler->handleFunctionBegin(F,FuncSize);
 | |
| 
 | |
|   // Keep track of how many basic blocks we have read in...
 | |
|   unsigned BlockNum = 0;
 | |
|   bool InsertedArguments = false;
 | |
| 
 | |
|   BufPtr MyEnd = BlockEnd;
 | |
|   while (At < MyEnd) {
 | |
|     unsigned Type, Size;
 | |
|     BufPtr OldAt = At;
 | |
|     read_block(Type, Size);
 | |
| 
 | |
|     switch (Type) {
 | |
|     case BytecodeFormat::ConstantPoolBlockID:
 | |
|       if (!InsertedArguments) {
 | |
|         // Insert arguments into the value table before we parse the first basic
 | |
|         // block in the function
 | |
|         insertArguments(F);
 | |
|         InsertedArguments = true;
 | |
|       }
 | |
| 
 | |
|       ParseConstantPool(FunctionValues, FunctionTypes, true);
 | |
|       break;
 | |
| 
 | |
|     case BytecodeFormat::InstructionListBlockID: {
 | |
|       // Insert arguments into the value table before we parse the instruction
 | |
|       // list for the function
 | |
|       if (!InsertedArguments) {
 | |
|         insertArguments(F);
 | |
|         InsertedArguments = true;
 | |
|       }
 | |
| 
 | |
|       if (BlockNum)
 | |
|         error("Already parsed basic blocks!");
 | |
|       BlockNum = ParseInstructionList(F);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case BytecodeFormat::ValueSymbolTableBlockID:
 | |
|       ParseValueSymbolTable(F, &F->getValueSymbolTable());
 | |
|       break;
 | |
| 
 | |
|     case BytecodeFormat::TypeSymbolTableBlockID:
 | |
|       error("Functions don't have type symbol tables");
 | |
|       break;
 | |
| 
 | |
|     default:
 | |
|       At += Size;
 | |
|       if (OldAt > At)
 | |
|         error("Wrapped around reading bytecode.");
 | |
|       break;
 | |
|     }
 | |
|     BlockEnd = MyEnd;
 | |
|   }
 | |
| 
 | |
|   // Make sure there were no references to non-existant basic blocks.
 | |
|   if (BlockNum != ParsedBasicBlocks.size())
 | |
|     error("Illegal basic block operand reference");
 | |
| 
 | |
|   ParsedBasicBlocks.clear();
 | |
| 
 | |
|   // Resolve forward references.  Replace any uses of a forward reference value
 | |
|   // with the real value.
 | |
|   while (!ForwardReferences.empty()) {
 | |
|     std::map<std::pair<unsigned,unsigned>, Value*>::iterator
 | |
|       I = ForwardReferences.begin();
 | |
|     Value *V = getValue(I->first.first, I->first.second, false);
 | |
|     Value *PlaceHolder = I->second;
 | |
|     PlaceHolder->replaceAllUsesWith(V);
 | |
|     ForwardReferences.erase(I);
 | |
|     delete PlaceHolder;
 | |
|   }
 | |
| 
 | |
|   // Clear out function-level types...
 | |
|   FunctionTypes.clear();
 | |
|   freeTable(FunctionValues);
 | |
| 
 | |
|   if (Handler) Handler->handleFunctionEnd(F);
 | |
| }
 | |
| 
 | |
| /// This function parses LLVM functions lazily. It obtains the type of the
 | |
| /// function and records where the body of the function is in the bytecode
 | |
| /// buffer. The caller can then use the ParseNextFunction and
 | |
| /// ParseAllFunctionBodies to get handler events for the functions.
 | |
| void BytecodeReader::ParseFunctionLazily() {
 | |
|   if (FunctionSignatureList.empty())
 | |
|     error("FunctionSignatureList empty!");
 | |
| 
 | |
|   Function *Func = FunctionSignatureList.back();
 | |
|   FunctionSignatureList.pop_back();
 | |
| 
 | |
|   // Save the information for future reading of the function
 | |
|   LazyFunctionLoadMap[Func] = LazyFunctionInfo(BlockStart, BlockEnd);
 | |
| 
 | |
|   // This function has a body but it's not loaded so it appears `External'.
 | |
|   // Mark it as a `Ghost' instead to notify the users that it has a body.
 | |
|   Func->setLinkage(GlobalValue::GhostLinkage);
 | |
| 
 | |
|   // Pretend we've `parsed' this function
 | |
|   At = BlockEnd;
 | |
| }
 | |
| 
 | |
| /// The ParserFunction method lazily parses one function. Use this method to
 | |
| /// casue the parser to parse a specific function in the module. Note that
 | |
| /// this will remove the function from what is to be included by
 | |
| /// ParseAllFunctionBodies.
 | |
| /// @see ParseAllFunctionBodies
 | |
| /// @see ParseBytecode
 | |
| bool BytecodeReader::ParseFunction(Function* Func, std::string* ErrMsg) {
 | |
| 
 | |
|   if (setjmp(context)) {
 | |
|     // Set caller's error message, if requested
 | |
|     if (ErrMsg)
 | |
|       *ErrMsg = ErrorMsg;
 | |
|     // Indicate an error occurred
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Find {start, end} pointers and slot in the map. If not there, we're done.
 | |
|   LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.find(Func);
 | |
| 
 | |
|   // Make sure we found it
 | |
|   if (Fi == LazyFunctionLoadMap.end()) {
 | |
|     error("Unrecognized function of type " + Func->getType()->getDescription());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   BlockStart = At = Fi->second.Buf;
 | |
|   BlockEnd = Fi->second.EndBuf;
 | |
|   assert(Fi->first == Func && "Found wrong function?");
 | |
| 
 | |
|   LazyFunctionLoadMap.erase(Fi);
 | |
| 
 | |
|   this->ParseFunctionBody(Func);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// The ParseAllFunctionBodies method parses through all the previously
 | |
| /// unparsed functions in the bytecode file. If you want to completely parse
 | |
| /// a bytecode file, this method should be called after Parsebytecode because
 | |
| /// Parsebytecode only records the locations in the bytecode file of where
 | |
| /// the function definitions are located. This function uses that information
 | |
| /// to materialize the functions.
 | |
| /// @see ParseBytecode
 | |
| bool BytecodeReader::ParseAllFunctionBodies(std::string* ErrMsg) {
 | |
|   if (setjmp(context)) {
 | |
|     // Set caller's error message, if requested
 | |
|     if (ErrMsg)
 | |
|       *ErrMsg = ErrorMsg;
 | |
|     // Indicate an error occurred
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.begin();
 | |
|   LazyFunctionMap::iterator Fe = LazyFunctionLoadMap.end();
 | |
| 
 | |
|   while (Fi != Fe) {
 | |
|     Function* Func = Fi->first;
 | |
|     BlockStart = At = Fi->second.Buf;
 | |
|     BlockEnd = Fi->second.EndBuf;
 | |
|     ParseFunctionBody(Func);
 | |
|     ++Fi;
 | |
|   }
 | |
|   LazyFunctionLoadMap.clear();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Parse the global type list
 | |
| void BytecodeReader::ParseGlobalTypes() {
 | |
|   // Read the number of types
 | |
|   unsigned NumEntries = read_vbr_uint();
 | |
|   ParseTypes(ModuleTypes, NumEntries);
 | |
| }
 | |
| 
 | |
| /// Parse the Global info (types, global vars, constants)
 | |
| void BytecodeReader::ParseModuleGlobalInfo() {
 | |
| 
 | |
|   if (Handler) Handler->handleModuleGlobalsBegin();
 | |
| 
 | |
|   // SectionID - If a global has an explicit section specified, this map
 | |
|   // remembers the ID until we can translate it into a string.
 | |
|   std::map<GlobalValue*, unsigned> SectionID;
 | |
|   
 | |
|   // Read global variables...
 | |
|   unsigned VarType = read_vbr_uint();
 | |
|   while (VarType != Type::VoidTyID) { // List is terminated by Void
 | |
|     // VarType Fields: bit0 = isConstant, bit1 = hasInitializer, bit2,3,4 =
 | |
|     // Linkage, bit4+ = slot#
 | |
|     unsigned SlotNo = VarType >> 5;
 | |
|     unsigned LinkageID = (VarType >> 2) & 7;
 | |
|     unsigned VisibilityID = 0;
 | |
|     bool isConstant = VarType & 1;
 | |
|     bool hasInitializer = (VarType & 2) != 0;
 | |
|     unsigned Alignment = 0;
 | |
|     unsigned GlobalSectionID = 0;
 | |
|     
 | |
|     // An extension word is present when linkage = 3 (internal) and hasinit = 0.
 | |
|     if (LinkageID == 3 && !hasInitializer) {
 | |
|       unsigned ExtWord = read_vbr_uint();
 | |
|       // The extension word has this format: bit 0 = has initializer, bit 1-3 =
 | |
|       // linkage, bit 4-8 = alignment (log2), bit 9 = has section,
 | |
|       // bits 10-12 = visibility, bits 13+ = future use.
 | |
|       hasInitializer = ExtWord & 1;
 | |
|       LinkageID = (ExtWord >> 1) & 7;
 | |
|       Alignment = (1 << ((ExtWord >> 4) & 31)) >> 1;
 | |
|       VisibilityID = (ExtWord >> 10) & 7;
 | |
|       
 | |
|       if (ExtWord & (1 << 9))  // Has a section ID.
 | |
|         GlobalSectionID = read_vbr_uint();
 | |
|     }
 | |
| 
 | |
|     GlobalValue::LinkageTypes Linkage;
 | |
|     switch (LinkageID) {
 | |
|     case 0: Linkage = GlobalValue::ExternalLinkage;  break;
 | |
|     case 1: Linkage = GlobalValue::WeakLinkage;      break;
 | |
|     case 2: Linkage = GlobalValue::AppendingLinkage; break;
 | |
|     case 3: Linkage = GlobalValue::InternalLinkage;  break;
 | |
|     case 4: Linkage = GlobalValue::LinkOnceLinkage;  break;
 | |
|     case 5: Linkage = GlobalValue::DLLImportLinkage;  break;
 | |
|     case 6: Linkage = GlobalValue::DLLExportLinkage;  break;
 | |
|     case 7: Linkage = GlobalValue::ExternalWeakLinkage;  break;
 | |
|     default:
 | |
|       error("Unknown linkage type: " + utostr(LinkageID));
 | |
|       Linkage = GlobalValue::InternalLinkage;
 | |
|       break;
 | |
|     }
 | |
|     GlobalValue::VisibilityTypes Visibility;
 | |
|     switch (VisibilityID) {
 | |
|     case 0: Visibility = GlobalValue::DefaultVisibility; break;
 | |
|     case 1: Visibility = GlobalValue::HiddenVisibility; break;
 | |
|     default:
 | |
|       error("Unknown visibility type: " + utostr(VisibilityID));
 | |
|       Visibility = GlobalValue::DefaultVisibility;
 | |
|       break;
 | |
|     }
 | |
|     
 | |
|     const Type *Ty = getType(SlotNo);
 | |
|     if (!Ty)
 | |
|       error("Global has no type! SlotNo=" + utostr(SlotNo));
 | |
| 
 | |
|     if (!isa<PointerType>(Ty))
 | |
|       error("Global not a pointer type! Ty= " + Ty->getDescription());
 | |
| 
 | |
|     const Type *ElTy = cast<PointerType>(Ty)->getElementType();
 | |
| 
 | |
|     // Create the global variable...
 | |
|     GlobalVariable *GV = new GlobalVariable(ElTy, isConstant, Linkage,
 | |
|                                             0, "", TheModule);
 | |
|     GV->setAlignment(Alignment);
 | |
|     GV->setVisibility(Visibility);
 | |
|     insertValue(GV, SlotNo, ModuleValues);
 | |
| 
 | |
|     if (GlobalSectionID != 0)
 | |
|       SectionID[GV] = GlobalSectionID;
 | |
| 
 | |
|     unsigned initSlot = 0;
 | |
|     if (hasInitializer) {
 | |
|       initSlot = read_vbr_uint();
 | |
|       GlobalInits.push_back(std::make_pair(GV, initSlot));
 | |
|     }
 | |
| 
 | |
|     // Notify handler about the global value.
 | |
|     if (Handler)
 | |
|       Handler->handleGlobalVariable(ElTy, isConstant, Linkage, Visibility,
 | |
|                                     SlotNo, initSlot);
 | |
| 
 | |
|     // Get next item
 | |
|     VarType = read_vbr_uint();
 | |
|   }
 | |
| 
 | |
|   // Read the function objects for all of the functions that are coming
 | |
|   unsigned FnSignature = read_vbr_uint();
 | |
| 
 | |
|   // List is terminated by VoidTy.
 | |
|   while (((FnSignature & (~0U >> 1)) >> 5) != Type::VoidTyID) {
 | |
|     const Type *Ty = getType((FnSignature & (~0U >> 1)) >> 5);
 | |
|     if (!isa<PointerType>(Ty) ||
 | |
|         !isa<FunctionType>(cast<PointerType>(Ty)->getElementType())) {
 | |
|       error("Function not a pointer to function type! Ty = " +
 | |
|             Ty->getDescription());
 | |
|     }
 | |
| 
 | |
|     // We create functions by passing the underlying FunctionType to create...
 | |
|     const FunctionType* FTy =
 | |
|       cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
 | |
| 
 | |
|     // Insert the place holder.
 | |
|     Function *Func = new Function(FTy, GlobalValue::ExternalLinkage,
 | |
|                                   "", TheModule);
 | |
| 
 | |
|     insertValue(Func, (FnSignature & (~0U >> 1)) >> 5, ModuleValues);
 | |
| 
 | |
|     // Flags are not used yet.
 | |
|     unsigned Flags = FnSignature & 31;
 | |
| 
 | |
|     // Save this for later so we know type of lazily instantiated functions.
 | |
|     // Note that known-external functions do not have FunctionInfo blocks, so we
 | |
|     // do not add them to the FunctionSignatureList.
 | |
|     if ((Flags & (1 << 4)) == 0)
 | |
|       FunctionSignatureList.push_back(Func);
 | |
| 
 | |
|     // Get the calling convention from the low bits.
 | |
|     unsigned CC = Flags & 15;
 | |
|     unsigned Alignment = 0;
 | |
|     if (FnSignature & (1 << 31)) {  // Has extension word?
 | |
|       unsigned ExtWord = read_vbr_uint();
 | |
|       Alignment = (1 << (ExtWord & 31)) >> 1;
 | |
|       CC |= ((ExtWord >> 5) & 15) << 4;
 | |
|       
 | |
|       if (ExtWord & (1 << 10))  // Has a section ID.
 | |
|         SectionID[Func] = read_vbr_uint();
 | |
| 
 | |
|       // Parse external declaration linkage
 | |
|       switch ((ExtWord >> 11) & 3) {
 | |
|        case 0: break;
 | |
|        case 1: Func->setLinkage(Function::DLLImportLinkage); break;
 | |
|        case 2: Func->setLinkage(Function::ExternalWeakLinkage); break;        
 | |
|        default: assert(0 && "Unsupported external linkage");        
 | |
|       }      
 | |
|     }
 | |
|     
 | |
|     Func->setCallingConv(CC-1);
 | |
|     Func->setAlignment(Alignment);
 | |
| 
 | |
|     if (Handler) Handler->handleFunctionDeclaration(Func);
 | |
| 
 | |
|     // Get the next function signature.
 | |
|     FnSignature = read_vbr_uint();
 | |
|   }
 | |
| 
 | |
|   // Now that the function signature list is set up, reverse it so that we can
 | |
|   // remove elements efficiently from the back of the vector.
 | |
|   std::reverse(FunctionSignatureList.begin(), FunctionSignatureList.end());
 | |
| 
 | |
|   /// SectionNames - This contains the list of section names encoded in the
 | |
|   /// moduleinfoblock.  Functions and globals with an explicit section index
 | |
|   /// into this to get their section name.
 | |
|   std::vector<std::string> SectionNames;
 | |
|   
 | |
|   // Read in the dependent library information.
 | |
|   unsigned num_dep_libs = read_vbr_uint();
 | |
|   std::string dep_lib;
 | |
|   while (num_dep_libs--) {
 | |
|     dep_lib = read_str();
 | |
|     TheModule->addLibrary(dep_lib);
 | |
|     if (Handler)
 | |
|       Handler->handleDependentLibrary(dep_lib);
 | |
|   }
 | |
| 
 | |
|   // Read target triple and place into the module.
 | |
|   std::string triple = read_str();
 | |
|   TheModule->setTargetTriple(triple);
 | |
|   if (Handler)
 | |
|     Handler->handleTargetTriple(triple);
 | |
|   
 | |
|   // Read the data layout string and place into the module.
 | |
|   std::string datalayout = read_str();
 | |
|   TheModule->setDataLayout(datalayout);
 | |
|   // FIXME: Implement
 | |
|   // if (Handler)
 | |
|     // Handler->handleDataLayout(datalayout);
 | |
| 
 | |
|   if (At != BlockEnd) {
 | |
|     // If the file has section info in it, read the section names now.
 | |
|     unsigned NumSections = read_vbr_uint();
 | |
|     while (NumSections--)
 | |
|       SectionNames.push_back(read_str());
 | |
|   }
 | |
|   
 | |
|   // If the file has module-level inline asm, read it now.
 | |
|   if (At != BlockEnd)
 | |
|     TheModule->setModuleInlineAsm(read_str());
 | |
| 
 | |
|   // If any globals are in specified sections, assign them now.
 | |
|   for (std::map<GlobalValue*, unsigned>::iterator I = SectionID.begin(), E =
 | |
|        SectionID.end(); I != E; ++I)
 | |
|     if (I->second) {
 | |
|       if (I->second > SectionID.size())
 | |
|         error("SectionID out of range for global!");
 | |
|       I->first->setSection(SectionNames[I->second-1]);
 | |
|     }
 | |
| 
 | |
|   // This is for future proofing... in the future extra fields may be added that
 | |
|   // we don't understand, so we transparently ignore them.
 | |
|   //
 | |
|   At = BlockEnd;
 | |
| 
 | |
|   if (Handler) Handler->handleModuleGlobalsEnd();
 | |
| }
 | |
| 
 | |
| /// Parse the version information and decode it by setting flags on the
 | |
| /// Reader that enable backward compatibility of the reader.
 | |
| void BytecodeReader::ParseVersionInfo() {
 | |
|   unsigned RevisionNum = read_vbr_uint();
 | |
| 
 | |
|   // We don't provide backwards compatibility in the Reader any more. To
 | |
|   // upgrade, the user should use llvm-upgrade.
 | |
|   if (RevisionNum < 7)
 | |
|     error("Bytecode formats < 7 are no longer supported. Use llvm-upgrade.");
 | |
| 
 | |
|   if (Handler) Handler->handleVersionInfo(RevisionNum);
 | |
| }
 | |
| 
 | |
| /// Parse a whole module.
 | |
| void BytecodeReader::ParseModule() {
 | |
|   unsigned Type, Size;
 | |
| 
 | |
|   FunctionSignatureList.clear(); // Just in case...
 | |
| 
 | |
|   // Read into instance variables...
 | |
|   ParseVersionInfo();
 | |
| 
 | |
|   bool SeenModuleGlobalInfo = false;
 | |
|   bool SeenGlobalTypePlane = false;
 | |
|   BufPtr MyEnd = BlockEnd;
 | |
|   while (At < MyEnd) {
 | |
|     BufPtr OldAt = At;
 | |
|     read_block(Type, Size);
 | |
| 
 | |
|     switch (Type) {
 | |
| 
 | |
|     case BytecodeFormat::GlobalTypePlaneBlockID:
 | |
|       if (SeenGlobalTypePlane)
 | |
|         error("Two GlobalTypePlane Blocks Encountered!");
 | |
| 
 | |
|       if (Size > 0)
 | |
|         ParseGlobalTypes();
 | |
|       SeenGlobalTypePlane = true;
 | |
|       break;
 | |
| 
 | |
|     case BytecodeFormat::ModuleGlobalInfoBlockID:
 | |
|       if (SeenModuleGlobalInfo)
 | |
|         error("Two ModuleGlobalInfo Blocks Encountered!");
 | |
|       ParseModuleGlobalInfo();
 | |
|       SeenModuleGlobalInfo = true;
 | |
|       break;
 | |
| 
 | |
|     case BytecodeFormat::ConstantPoolBlockID:
 | |
|       ParseConstantPool(ModuleValues, ModuleTypes,false);
 | |
|       break;
 | |
| 
 | |
|     case BytecodeFormat::FunctionBlockID:
 | |
|       ParseFunctionLazily();
 | |
|       break;
 | |
| 
 | |
|     case BytecodeFormat::ValueSymbolTableBlockID:
 | |
|       ParseValueSymbolTable(0, &TheModule->getValueSymbolTable());
 | |
|       break;
 | |
| 
 | |
|     case BytecodeFormat::TypeSymbolTableBlockID:
 | |
|       ParseTypeSymbolTable(&TheModule->getTypeSymbolTable());
 | |
|       break;
 | |
| 
 | |
|     default:
 | |
|       At += Size;
 | |
|       if (OldAt > At) {
 | |
|         error("Unexpected Block of Type #" + utostr(Type) + " encountered!");
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     BlockEnd = MyEnd;
 | |
|   }
 | |
| 
 | |
|   // After the module constant pool has been read, we can safely initialize
 | |
|   // global variables...
 | |
|   while (!GlobalInits.empty()) {
 | |
|     GlobalVariable *GV = GlobalInits.back().first;
 | |
|     unsigned Slot = GlobalInits.back().second;
 | |
|     GlobalInits.pop_back();
 | |
| 
 | |
|     // Look up the initializer value...
 | |
|     // FIXME: Preserve this type ID!
 | |
| 
 | |
|     const llvm::PointerType* GVType = GV->getType();
 | |
|     unsigned TypeSlot = getTypeSlot(GVType->getElementType());
 | |
|     if (Constant *CV = getConstantValue(TypeSlot, Slot)) {
 | |
|       if (GV->hasInitializer())
 | |
|         error("Global *already* has an initializer?!");
 | |
|       if (Handler) Handler->handleGlobalInitializer(GV,CV);
 | |
|       GV->setInitializer(CV);
 | |
|     } else
 | |
|       error("Cannot find initializer value.");
 | |
|   }
 | |
| 
 | |
|   if (!ConstantFwdRefs.empty())
 | |
|     error("Use of undefined constants in a module");
 | |
| 
 | |
|   /// Make sure we pulled them all out. If we didn't then there's a declaration
 | |
|   /// but a missing body. That's not allowed.
 | |
|   if (!FunctionSignatureList.empty())
 | |
|     error("Function declared, but bytecode stream ended before definition");
 | |
| }
 | |
| 
 | |
| /// This function completely parses a bytecode buffer given by the \p Buf
 | |
| /// and \p Length parameters.
 | |
| bool BytecodeReader::ParseBytecode(volatile BufPtr Buf, unsigned Length,
 | |
|                                    const std::string &ModuleID,
 | |
|                                    BCDecompressor_t *Decompressor, 
 | |
|                                    std::string* ErrMsg) {
 | |
| 
 | |
|   /// We handle errors by
 | |
|   if (setjmp(context)) {
 | |
|     // Cleanup after error
 | |
|     if (Handler) Handler->handleError(ErrorMsg);
 | |
|     freeState();
 | |
|     delete TheModule;
 | |
|     TheModule = 0;
 | |
|     if (decompressedBlock != 0 ) {
 | |
|       ::free(decompressedBlock);
 | |
|       decompressedBlock = 0;
 | |
|     }
 | |
|     // Set caller's error message, if requested
 | |
|     if (ErrMsg)
 | |
|       *ErrMsg = ErrorMsg;
 | |
|     // Indicate an error occurred
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   RevisionNum = 0;
 | |
|   At = MemStart = BlockStart = Buf;
 | |
|   MemEnd = BlockEnd = Buf + Length;
 | |
| 
 | |
|   // Create the module
 | |
|   TheModule = new Module(ModuleID);
 | |
| 
 | |
|   if (Handler) Handler->handleStart(TheModule, Length);
 | |
| 
 | |
|   // Read the four bytes of the signature.
 | |
|   unsigned Sig = read_uint();
 | |
| 
 | |
|   // If this is a compressed file
 | |
|   if (Sig == ('l' | ('l' << 8) | ('v' << 16) | ('c' << 24))) {
 | |
|     if (!Decompressor) {
 | |
|       error("Compressed bytecode found, but not decompressor available");
 | |
|     }
 | |
| 
 | |
|     // Invoke the decompression of the bytecode. Note that we have to skip the
 | |
|     // file's magic number which is not part of the compressed block. Hence,
 | |
|     // the Buf+4 and Length-4. The result goes into decompressedBlock, a data
 | |
|     // member for retention until BytecodeReader is destructed.
 | |
|     unsigned decompressedLength = 
 | |
|       Decompressor((char*)Buf+4,Length-4,decompressedBlock, 0);
 | |
| 
 | |
|     // We must adjust the buffer pointers used by the bytecode reader to point
 | |
|     // into the new decompressed block. After decompression, the
 | |
|     // decompressedBlock will point to a contiguous memory area that has
 | |
|     // the decompressed data.
 | |
|     At = MemStart = BlockStart = Buf = (BufPtr) decompressedBlock;
 | |
|     MemEnd = BlockEnd = Buf + decompressedLength;
 | |
| 
 | |
|   // else if this isn't a regular (uncompressed) bytecode file, then its
 | |
|   // and error, generate that now.
 | |
|   } else if (Sig != ('l' | ('l' << 8) | ('v' << 16) | ('m' << 24))) {
 | |
|     error("Invalid bytecode signature: " + utohexstr(Sig));
 | |
|   }
 | |
| 
 | |
|   // Tell the handler we're starting a module
 | |
|   if (Handler) Handler->handleModuleBegin(ModuleID);
 | |
| 
 | |
|   // Get the module block and size and verify. This is handled specially
 | |
|   // because the module block/size is always written in long format. Other
 | |
|   // blocks are written in short format so the read_block method is used.
 | |
|   unsigned Type, Size;
 | |
|   Type = read_uint();
 | |
|   Size = read_uint();
 | |
|   if (Type != BytecodeFormat::ModuleBlockID) {
 | |
|     error("Expected Module Block! Type:" + utostr(Type) + ", Size:"
 | |
|           + utostr(Size));
 | |
|   }
 | |
| 
 | |
|   // It looks like the darwin ranlib program is broken, and adds trailing
 | |
|   // garbage to the end of some bytecode files.  This hack allows the bc
 | |
|   // reader to ignore trailing garbage on bytecode files.
 | |
|   if (At + Size < MemEnd)
 | |
|     MemEnd = BlockEnd = At+Size;
 | |
| 
 | |
|   if (At + Size != MemEnd)
 | |
|     error("Invalid Top Level Block Length! Type:" + utostr(Type)
 | |
|           + ", Size:" + utostr(Size));
 | |
| 
 | |
|   // Parse the module contents
 | |
|   this->ParseModule();
 | |
| 
 | |
|   // Check for missing functions
 | |
|   if (hasFunctions())
 | |
|     error("Function expected, but bytecode stream ended!");
 | |
| 
 | |
|   // Tell the handler we're done with the module
 | |
|   if (Handler)
 | |
|     Handler->handleModuleEnd(ModuleID);
 | |
| 
 | |
|   // Tell the handler we're finished the parse
 | |
|   if (Handler) Handler->handleFinish();
 | |
| 
 | |
|   return false;
 | |
| 
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //=== Default Implementations of Handler Methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| BytecodeHandler::~BytecodeHandler() {}
 | |
| 
 |