mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	as its main datastructure. There are many improvements yet to be made, but this speeds up opt --std-compile-opts on 447.dealII by 7.3%. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@34193 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			375 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			375 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- SlotCalculator.cpp - Calculate what slots values land in ----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements a useful analysis step to figure out what numbered slots
 | |
| // values in a program will land in (keeping track of per plane information).
 | |
| //
 | |
| // This is used when writing a file to disk, either in bytecode or assembly.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "SlotCalculator.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/InlineAsm.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/TypeSymbolTable.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/ValueSymbolTable.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include <algorithm>
 | |
| #include <functional>
 | |
| using namespace llvm;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| #include "llvm/Support/Streams.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| static cl::opt<bool> SlotCalculatorDebugOption("scdebug",cl::init(false), 
 | |
|     cl::desc("Enable SlotCalculator debug output"), cl::Hidden);
 | |
| #define SC_DEBUG(X) if (SlotCalculatorDebugOption) cerr << X
 | |
| #else
 | |
| #define SC_DEBUG(X)
 | |
| #endif
 | |
| 
 | |
| void SlotCalculator::insertPrimitives() {
 | |
|   // Preload the table with the built-in types. These built-in types are
 | |
|   // inserted first to ensure that they have low integer indices which helps to
 | |
|   // keep bytecode sizes small. Note that the first group of indices must match
 | |
|   // the Type::TypeIDs for the primitive types. After that the integer types are
 | |
|   // added, but the order and value is not critical. What is critical is that 
 | |
|   // the indices of these "well known" slot numbers be properly maintained in
 | |
|   // Reader.h which uses them directly to extract values of these types.
 | |
|   SC_DEBUG("Inserting primitive types:\n");
 | |
|                                     // See WellKnownTypeSlots in Reader.h
 | |
|   getOrCreateTypeSlot(Type::VoidTy  ); // 0: VoidTySlot
 | |
|   getOrCreateTypeSlot(Type::FloatTy ); // 1: FloatTySlot
 | |
|   getOrCreateTypeSlot(Type::DoubleTy); // 2: DoubleTySlot
 | |
|   getOrCreateTypeSlot(Type::LabelTy ); // 3: LabelTySlot
 | |
|   assert(TypeMap.size() == Type::FirstDerivedTyID &&"Invalid primitive insert");
 | |
|   // Above here *must* correspond 1:1 with the primitive types.
 | |
|   getOrCreateTypeSlot(Type::Int1Ty  ); // 4: Int1TySlot
 | |
|   getOrCreateTypeSlot(Type::Int8Ty  ); // 5: Int8TySlot
 | |
|   getOrCreateTypeSlot(Type::Int16Ty ); // 6: Int16TySlot
 | |
|   getOrCreateTypeSlot(Type::Int32Ty ); // 7: Int32TySlot
 | |
|   getOrCreateTypeSlot(Type::Int64Ty ); // 8: Int64TySlot
 | |
| }
 | |
| 
 | |
| SlotCalculator::SlotCalculator(const Module *M) {
 | |
|   assert(M);
 | |
|   TheModule = M;
 | |
| 
 | |
|   insertPrimitives();
 | |
|   processModule();
 | |
| }
 | |
| 
 | |
| // processModule - Process all of the module level function declarations and
 | |
| // types that are available.
 | |
| //
 | |
| void SlotCalculator::processModule() {
 | |
|   SC_DEBUG("begin processModule!\n");
 | |
| 
 | |
|   // Add all of the global variables to the value table...
 | |
|   //
 | |
|   for (Module::const_global_iterator I = TheModule->global_begin(),
 | |
|          E = TheModule->global_end(); I != E; ++I)
 | |
|     CreateSlotIfNeeded(I);
 | |
| 
 | |
|   // Scavenge the types out of the functions, then add the functions themselves
 | |
|   // to the value table...
 | |
|   //
 | |
|   for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
 | |
|        I != E; ++I)
 | |
|     CreateSlotIfNeeded(I);
 | |
| 
 | |
|   // Add all of the module level constants used as initializers
 | |
|   //
 | |
|   for (Module::const_global_iterator I = TheModule->global_begin(),
 | |
|          E = TheModule->global_end(); I != E; ++I)
 | |
|     if (I->hasInitializer())
 | |
|       CreateSlotIfNeeded(I->getInitializer());
 | |
| 
 | |
|   // Now that all global constants have been added, rearrange constant planes
 | |
|   // that contain constant strings so that the strings occur at the start of the
 | |
|   // plane, not somewhere in the middle.
 | |
|   //
 | |
|   for (unsigned plane = 0, e = Table.size(); plane != e; ++plane) {
 | |
|     if (const ArrayType *AT = dyn_cast<ArrayType>(Types[plane]))
 | |
|       if (AT->getElementType() == Type::Int8Ty) {
 | |
|         TypePlane &Plane = Table[plane];
 | |
|         unsigned FirstNonStringID = 0;
 | |
|         for (unsigned i = 0, e = Plane.size(); i != e; ++i)
 | |
|           if (isa<ConstantAggregateZero>(Plane[i]) ||
 | |
|               (isa<ConstantArray>(Plane[i]) &&
 | |
|                cast<ConstantArray>(Plane[i])->isString())) {
 | |
|             // Check to see if we have to shuffle this string around.  If not,
 | |
|             // don't do anything.
 | |
|             if (i != FirstNonStringID) {
 | |
|               // Swap the plane entries....
 | |
|               std::swap(Plane[i], Plane[FirstNonStringID]);
 | |
| 
 | |
|               // Keep the NodeMap up to date.
 | |
|               NodeMap[Plane[i]] = i;
 | |
|               NodeMap[Plane[FirstNonStringID]] = FirstNonStringID;
 | |
|             }
 | |
|             ++FirstNonStringID;
 | |
|           }
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // Scan all of the functions for their constants, which allows us to emit
 | |
|   // more compact modules.
 | |
|   SC_DEBUG("Inserting function constants:\n");
 | |
|   for (Module::const_iterator F = TheModule->begin(), E = TheModule->end();
 | |
|        F != E; ++F) {
 | |
|     for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
 | |
|       for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
 | |
|         for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); 
 | |
|              OI != E; ++OI) {
 | |
|           if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
 | |
|               isa<InlineAsm>(*OI))
 | |
|             CreateSlotIfNeeded(*OI);
 | |
|         }
 | |
|         getOrCreateTypeSlot(I->getType());
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // Insert constants that are named at module level into the slot pool so that
 | |
|   // the module symbol table can refer to them...
 | |
|   SC_DEBUG("Inserting SymbolTable values:\n");
 | |
|   processTypeSymbolTable(&TheModule->getTypeSymbolTable());
 | |
|   processValueSymbolTable(&TheModule->getValueSymbolTable());
 | |
| 
 | |
|   // Now that we have collected together all of the information relevant to the
 | |
|   // module, compactify the type table if it is particularly big and outputting
 | |
|   // a bytecode file.  The basic problem we run into is that some programs have
 | |
|   // a large number of types, which causes the type field to overflow its size,
 | |
|   // which causes instructions to explode in size (particularly call
 | |
|   // instructions).  To avoid this behavior, we "sort" the type table so that
 | |
|   // all non-value types are pushed to the end of the type table, giving nice
 | |
|   // low numbers to the types that can be used by instructions, thus reducing
 | |
|   // the amount of explodage we suffer.
 | |
|   if (Types.size() >= 64) {
 | |
|     unsigned FirstNonValueTypeID = 0;
 | |
|     for (unsigned i = 0, e = Types.size(); i != e; ++i)
 | |
|       if (Types[i]->isFirstClassType() || Types[i]->isPrimitiveType()) {
 | |
|         // Check to see if we have to shuffle this type around.  If not, don't
 | |
|         // do anything.
 | |
|         if (i != FirstNonValueTypeID) {
 | |
|           // Swap the type ID's.
 | |
|           std::swap(Types[i], Types[FirstNonValueTypeID]);
 | |
| 
 | |
|           // Keep the TypeMap up to date.
 | |
|           TypeMap[Types[i]] = i;
 | |
|           TypeMap[Types[FirstNonValueTypeID]] = FirstNonValueTypeID;
 | |
| 
 | |
|           // When we move a type, make sure to move its value plane as needed.
 | |
|           if (Table.size() > FirstNonValueTypeID) {
 | |
|             if (Table.size() <= i) Table.resize(i+1);
 | |
|             std::swap(Table[i], Table[FirstNonValueTypeID]);
 | |
|           }
 | |
|         }
 | |
|         ++FirstNonValueTypeID;
 | |
|       }
 | |
|   }
 | |
|     
 | |
|   NumModuleTypes = getNumPlanes();
 | |
| 
 | |
|   SC_DEBUG("end processModule!\n");
 | |
| }
 | |
| 
 | |
| // processTypeSymbolTable - Insert all of the type sin the specified symbol
 | |
| // table.
 | |
| void SlotCalculator::processTypeSymbolTable(const TypeSymbolTable *TST) {
 | |
|   for (TypeSymbolTable::const_iterator TI = TST->begin(), TE = TST->end(); 
 | |
|        TI != TE; ++TI )
 | |
|     getOrCreateTypeSlot(TI->second);
 | |
| }
 | |
| 
 | |
| // processSymbolTable - Insert all of the values in the specified symbol table
 | |
| // into the values table...
 | |
| //
 | |
| void SlotCalculator::processValueSymbolTable(const ValueSymbolTable *VST) {
 | |
|   for (ValueSymbolTable::const_iterator VI = VST->begin(), VE = VST->end(); 
 | |
|        VI != VE; ++VI)
 | |
|     CreateSlotIfNeeded(VI->getValue());
 | |
| }
 | |
| 
 | |
| void SlotCalculator::CreateSlotIfNeeded(const Value *V) {
 | |
|   // Check to see if it's already in!
 | |
|   if (NodeMap.count(V)) return;
 | |
| 
 | |
|   const Type *Ty = V->getType();
 | |
|   assert(Ty != Type::VoidTy && "Can't insert void values!");
 | |
|   
 | |
|   if (const Constant *C = dyn_cast<Constant>(V)) {
 | |
|     if (isa<GlobalValue>(C)) {
 | |
|       // Initializers for globals are handled explicitly elsewhere.
 | |
|     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
 | |
|       // Do not index the characters that make up constant strings.  We emit
 | |
|       // constant strings as special entities that don't require their
 | |
|       // individual characters to be emitted.
 | |
|       if (!C->isNullValue())
 | |
|         ConstantStrings.push_back(cast<ConstantArray>(C));
 | |
|     } else {
 | |
|       // This makes sure that if a constant has uses (for example an array of
 | |
|       // const ints), that they are inserted also.
 | |
|       for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
 | |
|            I != E; ++I)
 | |
|         CreateSlotIfNeeded(*I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned TyPlane = getOrCreateTypeSlot(Ty);
 | |
|   if (Table.size() <= TyPlane)    // Make sure we have the type plane allocated.
 | |
|     Table.resize(TyPlane+1, TypePlane());
 | |
|   
 | |
|   // If this is the first value to get inserted into the type plane, make sure
 | |
|   // to insert the implicit null value.
 | |
|   if (Table[TyPlane].empty()) {
 | |
|     // Label's and opaque types can't have a null value.
 | |
|     if (Ty != Type::LabelTy && !isa<OpaqueType>(Ty)) {
 | |
|       Value *ZeroInitializer = Constant::getNullValue(Ty);
 | |
|       
 | |
|       // If we are pushing zeroinit, it will be handled below.
 | |
|       if (V != ZeroInitializer) {
 | |
|         Table[TyPlane].push_back(ZeroInitializer);
 | |
|         NodeMap[ZeroInitializer] = 0;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Insert node into table and NodeMap...
 | |
|   NodeMap[V] = Table[TyPlane].size();
 | |
|   Table[TyPlane].push_back(V);
 | |
|   
 | |
|   SC_DEBUG("  Inserting value [" << TyPlane << "] = " << *V << " slot=" <<
 | |
|            NodeMap[V] << "\n");
 | |
| }
 | |
| 
 | |
| 
 | |
| unsigned SlotCalculator::getOrCreateTypeSlot(const Type *Ty) {
 | |
|   TypeMapType::iterator TyIt = TypeMap.find(Ty);
 | |
|   if (TyIt != TypeMap.end()) return TyIt->second;
 | |
| 
 | |
|   // Insert into TypeMap.
 | |
|   unsigned ResultSlot = TypeMap[Ty] = Types.size();
 | |
|   Types.push_back(Ty);
 | |
|   SC_DEBUG("  Inserting type [" << ResultSlot << "] = " << *Ty << "\n" );
 | |
|   
 | |
|   // Loop over any contained types in the definition, ensuring they are also
 | |
|   // inserted.
 | |
|   for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
 | |
|        I != E; ++I)
 | |
|     getOrCreateTypeSlot(*I);
 | |
| 
 | |
|   return ResultSlot;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void SlotCalculator::incorporateFunction(const Function *F) {
 | |
|   SC_DEBUG("begin processFunction!\n");
 | |
|   
 | |
|   // Iterate over function arguments, adding them to the value table...
 | |
|   for(Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
 | |
|       I != E; ++I)
 | |
|     CreateFunctionValueSlot(I);
 | |
|   
 | |
|   SC_DEBUG("Inserting Instructions:\n");
 | |
|   
 | |
|   // Add all of the instructions to the type planes...
 | |
|   for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
 | |
|     CreateFunctionValueSlot(BB);
 | |
|     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
 | |
|       if (I->getType() != Type::VoidTy)
 | |
|         CreateFunctionValueSlot(I);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   SC_DEBUG("end processFunction!\n");
 | |
| }
 | |
| 
 | |
| void SlotCalculator::purgeFunction() {
 | |
|   SC_DEBUG("begin purgeFunction!\n");
 | |
|   
 | |
|   // Next, remove values from existing type planes
 | |
|   for (DenseMap<unsigned,unsigned,
 | |
|           ModuleLevelDenseMapKeyInfo>::iterator I = ModuleLevel.begin(),
 | |
|        E = ModuleLevel.end(); I != E; ++I) {
 | |
|     unsigned PlaneNo = I->first;
 | |
|     unsigned ModuleLev = I->second;
 | |
|     
 | |
|     // Pop all function-local values in this type-plane off of Table.
 | |
|     TypePlane &Plane = getPlane(PlaneNo);
 | |
|     assert(ModuleLev < Plane.size() && "module levels higher than elements?");
 | |
|     for (unsigned i = ModuleLev, e = Plane.size(); i != e; ++i) {
 | |
|       NodeMap.erase(Plane.back());       // Erase from nodemap
 | |
|       Plane.pop_back();                  // Shrink plane
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ModuleLevel.clear();
 | |
| 
 | |
|   // Finally, remove any type planes defined by the function...
 | |
|   while (Table.size() > NumModuleTypes) {
 | |
|     TypePlane &Plane = Table.back();
 | |
|     SC_DEBUG("Removing Plane " << (Table.size()-1) << " of size "
 | |
|              << Plane.size() << "\n");
 | |
|     for (unsigned i = 0, e = Plane.size(); i != e; ++i)
 | |
|       NodeMap.erase(Plane[i]);   // Erase from nodemap
 | |
|     
 | |
|     Table.pop_back();                // Nuke the plane, we don't like it.
 | |
|   }
 | |
|   
 | |
|   SC_DEBUG("end purgeFunction!\n");
 | |
| }
 | |
| 
 | |
| void SlotCalculator::CreateFunctionValueSlot(const Value *V) {
 | |
|   assert(!NodeMap.count(V) && "Function-local value can't be inserted!");
 | |
|   
 | |
|   const Type *Ty = V->getType();
 | |
|   assert(Ty != Type::VoidTy && "Can't insert void values!");
 | |
|   assert(!isa<Constant>(V) && "Not a function-local value!");
 | |
|   
 | |
|   unsigned TyPlane = getOrCreateTypeSlot(Ty);
 | |
|   if (Table.size() <= TyPlane)    // Make sure we have the type plane allocated.
 | |
|     Table.resize(TyPlane+1, TypePlane());
 | |
|   
 | |
|   // If this is the first value noticed of this type within this function,
 | |
|   // remember the module level for this type plane in ModuleLevel.  This reminds
 | |
|   // us to remove the values in purgeFunction and tells us how many to remove.
 | |
|   if (TyPlane < NumModuleTypes)
 | |
|     ModuleLevel.insert(std::make_pair(TyPlane, Table[TyPlane].size()));
 | |
|   
 | |
|   // If this is the first value to get inserted into the type plane, make sure
 | |
|   // to insert the implicit null value.
 | |
|   if (Table[TyPlane].empty()) {
 | |
|     // Label's and opaque types can't have a null value.
 | |
|     if (Ty != Type::LabelTy && !isa<OpaqueType>(Ty)) {
 | |
|       Value *ZeroInitializer = Constant::getNullValue(Ty);
 | |
|       
 | |
|       // If we are pushing zeroinit, it will be handled below.
 | |
|       if (V != ZeroInitializer) {
 | |
|         Table[TyPlane].push_back(ZeroInitializer);
 | |
|         NodeMap[ZeroInitializer] = 0;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Insert node into table and NodeMap...
 | |
|   NodeMap[V] = Table[TyPlane].size();
 | |
|   Table[TyPlane].push_back(V);
 | |
|   
 | |
|   SC_DEBUG("  Inserting value [" << TyPlane << "] = " << *V << " slot=" <<
 | |
|            NodeMap[V] << "\n");
 | |
| }  
 | |
| 
 |