mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-05 13:09:10 +00:00
d85ac4d079
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33568 91177308-0d34-0410-b5e6-96231b3b80d8
674 lines
25 KiB
C++
674 lines
25 KiB
C++
//===-- ARMConstantIslandPass.cpp - ARM constant islands --------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Chris Lattner and is distributed under the
|
|
// University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains a pass that splits the constant pool up into 'islands'
|
|
// which are scattered through-out the function. This is required due to the
|
|
// limited pc-relative displacements that ARM has.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "arm-cp-islands"
|
|
#include "ARM.h"
|
|
#include "ARMMachineFunctionInfo.h"
|
|
#include "ARMInstrInfo.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
|
|
#include "llvm/Target/TargetAsmInfo.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include <iostream>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumSplit, "Number of uncond branches inserted");
|
|
|
|
namespace {
|
|
/// ARMConstantIslands - Due to limited pc-relative displacements, ARM
|
|
/// requires constant pool entries to be scattered among the instructions
|
|
/// inside a function. To do this, it completely ignores the normal LLVM
|
|
/// constant pool, instead, it places constants where-ever it feels like with
|
|
/// special instructions.
|
|
///
|
|
/// The terminology used in this pass includes:
|
|
/// Islands - Clumps of constants placed in the function.
|
|
/// Water - Potential places where an island could be formed.
|
|
/// CPE - A constant pool entry that has been placed somewhere, which
|
|
/// tracks a list of users.
|
|
class VISIBILITY_HIDDEN ARMConstantIslands : public MachineFunctionPass {
|
|
/// NextUID - Assign unique ID's to CPE's.
|
|
unsigned NextUID;
|
|
|
|
/// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed
|
|
/// by MBB Number.
|
|
std::vector<unsigned> BBSizes;
|
|
|
|
/// WaterList - A sorted list of basic blocks where islands could be placed
|
|
/// (i.e. blocks that don't fall through to the following block, due
|
|
/// to a return, unreachable, or unconditional branch).
|
|
std::vector<MachineBasicBlock*> WaterList;
|
|
|
|
/// CPUser - One user of a constant pool, keeping the machine instruction
|
|
/// pointer, the constant pool being referenced, and the max displacement
|
|
/// allowed from the instruction to the CP.
|
|
struct CPUser {
|
|
MachineInstr *MI;
|
|
MachineInstr *CPEMI;
|
|
unsigned MaxDisp;
|
|
CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp)
|
|
: MI(mi), CPEMI(cpemi), MaxDisp(maxdisp) {}
|
|
};
|
|
|
|
/// CPUsers - Keep track of all of the machine instructions that use various
|
|
/// constant pools and their max displacement.
|
|
std::vector<CPUser> CPUsers;
|
|
|
|
/// ImmBranch - One per immediate branch, keeping the machine instruction
|
|
/// pointer, conditional or unconditional, the max displacement,
|
|
/// and (if isCond is true) the corresponding unconditional branch
|
|
/// opcode.
|
|
struct ImmBranch {
|
|
MachineInstr *MI;
|
|
unsigned MaxDisp : 31;
|
|
bool isCond : 1;
|
|
int UncondBr;
|
|
ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
|
|
: MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
|
|
};
|
|
|
|
/// Branches - Keep track of all the immediate branch instructions.
|
|
///
|
|
std::vector<ImmBranch> ImmBranches;
|
|
|
|
const TargetInstrInfo *TII;
|
|
const TargetAsmInfo *TAI;
|
|
public:
|
|
virtual bool runOnMachineFunction(MachineFunction &Fn);
|
|
|
|
virtual const char *getPassName() const {
|
|
return "ARM constant island placement and branch shortening pass";
|
|
}
|
|
|
|
private:
|
|
void DoInitialPlacement(MachineFunction &Fn,
|
|
std::vector<MachineInstr*> &CPEMIs);
|
|
void InitialFunctionScan(MachineFunction &Fn,
|
|
const std::vector<MachineInstr*> &CPEMIs);
|
|
void SplitBlockBeforeInstr(MachineInstr *MI);
|
|
void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB);
|
|
bool HandleConstantPoolUser(MachineFunction &Fn, CPUser &U);
|
|
bool BBIsInBranchRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned D);
|
|
bool FixUpImmediateBranch(MachineFunction &Fn, ImmBranch &Br);
|
|
|
|
unsigned GetInstSize(MachineInstr *MI) const;
|
|
unsigned GetOffsetOf(MachineInstr *MI) const;
|
|
unsigned GetOffsetOf(MachineBasicBlock *MBB) const;
|
|
};
|
|
}
|
|
|
|
/// createARMConstantIslandPass - returns an instance of the constpool
|
|
/// island pass.
|
|
FunctionPass *llvm::createARMConstantIslandPass() {
|
|
return new ARMConstantIslands();
|
|
}
|
|
|
|
bool ARMConstantIslands::runOnMachineFunction(MachineFunction &Fn) {
|
|
MachineConstantPool &MCP = *Fn.getConstantPool();
|
|
|
|
TII = Fn.getTarget().getInstrInfo();
|
|
TAI = Fn.getTarget().getTargetAsmInfo();
|
|
|
|
// Renumber all of the machine basic blocks in the function, guaranteeing that
|
|
// the numbers agree with the position of the block in the function.
|
|
Fn.RenumberBlocks();
|
|
|
|
// Perform the initial placement of the constant pool entries. To start with,
|
|
// we put them all at the end of the function.
|
|
std::vector<MachineInstr*> CPEMIs;
|
|
if (!MCP.isEmpty())
|
|
DoInitialPlacement(Fn, CPEMIs);
|
|
|
|
/// The next UID to take is the first unused one.
|
|
NextUID = CPEMIs.size();
|
|
|
|
// Do the initial scan of the function, building up information about the
|
|
// sizes of each block, the location of all the water, and finding all of the
|
|
// constant pool users.
|
|
InitialFunctionScan(Fn, CPEMIs);
|
|
CPEMIs.clear();
|
|
|
|
// Iteratively place constant pool entries until there is no change.
|
|
bool MadeChange;
|
|
do {
|
|
MadeChange = false;
|
|
for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
|
|
MadeChange |= HandleConstantPoolUser(Fn, CPUsers[i]);
|
|
for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
|
|
MadeChange |= FixUpImmediateBranch(Fn, ImmBranches[i]);
|
|
} while (MadeChange);
|
|
|
|
BBSizes.clear();
|
|
WaterList.clear();
|
|
CPUsers.clear();
|
|
ImmBranches.clear();
|
|
|
|
return true;
|
|
}
|
|
|
|
/// DoInitialPlacement - Perform the initial placement of the constant pool
|
|
/// entries. To start with, we put them all at the end of the function.
|
|
void ARMConstantIslands::DoInitialPlacement(MachineFunction &Fn,
|
|
std::vector<MachineInstr*> &CPEMIs){
|
|
// Create the basic block to hold the CPE's.
|
|
MachineBasicBlock *BB = new MachineBasicBlock();
|
|
Fn.getBasicBlockList().push_back(BB);
|
|
|
|
// Add all of the constants from the constant pool to the end block, use an
|
|
// identity mapping of CPI's to CPE's.
|
|
const std::vector<MachineConstantPoolEntry> &CPs =
|
|
Fn.getConstantPool()->getConstants();
|
|
|
|
const TargetData &TD = *Fn.getTarget().getTargetData();
|
|
for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
|
|
unsigned Size = TD.getTypeSize(CPs[i].getType());
|
|
// Verify that all constant pool entries are a multiple of 4 bytes. If not,
|
|
// we would have to pad them out or something so that instructions stay
|
|
// aligned.
|
|
assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!");
|
|
MachineInstr *CPEMI =
|
|
BuildMI(BB, TII->get(ARM::CONSTPOOL_ENTRY))
|
|
.addImm(i).addConstantPoolIndex(i).addImm(Size);
|
|
CPEMIs.push_back(CPEMI);
|
|
DEBUG(std::cerr << "Moved CPI#" << i << " to end of function as #"
|
|
<< i << "\n");
|
|
}
|
|
}
|
|
|
|
/// BBHasFallthrough - Return true of the specified basic block can fallthrough
|
|
/// into the block immediately after it.
|
|
static bool BBHasFallthrough(MachineBasicBlock *MBB) {
|
|
// Get the next machine basic block in the function.
|
|
MachineFunction::iterator MBBI = MBB;
|
|
if (next(MBBI) == MBB->getParent()->end()) // Can't fall off end of function.
|
|
return false;
|
|
|
|
MachineBasicBlock *NextBB = next(MBBI);
|
|
for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
|
|
E = MBB->succ_end(); I != E; ++I)
|
|
if (*I == NextBB)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// InitialFunctionScan - Do the initial scan of the function, building up
|
|
/// information about the sizes of each block, the location of all the water,
|
|
/// and finding all of the constant pool users.
|
|
void ARMConstantIslands::InitialFunctionScan(MachineFunction &Fn,
|
|
const std::vector<MachineInstr*> &CPEMIs) {
|
|
for (MachineFunction::iterator MBBI = Fn.begin(), E = Fn.end();
|
|
MBBI != E; ++MBBI) {
|
|
MachineBasicBlock &MBB = *MBBI;
|
|
|
|
// If this block doesn't fall through into the next MBB, then this is
|
|
// 'water' that a constant pool island could be placed.
|
|
if (!BBHasFallthrough(&MBB))
|
|
WaterList.push_back(&MBB);
|
|
|
|
unsigned MBBSize = 0;
|
|
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
|
|
I != E; ++I) {
|
|
// Add instruction size to MBBSize.
|
|
MBBSize += GetInstSize(I);
|
|
|
|
int Opc = I->getOpcode();
|
|
if (TII->isBranch(Opc)) {
|
|
bool isCond = false;
|
|
unsigned Bits = 0;
|
|
unsigned Scale = 1;
|
|
int UOpc = Opc;
|
|
switch (Opc) {
|
|
default:
|
|
continue; // Ignore JT branches
|
|
case ARM::Bcc:
|
|
isCond = true;
|
|
UOpc = ARM::B;
|
|
// Fallthrough
|
|
case ARM::B:
|
|
Bits = 24;
|
|
Scale = 4;
|
|
break;
|
|
case ARM::tBcc:
|
|
isCond = true;
|
|
UOpc = ARM::tB;
|
|
Bits = 8;
|
|
Scale = 2;
|
|
break;
|
|
case ARM::tB:
|
|
Bits = 11;
|
|
Scale = 2;
|
|
break;
|
|
}
|
|
unsigned MaxDisp = (1 << (Bits-1)) * Scale;
|
|
ImmBranches.push_back(ImmBranch(I, MaxDisp, isCond, UOpc));
|
|
}
|
|
|
|
// Scan the instructions for constant pool operands.
|
|
for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
|
|
if (I->getOperand(op).isConstantPoolIndex()) {
|
|
// We found one. The addressing mode tells us the max displacement
|
|
// from the PC that this instruction permits.
|
|
unsigned MaxOffs = 0;
|
|
|
|
// Basic size info comes from the TSFlags field.
|
|
unsigned TSFlags = I->getInstrDescriptor()->TSFlags;
|
|
switch (TSFlags & ARMII::AddrModeMask) {
|
|
default:
|
|
// Constant pool entries can reach anything.
|
|
if (I->getOpcode() == ARM::CONSTPOOL_ENTRY)
|
|
continue;
|
|
assert(0 && "Unknown addressing mode for CP reference!");
|
|
case ARMII::AddrMode1: // AM1: 8 bits << 2
|
|
MaxOffs = 1 << (8+2); // Taking the address of a CP entry.
|
|
break;
|
|
case ARMII::AddrMode2:
|
|
MaxOffs = 1 << 12; // +-offset_12
|
|
break;
|
|
case ARMII::AddrMode3:
|
|
MaxOffs = 1 << 8; // +-offset_8
|
|
break;
|
|
// addrmode4 has no immediate offset.
|
|
case ARMII::AddrMode5:
|
|
MaxOffs = 1 << (8+2); // +-(offset_8*4)
|
|
break;
|
|
case ARMII::AddrModeT1:
|
|
MaxOffs = 1 << 5;
|
|
break;
|
|
case ARMII::AddrModeT2:
|
|
MaxOffs = 1 << (5+1);
|
|
break;
|
|
case ARMII::AddrModeT4:
|
|
MaxOffs = 1 << (5+2);
|
|
break;
|
|
case ARMII::AddrModeTs:
|
|
MaxOffs = 1 << (8+2);
|
|
break;
|
|
}
|
|
|
|
// Remember that this is a user of a CP entry.
|
|
MachineInstr *CPEMI =CPEMIs[I->getOperand(op).getConstantPoolIndex()];
|
|
CPUsers.push_back(CPUser(I, CPEMI, MaxOffs));
|
|
|
|
// Instructions can only use one CP entry, don't bother scanning the
|
|
// rest of the operands.
|
|
break;
|
|
}
|
|
}
|
|
BBSizes.push_back(MBBSize);
|
|
}
|
|
}
|
|
|
|
/// FIXME: Works around a gcc miscompilation with -fstrict-aliasing
|
|
static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
|
|
unsigned JTI) DISABLE_INLINE;
|
|
static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
|
|
unsigned JTI) {
|
|
return JT[JTI].MBBs.size();
|
|
}
|
|
|
|
/// GetInstSize - Return the size of the specified MachineInstr.
|
|
///
|
|
unsigned ARMConstantIslands::GetInstSize(MachineInstr *MI) const {
|
|
// Basic size info comes from the TSFlags field.
|
|
unsigned TSFlags = MI->getInstrDescriptor()->TSFlags;
|
|
|
|
switch ((TSFlags & ARMII::SizeMask) >> ARMII::SizeShift) {
|
|
default:
|
|
// If this machine instr is an inline asm, measure it.
|
|
if (MI->getOpcode() == ARM::INLINEASM)
|
|
return TAI->getInlineAsmLength(MI->getOperand(0).getSymbolName());
|
|
if (MI->getOpcode() == ARM::LABEL)
|
|
return 0;
|
|
assert(0 && "Unknown or unset size field for instr!");
|
|
break;
|
|
case ARMII::Size8Bytes: return 8; // Arm instruction x 2.
|
|
case ARMII::Size4Bytes: return 4; // Arm instruction.
|
|
case ARMII::Size2Bytes: return 2; // Thumb instruction.
|
|
case ARMII::SizeSpecial: {
|
|
switch (MI->getOpcode()) {
|
|
case ARM::CONSTPOOL_ENTRY:
|
|
// If this machine instr is a constant pool entry, its size is recorded as
|
|
// operand #2.
|
|
return MI->getOperand(2).getImm();
|
|
case ARM::BR_JTr:
|
|
case ARM::BR_JTm:
|
|
case ARM::BR_JTadd:
|
|
case ARM::tBR_JTr: {
|
|
// These are jumptable branches, i.e. a branch followed by an inlined
|
|
// jumptable. The size is 4 + 4 * number of entries.
|
|
unsigned JTI = MI->getOperand(MI->getNumOperands()-2).getJumpTableIndex();
|
|
const MachineFunction *MF = MI->getParent()->getParent();
|
|
MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
|
|
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
|
|
assert(JTI < JT.size());
|
|
// Thumb instructions are 2 byte aligned, but JT entries are 4 byte
|
|
// 4 aligned. The assembler / linker may add 2 byte padding just before
|
|
// the JT entries. Use + 4 even for tBR_JTr to purposely over-estimate
|
|
// the size the jumptable.
|
|
// FIXME: If we know the size of the function is less than (1 << 16) *2
|
|
// bytes, we can use 16-bit entries instead. Then there won't be an
|
|
// alignment issue.
|
|
return getNumJTEntries(JT, JTI) * 4 + 4;
|
|
}
|
|
default:
|
|
// Otherwise, pseudo-instruction sizes are zero.
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// GetOffsetOf - Return the current offset of the specified machine instruction
|
|
/// from the start of the function. This offset changes as stuff is moved
|
|
/// around inside the function.
|
|
unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const {
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
|
|
// The offset is composed of two things: the sum of the sizes of all MBB's
|
|
// before this instruction's block, and the offset from the start of the block
|
|
// it is in.
|
|
unsigned Offset = 0;
|
|
|
|
// Sum block sizes before MBB.
|
|
for (unsigned BB = 0, e = MBB->getNumber(); BB != e; ++BB)
|
|
Offset += BBSizes[BB];
|
|
|
|
// Sum instructions before MI in MBB.
|
|
for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) {
|
|
assert(I != MBB->end() && "Didn't find MI in its own basic block?");
|
|
if (&*I == MI) return Offset;
|
|
Offset += GetInstSize(I);
|
|
}
|
|
}
|
|
|
|
/// GetOffsetOf - Return the current offset of the specified machine BB
|
|
/// from the start of the function. This offset changes as stuff is moved
|
|
/// around inside the function.
|
|
unsigned ARMConstantIslands::GetOffsetOf(MachineBasicBlock *MBB) const {
|
|
// Sum block sizes before MBB.
|
|
unsigned Offset = 0;
|
|
for (unsigned BB = 0, e = MBB->getNumber(); BB != e; ++BB)
|
|
Offset += BBSizes[BB];
|
|
|
|
return Offset;
|
|
}
|
|
|
|
/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
|
|
/// ID.
|
|
static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
|
|
const MachineBasicBlock *RHS) {
|
|
return LHS->getNumber() < RHS->getNumber();
|
|
}
|
|
|
|
/// UpdateForInsertedWaterBlock - When a block is newly inserted into the
|
|
/// machine function, it upsets all of the block numbers. Renumber the blocks
|
|
/// and update the arrays that parallel this numbering.
|
|
void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
|
|
// Renumber the MBB's to keep them consequtive.
|
|
NewBB->getParent()->RenumberBlocks(NewBB);
|
|
|
|
// Insert a size into BBSizes to align it properly with the (newly
|
|
// renumbered) block numbers.
|
|
BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0);
|
|
|
|
// Next, update WaterList. Specifically, we need to add NewMBB as having
|
|
// available water after it.
|
|
std::vector<MachineBasicBlock*>::iterator IP =
|
|
std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
|
|
CompareMBBNumbers);
|
|
WaterList.insert(IP, NewBB);
|
|
}
|
|
|
|
|
|
/// Split the basic block containing MI into two blocks, which are joined by
|
|
/// an unconditional branch. Update datastructures and renumber blocks to
|
|
/// account for this change.
|
|
void ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) {
|
|
MachineBasicBlock *OrigBB = MI->getParent();
|
|
const ARMFunctionInfo *AFI = OrigBB->getParent()->getInfo<ARMFunctionInfo>();
|
|
bool isThumb = AFI->isThumbFunction();
|
|
|
|
// Create a new MBB for the code after the OrigBB.
|
|
MachineBasicBlock *NewBB = new MachineBasicBlock(OrigBB->getBasicBlock());
|
|
MachineFunction::iterator MBBI = OrigBB; ++MBBI;
|
|
OrigBB->getParent()->getBasicBlockList().insert(MBBI, NewBB);
|
|
|
|
// Splice the instructions starting with MI over to NewBB.
|
|
NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
|
|
|
|
// Add an unconditional branch from OrigBB to NewBB.
|
|
BuildMI(OrigBB, TII->get(isThumb ? ARM::tB : ARM::B)).addMBB(NewBB);
|
|
NumSplit++;
|
|
|
|
// Update the CFG. All succs of OrigBB are now succs of NewBB.
|
|
while (!OrigBB->succ_empty()) {
|
|
MachineBasicBlock *Succ = *OrigBB->succ_begin();
|
|
OrigBB->removeSuccessor(Succ);
|
|
NewBB->addSuccessor(Succ);
|
|
|
|
// This pass should be run after register allocation, so there should be no
|
|
// PHI nodes to update.
|
|
assert((Succ->empty() || Succ->begin()->getOpcode() != TargetInstrInfo::PHI)
|
|
&& "PHI nodes should be eliminated by now!");
|
|
}
|
|
|
|
// OrigBB branches to NewBB.
|
|
OrigBB->addSuccessor(NewBB);
|
|
|
|
// Update internal data structures to account for the newly inserted MBB.
|
|
UpdateForInsertedWaterBlock(NewBB);
|
|
|
|
// Figure out how large the first NewMBB is.
|
|
unsigned NewBBSize = 0;
|
|
for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end();
|
|
I != E; ++I)
|
|
NewBBSize += GetInstSize(I);
|
|
|
|
// Set the size of NewBB in BBSizes.
|
|
BBSizes[NewBB->getNumber()] = NewBBSize;
|
|
|
|
// We removed instructions from UserMBB, subtract that off from its size.
|
|
// Add 2 or 4 to the block to count the unconditional branch we added to it.
|
|
BBSizes[OrigBB->getNumber()] -= NewBBSize - (isThumb ? 2 : 4);
|
|
}
|
|
|
|
/// HandleConstantPoolUser - Analyze the specified user, checking to see if it
|
|
/// is out-of-range. If so, pick it up the constant pool value and move it some
|
|
/// place in-range.
|
|
bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &Fn, CPUser &U){
|
|
MachineInstr *UserMI = U.MI;
|
|
MachineInstr *CPEMI = U.CPEMI;
|
|
|
|
unsigned UserOffset = GetOffsetOf(UserMI);
|
|
unsigned CPEOffset = GetOffsetOf(CPEMI);
|
|
|
|
DEBUG(std::cerr << "User of CPE#" << CPEMI->getOperand(0).getImm()
|
|
<< " max delta=" << U.MaxDisp
|
|
<< " at offset " << int(UserOffset-CPEOffset) << "\t"
|
|
<< *UserMI);
|
|
|
|
// Check to see if the CPE is already in-range.
|
|
if (UserOffset < CPEOffset) {
|
|
// User before the CPE.
|
|
if (CPEOffset-UserOffset <= U.MaxDisp)
|
|
return false;
|
|
} else {
|
|
if (UserOffset-CPEOffset <= U.MaxDisp)
|
|
return false;
|
|
}
|
|
|
|
|
|
// Solution guaranteed to work: split the user's MBB right before the user and
|
|
// insert a clone the CPE into the newly created water.
|
|
|
|
// If the user isn't at the start of its MBB, or if there is a fall-through
|
|
// into the user's MBB, split the MBB before the User.
|
|
MachineBasicBlock *UserMBB = UserMI->getParent();
|
|
if (&UserMBB->front() != UserMI ||
|
|
UserMBB == &Fn.front() || // entry MBB of function.
|
|
BBHasFallthrough(prior(MachineFunction::iterator(UserMBB)))) {
|
|
// TODO: Search for the best place to split the code. In practice, using
|
|
// loop nesting information to insert these guys outside of loops would be
|
|
// sufficient.
|
|
SplitBlockBeforeInstr(UserMI);
|
|
|
|
// UserMI's BB may have changed.
|
|
UserMBB = UserMI->getParent();
|
|
}
|
|
|
|
// Okay, we know we can put an island before UserMBB now, do it!
|
|
MachineBasicBlock *NewIsland = new MachineBasicBlock();
|
|
Fn.getBasicBlockList().insert(UserMBB, NewIsland);
|
|
|
|
// Update internal data structures to account for the newly inserted MBB.
|
|
UpdateForInsertedWaterBlock(NewIsland);
|
|
|
|
// Now that we have an island to add the CPE to, clone the original CPE and
|
|
// add it to the island.
|
|
unsigned ID = NextUID++;
|
|
unsigned CPI = CPEMI->getOperand(1).getConstantPoolIndex();
|
|
unsigned Size = CPEMI->getOperand(2).getImm();
|
|
|
|
// Build a new CPE for this user.
|
|
U.CPEMI = BuildMI(NewIsland, TII->get(ARM::CONSTPOOL_ENTRY))
|
|
.addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
|
|
|
|
// Increase the size of the island block to account for the new entry.
|
|
BBSizes[NewIsland->getNumber()] += Size;
|
|
|
|
// Finally, change the CPI in the instruction operand to be ID.
|
|
for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
|
|
if (UserMI->getOperand(i).isConstantPoolIndex()) {
|
|
UserMI->getOperand(i).setConstantPoolIndex(ID);
|
|
break;
|
|
}
|
|
|
|
DEBUG(std::cerr << " Moved CPE to #" << ID << " CPI=" << CPI << "\t"
|
|
<< *UserMI);
|
|
|
|
|
|
return true;
|
|
}
|
|
|
|
/// BBIsInBranchRange - Returns true is the distance between specific MI and
|
|
/// specific BB can fit in MI's displacement field.
|
|
bool ARMConstantIslands::BBIsInBranchRange(MachineInstr *MI,
|
|
MachineBasicBlock *DestBB,
|
|
unsigned MaxDisp) {
|
|
unsigned BrOffset = GetOffsetOf(MI);
|
|
unsigned DestOffset = GetOffsetOf(DestBB);
|
|
|
|
// Check to see if the destination BB is in range.
|
|
if (BrOffset < DestOffset) {
|
|
if (DestOffset - BrOffset < MaxDisp)
|
|
return true;
|
|
} else {
|
|
if (BrOffset - DestOffset <= MaxDisp)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static inline unsigned getUncondBranchDisp(int Opc) {
|
|
return (Opc == ARM::tB) ? (1<<10)*2 : (1<<23)*4;
|
|
}
|
|
|
|
/// FixUpImmediateBranch - Fix up immediate branches whose destination is too
|
|
/// far away to fit in its displacement field. If it is a conditional branch,
|
|
/// then it is converted to an inverse conditional branch + an unconditional
|
|
/// branch to the destination. If it is an unconditional branch, then it is
|
|
/// converted to a branch to a branch.
|
|
bool
|
|
ARMConstantIslands::FixUpImmediateBranch(MachineFunction &Fn, ImmBranch &Br) {
|
|
MachineInstr *MI = Br.MI;
|
|
MachineBasicBlock *DestBB = MI->getOperand(0).getMachineBasicBlock();
|
|
|
|
if (BBIsInBranchRange(MI, DestBB, Br.MaxDisp))
|
|
return false;
|
|
|
|
if (!Br.isCond) {
|
|
// Unconditional branch. We have to insert a branch somewhere to perform
|
|
// a two level branch (branch to branch). FIXME: not yet implemented.
|
|
assert(false && "Can't handle unconditional branch yet!");
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, add a unconditional branch to the destination and
|
|
// invert the branch condition to jump over it:
|
|
// blt L1
|
|
// =>
|
|
// bge L2
|
|
// b L1
|
|
// L2:
|
|
ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImmedValue();
|
|
CC = ARMCC::getOppositeCondition(CC);
|
|
|
|
// If the branch is at the end of its MBB and that has a fall-through block,
|
|
// direct the updated conditional branch to the fall-through block. Otherwise,
|
|
// split the MBB before the next instruction.
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
MachineInstr *BackMI = &MBB->back();
|
|
bool NeedSplit = (BackMI != MI) || !BBHasFallthrough(MBB);
|
|
|
|
if (BackMI != MI) {
|
|
if (next(MachineBasicBlock::iterator(MI)) == MBB->back() &&
|
|
BackMI->getOpcode() == Br.UncondBr) {
|
|
// Last MI in the BB is a unconditional branch. Can we simply invert the
|
|
// condition and swap destinations:
|
|
// beq L1
|
|
// b L2
|
|
// =>
|
|
// bne L2
|
|
// b L1
|
|
MachineBasicBlock *NewDest = BackMI->getOperand(0).getMachineBasicBlock();
|
|
if (BBIsInBranchRange(MI, NewDest, Br.MaxDisp)) {
|
|
BackMI->getOperand(0).setMachineBasicBlock(DestBB);
|
|
MI->getOperand(0).setMachineBasicBlock(NewDest);
|
|
MI->getOperand(1).setImm(CC);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (NeedSplit) {
|
|
SplitBlockBeforeInstr(MI);
|
|
// No need for the branch to the next block. We're adding a unconditional
|
|
// branch to the destination.
|
|
MBB->back().eraseFromParent();
|
|
}
|
|
MachineBasicBlock *NextBB = next(MachineFunction::iterator(MBB));
|
|
|
|
// Insert a unconditional branch and replace the conditional branch.
|
|
// Also update the ImmBranch as well as adding a new entry for the new branch.
|
|
BuildMI(MBB, TII->get(MI->getOpcode())).addMBB(NextBB).addImm(CC);
|
|
Br.MI = &MBB->back();
|
|
BuildMI(MBB, TII->get(Br.UncondBr)).addMBB(DestBB);
|
|
unsigned MaxDisp = getUncondBranchDisp(Br.UncondBr);
|
|
ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
|
|
MI->eraseFromParent();
|
|
|
|
// Increase the size of MBB to account for the new unconditional branch.
|
|
BBSizes[MBB->getNumber()] += GetInstSize(&MBB->back());
|
|
return true;
|
|
}
|