mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	the observation that it only has to handle i1 -> i64 and i64 -> i1. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@23201 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2395 lines
		
	
	
		
			81 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2395 lines
		
	
	
		
			81 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- IA64ISelPattern.cpp - A pattern matching inst selector for IA64 ---===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by Duraid Madina and is distributed under the
 | |
| // University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines a pattern matching instruction selector for IA64.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "IA64.h"
 | |
| #include "IA64InstrBuilder.h"
 | |
| #include "IA64RegisterInfo.h"
 | |
| #include "IA64MachineFunctionInfo.h"
 | |
| #include "llvm/Constants.h"                   // FIXME: REMOVE
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h" // FIXME: REMOVE
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/CodeGen/SelectionDAGISel.h"
 | |
| #include "llvm/CodeGen/SSARegMap.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include <set>
 | |
| #include <map>
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  IA64TargetLowering - IA64 Implementation of the TargetLowering interface
 | |
| namespace {
 | |
|   class IA64TargetLowering : public TargetLowering {
 | |
|     int VarArgsFrameIndex;            // FrameIndex for start of varargs area.
 | |
| 
 | |
|     //int ReturnAddrIndex;              // FrameIndex for return slot.
 | |
|     unsigned GP, SP, RP; // FIXME - clean this mess up
 | |
|   public:
 | |
| 
 | |
|    unsigned VirtGPR; // this is public so it can be accessed in the selector
 | |
|    // for ISD::RET down below. add an accessor instead? FIXME
 | |
| 
 | |
|    IA64TargetLowering(TargetMachine &TM) : TargetLowering(TM) {
 | |
| 
 | |
|       // register class for general registers
 | |
|       addRegisterClass(MVT::i64, IA64::GRRegisterClass);
 | |
| 
 | |
|       // register class for FP registers
 | |
|       addRegisterClass(MVT::f64, IA64::FPRegisterClass);
 | |
| 
 | |
|       // register class for predicate registers
 | |
|       addRegisterClass(MVT::i1, IA64::PRRegisterClass);
 | |
| 
 | |
|       setOperationAction(ISD::BRCONDTWOWAY     , MVT::Other, Expand);
 | |
|       setOperationAction(ISD::BRTWOWAY_CC      , MVT::Other, Expand);
 | |
|       setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
 | |
| 
 | |
|       setSetCCResultType(MVT::i1);
 | |
|       setShiftAmountType(MVT::i64);
 | |
| 
 | |
|       setOperationAction(ISD::EXTLOAD          , MVT::i1   , Promote);
 | |
| 
 | |
|       setOperationAction(ISD::ZEXTLOAD         , MVT::i1   , Expand);
 | |
| 
 | |
|       setOperationAction(ISD::SEXTLOAD         , MVT::i1   , Expand);
 | |
|       setOperationAction(ISD::SEXTLOAD         , MVT::i8   , Expand);
 | |
|       setOperationAction(ISD::SEXTLOAD         , MVT::i16  , Expand);
 | |
|       setOperationAction(ISD::SEXTLOAD         , MVT::i32  , Expand);
 | |
| 
 | |
|       setOperationAction(ISD::SREM             , MVT::f32  , Expand);
 | |
|       setOperationAction(ISD::SREM             , MVT::f64  , Expand);
 | |
| 
 | |
|       setOperationAction(ISD::UREM             , MVT::f32  , Expand);
 | |
|       setOperationAction(ISD::UREM             , MVT::f64  , Expand);
 | |
| 
 | |
|       setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
 | |
|       setOperationAction(ISD::MEMSET           , MVT::Other, Expand);
 | |
|       setOperationAction(ISD::MEMCPY           , MVT::Other, Expand);
 | |
| 
 | |
|       // We don't support sin/cos/sqrt
 | |
|       setOperationAction(ISD::FSIN , MVT::f64, Expand);
 | |
|       setOperationAction(ISD::FCOS , MVT::f64, Expand);
 | |
|       setOperationAction(ISD::FSQRT, MVT::f64, Expand);
 | |
|       setOperationAction(ISD::FSIN , MVT::f32, Expand);
 | |
|       setOperationAction(ISD::FCOS , MVT::f32, Expand);
 | |
|       setOperationAction(ISD::FSQRT, MVT::f32, Expand);
 | |
| 
 | |
|       //IA64 has these, but they are not implemented
 | |
|       setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
 | |
|       setOperationAction(ISD::CTLZ , MVT::i64  , Expand);
 | |
| 
 | |
|       computeRegisterProperties();
 | |
| 
 | |
|       addLegalFPImmediate(+0.0);
 | |
|       addLegalFPImmediate(+1.0);
 | |
|       addLegalFPImmediate(-0.0);
 | |
|       addLegalFPImmediate(-1.0);
 | |
|     }
 | |
| 
 | |
|     /// LowerArguments - This hook must be implemented to indicate how we should
 | |
|     /// lower the arguments for the specified function, into the specified DAG.
 | |
|     virtual std::vector<SDOperand>
 | |
|     LowerArguments(Function &F, SelectionDAG &DAG);
 | |
| 
 | |
|     /// LowerCallTo - This hook lowers an abstract call to a function into an
 | |
|     /// actual call.
 | |
|     virtual std::pair<SDOperand, SDOperand>
 | |
|     LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, unsigned CC,
 | |
|                 bool isTailCall, SDOperand Callee, ArgListTy &Args,
 | |
|                 SelectionDAG &DAG);
 | |
| 
 | |
|     virtual SDOperand LowerVAStart(SDOperand Chain, SDOperand VAListP,
 | |
|                                    Value *VAListV, SelectionDAG &DAG);
 | |
|     virtual std::pair<SDOperand,SDOperand>
 | |
|       LowerVAArg(SDOperand Chain, SDOperand VAListP, Value *VAListV,
 | |
|                  const Type *ArgTy, SelectionDAG &DAG);
 | |
| 
 | |
|     void restoreGP_SP_RP(MachineBasicBlock* BB)
 | |
|     {
 | |
|       BuildMI(BB, IA64::MOV, 1, IA64::r1).addReg(GP);
 | |
|       BuildMI(BB, IA64::MOV, 1, IA64::r12).addReg(SP);
 | |
|       BuildMI(BB, IA64::MOV, 1, IA64::rp).addReg(RP);
 | |
|     }
 | |
| 
 | |
|     void restoreSP_RP(MachineBasicBlock* BB)
 | |
|     {
 | |
|       BuildMI(BB, IA64::MOV, 1, IA64::r12).addReg(SP);
 | |
|       BuildMI(BB, IA64::MOV, 1, IA64::rp).addReg(RP);
 | |
|     }
 | |
| 
 | |
|     void restoreRP(MachineBasicBlock* BB)
 | |
|     {
 | |
|       BuildMI(BB, IA64::MOV, 1, IA64::rp).addReg(RP);
 | |
|     }
 | |
| 
 | |
|     void restoreGP(MachineBasicBlock* BB)
 | |
|     {
 | |
|       BuildMI(BB, IA64::MOV, 1, IA64::r1).addReg(GP);
 | |
|     }
 | |
| 
 | |
|   };
 | |
| }
 | |
| 
 | |
| 
 | |
| std::vector<SDOperand>
 | |
| IA64TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
 | |
|   std::vector<SDOperand> ArgValues;
 | |
| 
 | |
|   //
 | |
|   // add beautiful description of IA64 stack frame format
 | |
|   // here (from intel 24535803.pdf most likely)
 | |
|   //
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
| 
 | |
|   GP = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64));
 | |
|   SP = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64));
 | |
|   RP = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64));
 | |
| 
 | |
|   MachineBasicBlock& BB = MF.front();
 | |
| 
 | |
|   unsigned args_int[] = {IA64::r32, IA64::r33, IA64::r34, IA64::r35,
 | |
|                          IA64::r36, IA64::r37, IA64::r38, IA64::r39};
 | |
| 
 | |
|   unsigned args_FP[] = {IA64::F8, IA64::F9, IA64::F10, IA64::F11,
 | |
|                         IA64::F12,IA64::F13,IA64::F14, IA64::F15};
 | |
| 
 | |
|   unsigned argVreg[8];
 | |
|   unsigned argPreg[8];
 | |
|   unsigned argOpc[8];
 | |
| 
 | |
|   unsigned used_FPArgs = 0; // how many FP args have been used so far?
 | |
| 
 | |
|   unsigned ArgOffset = 0;
 | |
|   int count = 0;
 | |
| 
 | |
|   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
 | |
|     {
 | |
|       SDOperand newroot, argt;
 | |
|       if(count < 8) { // need to fix this logic? maybe.
 | |
| 
 | |
|         switch (getValueType(I->getType())) {
 | |
|           default:
 | |
|             std::cerr << "ERROR in LowerArgs: unknown type "
 | |
|               << getValueType(I->getType()) << "\n";
 | |
|             abort();
 | |
|           case MVT::f32:
 | |
|             // fixme? (well, will need to for weird FP structy stuff,
 | |
|             // see intel ABI docs)
 | |
|           case MVT::f64:
 | |
| //XXX            BuildMI(&BB, IA64::IDEF, 0, args_FP[used_FPArgs]);
 | |
|             MF.addLiveIn(args_FP[used_FPArgs]); // mark this reg as liveIn
 | |
|             // floating point args go into f8..f15 as-needed, the increment
 | |
|             argVreg[count] =                              // is below..:
 | |
|             MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::f64));
 | |
|             // FP args go into f8..f15 as needed: (hence the ++)
 | |
|             argPreg[count] = args_FP[used_FPArgs++];
 | |
|             argOpc[count] = IA64::FMOV;
 | |
|             argt = newroot = DAG.getCopyFromReg(DAG.getRoot(), argVreg[count],
 | |
|                                                 MVT::f64);
 | |
|             if (I->getType() == Type::FloatTy)
 | |
|               argt = DAG.getNode(ISD::FP_ROUND, MVT::f32, argt);
 | |
|             break;
 | |
|           case MVT::i1: // NOTE: as far as C abi stuff goes,
 | |
|                         // bools are just boring old ints
 | |
|           case MVT::i8:
 | |
|           case MVT::i16:
 | |
|           case MVT::i32:
 | |
|           case MVT::i64:
 | |
| //XXX            BuildMI(&BB, IA64::IDEF, 0, args_int[count]);
 | |
|             MF.addLiveIn(args_int[count]); // mark this register as liveIn
 | |
|             argVreg[count] =
 | |
|             MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64));
 | |
|             argPreg[count] = args_int[count];
 | |
|             argOpc[count] = IA64::MOV;
 | |
|             argt = newroot =
 | |
|               DAG.getCopyFromReg(DAG.getRoot(), argVreg[count], MVT::i64);
 | |
|             if ( getValueType(I->getType()) != MVT::i64)
 | |
|               argt = DAG.getNode(ISD::TRUNCATE, getValueType(I->getType()),
 | |
|                   newroot);
 | |
|             break;
 | |
|         }
 | |
|       } else { // more than 8 args go into the frame
 | |
|         // Create the frame index object for this incoming parameter...
 | |
|         ArgOffset = 16 + 8 * (count - 8);
 | |
|         int FI = MFI->CreateFixedObject(8, ArgOffset);
 | |
| 
 | |
|         // Create the SelectionDAG nodes corresponding to a load
 | |
|         //from this parameter
 | |
|         SDOperand FIN = DAG.getFrameIndex(FI, MVT::i64);
 | |
|         argt = newroot = DAG.getLoad(getValueType(I->getType()),
 | |
|                                      DAG.getEntryNode(), FIN, DAG.getSrcValue(NULL));
 | |
|       }
 | |
|       ++count;
 | |
|       DAG.setRoot(newroot.getValue(1));
 | |
|       ArgValues.push_back(argt);
 | |
|     }
 | |
| 
 | |
| 
 | |
|   // Create a vreg to hold the output of (what will become)
 | |
|   // the "alloc" instruction
 | |
|   VirtGPR = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64));
 | |
|   BuildMI(&BB, IA64::PSEUDO_ALLOC, 0, VirtGPR);
 | |
|   // we create a PSEUDO_ALLOC (pseudo)instruction for now
 | |
| 
 | |
|   BuildMI(&BB, IA64::IDEF, 0, IA64::r1);
 | |
| 
 | |
|   // hmm:
 | |
|   BuildMI(&BB, IA64::IDEF, 0, IA64::r12);
 | |
|   BuildMI(&BB, IA64::IDEF, 0, IA64::rp);
 | |
|   // ..hmm.
 | |
| 
 | |
|   BuildMI(&BB, IA64::MOV, 1, GP).addReg(IA64::r1);
 | |
| 
 | |
|   // hmm:
 | |
|   BuildMI(&BB, IA64::MOV, 1, SP).addReg(IA64::r12);
 | |
|   BuildMI(&BB, IA64::MOV, 1, RP).addReg(IA64::rp);
 | |
|   // ..hmm.
 | |
| 
 | |
|   unsigned tempOffset=0;
 | |
| 
 | |
|   // if this is a varargs function, we simply lower llvm.va_start by
 | |
|   // pointing to the first entry
 | |
|   if(F.isVarArg()) {
 | |
|     tempOffset=0;
 | |
|     VarArgsFrameIndex = MFI->CreateFixedObject(8, tempOffset);
 | |
|   }
 | |
| 
 | |
|   // here we actually do the moving of args, and store them to the stack
 | |
|   // too if this is a varargs function:
 | |
|   for (int i = 0; i < count && i < 8; ++i) {
 | |
|     BuildMI(&BB, argOpc[i], 1, argVreg[i]).addReg(argPreg[i]);
 | |
|     if(F.isVarArg()) {
 | |
|       // if this is a varargs function, we copy the input registers to the stack
 | |
|       int FI = MFI->CreateFixedObject(8, tempOffset);
 | |
|       tempOffset+=8;   //XXX: is it safe to use r22 like this?
 | |
|       BuildMI(&BB, IA64::MOV, 1, IA64::r22).addFrameIndex(FI);
 | |
|       // FIXME: we should use st8.spill here, one day
 | |
|       BuildMI(&BB, IA64::ST8, 1, IA64::r22).addReg(argPreg[i]);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Finally, inform the code generator which regs we return values in.
 | |
|   // (see the ISD::RET: case down below)
 | |
|   switch (getValueType(F.getReturnType())) {
 | |
|   default: assert(0 && "i have no idea where to return this type!");
 | |
|   case MVT::isVoid: break;
 | |
|   case MVT::i1:
 | |
|   case MVT::i8:
 | |
|   case MVT::i16:
 | |
|   case MVT::i32:
 | |
|   case MVT::i64:
 | |
|     MF.addLiveOut(IA64::r8);
 | |
|     break;
 | |
|   case MVT::f32:
 | |
|   case MVT::f64:
 | |
|     MF.addLiveOut(IA64::F8);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return ArgValues;
 | |
| }
 | |
| 
 | |
| std::pair<SDOperand, SDOperand>
 | |
| IA64TargetLowering::LowerCallTo(SDOperand Chain,
 | |
|                                 const Type *RetTy, bool isVarArg,
 | |
|                                 unsigned CallingConv, bool isTailCall,
 | |
|                                 SDOperand Callee, ArgListTy &Args,
 | |
|                                 SelectionDAG &DAG) {
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
| 
 | |
|   unsigned NumBytes = 16;
 | |
|   unsigned outRegsUsed = 0;
 | |
| 
 | |
|   if (Args.size() > 8) {
 | |
|     NumBytes += (Args.size() - 8) * 8;
 | |
|     outRegsUsed = 8;
 | |
|   } else {
 | |
|     outRegsUsed = Args.size();
 | |
|   }
 | |
| 
 | |
|   // FIXME? this WILL fail if we ever try to pass around an arg that
 | |
|   // consumes more than a single output slot (a 'real' double, int128
 | |
|   // some sort of aggregate etc.), as we'll underestimate how many 'outX'
 | |
|   // registers we use. Hopefully, the assembler will notice.
 | |
|   MF.getInfo<IA64FunctionInfo>()->outRegsUsed=
 | |
|     std::max(outRegsUsed, MF.getInfo<IA64FunctionInfo>()->outRegsUsed);
 | |
| 
 | |
|   Chain = DAG.getNode(ISD::CALLSEQ_START, MVT::Other, Chain,
 | |
|                         DAG.getConstant(NumBytes, getPointerTy()));
 | |
| 
 | |
|   std::vector<SDOperand> args_to_use;
 | |
|   for (unsigned i = 0, e = Args.size(); i != e; ++i)
 | |
|     {
 | |
|       switch (getValueType(Args[i].second)) {
 | |
|       default: assert(0 && "unexpected argument type!");
 | |
|       case MVT::i1:
 | |
|       case MVT::i8:
 | |
|       case MVT::i16:
 | |
|       case MVT::i32:
 | |
|         //promote to 64-bits, sign/zero extending based on type
 | |
|         //of the argument
 | |
|         if(Args[i].second->isSigned())
 | |
|           Args[i].first = DAG.getNode(ISD::SIGN_EXTEND, MVT::i64,
 | |
|               Args[i].first);
 | |
|         else
 | |
|           Args[i].first = DAG.getNode(ISD::ZERO_EXTEND, MVT::i64,
 | |
|               Args[i].first);
 | |
|         break;
 | |
|       case MVT::f32:
 | |
|         //promote to 64-bits
 | |
|         Args[i].first = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Args[i].first);
 | |
|       case MVT::f64:
 | |
|       case MVT::i64:
 | |
|         break;
 | |
|       }
 | |
|       args_to_use.push_back(Args[i].first);
 | |
|     }
 | |
| 
 | |
|   std::vector<MVT::ValueType> RetVals;
 | |
|   MVT::ValueType RetTyVT = getValueType(RetTy);
 | |
|   if (RetTyVT != MVT::isVoid)
 | |
|     RetVals.push_back(RetTyVT);
 | |
|   RetVals.push_back(MVT::Other);
 | |
| 
 | |
|   SDOperand TheCall = SDOperand(DAG.getCall(RetVals, Chain,
 | |
|                                             Callee, args_to_use), 0);
 | |
|   Chain = TheCall.getValue(RetTyVT != MVT::isVoid);
 | |
|   Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
 | |
|                       DAG.getConstant(NumBytes, getPointerTy()));
 | |
|   return std::make_pair(TheCall, Chain);
 | |
| }
 | |
| 
 | |
| SDOperand
 | |
| IA64TargetLowering::LowerVAStart(SDOperand Chain, SDOperand VAListP,
 | |
|                                  Value *VAListV, SelectionDAG &DAG) {
 | |
|   // vastart just stores the address of the VarArgsFrameIndex slot.
 | |
|   SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i64);
 | |
|   return DAG.getNode(ISD::STORE, MVT::Other, Chain, FR,
 | |
|                      VAListP, DAG.getSrcValue(VAListV));
 | |
| }
 | |
| 
 | |
| std::pair<SDOperand,SDOperand> IA64TargetLowering::
 | |
| LowerVAArg(SDOperand Chain, SDOperand VAListP, Value *VAListV,
 | |
|            const Type *ArgTy, SelectionDAG &DAG) {
 | |
| 
 | |
|   MVT::ValueType ArgVT = getValueType(ArgTy);
 | |
|   SDOperand Val = DAG.getLoad(MVT::i64, Chain,
 | |
|                               VAListP, DAG.getSrcValue(VAListV));
 | |
|   SDOperand Result = DAG.getLoad(ArgVT, DAG.getEntryNode(), Val,
 | |
|                                  DAG.getSrcValue(NULL));
 | |
|   unsigned Amt;
 | |
|   if (ArgVT == MVT::i32 || ArgVT == MVT::f32)
 | |
|     Amt = 8;
 | |
|   else {
 | |
|     assert((ArgVT == MVT::i64 || ArgVT == MVT::f64) &&
 | |
|            "Other types should have been promoted for varargs!");
 | |
|     Amt = 8;
 | |
|   }
 | |
|   Val = DAG.getNode(ISD::ADD, Val.getValueType(), Val,
 | |
|                     DAG.getConstant(Amt, Val.getValueType()));
 | |
|   Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain,
 | |
|                       Val, VAListP, DAG.getSrcValue(VAListV));
 | |
|   return std::make_pair(Result, Chain);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   /// ISel - IA64 specific code to select IA64 machine instructions for
 | |
|   /// SelectionDAG operations.
 | |
|   ///
 | |
|   class ISel : public SelectionDAGISel {
 | |
|     /// IA64Lowering - This object fully describes how to lower LLVM code to an
 | |
|     /// IA64-specific SelectionDAG.
 | |
|     IA64TargetLowering IA64Lowering;
 | |
|     SelectionDAG *ISelDAG; // Hack to support us having a dag->dag transform
 | |
|                            // for sdiv and udiv until it is put into the future
 | |
|                            // dag combiner
 | |
| 
 | |
|     /// ExprMap - As shared expressions are codegen'd, we keep track of which
 | |
|     /// vreg the value is produced in, so we only emit one copy of each compiled
 | |
|     /// tree.
 | |
|     std::map<SDOperand, unsigned> ExprMap;
 | |
|     std::set<SDOperand> LoweredTokens;
 | |
| 
 | |
|   public:
 | |
|     ISel(TargetMachine &TM) : SelectionDAGISel(IA64Lowering), IA64Lowering(TM),
 | |
|                               ISelDAG(0) { }
 | |
| 
 | |
|     /// InstructionSelectBasicBlock - This callback is invoked by
 | |
|     /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
 | |
|     virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
 | |
| 
 | |
|     unsigned SelectExpr(SDOperand N);
 | |
|     void Select(SDOperand N);
 | |
|     // a dag->dag to transform mul-by-constant-int to shifts+adds/subs
 | |
|     SDOperand BuildConstmulSequence(SDOperand N);
 | |
| 
 | |
|     const char *getPassName() const { return "IA64 Instruction Selector"; }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
 | |
| /// when it has created a SelectionDAG for us to codegen.
 | |
| void ISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
 | |
| 
 | |
|   // Codegen the basic block.
 | |
|   ISelDAG = &DAG;
 | |
|   Select(DAG.getRoot());
 | |
| 
 | |
|   // Clear state used for selection.
 | |
|   ExprMap.clear();
 | |
|   LoweredTokens.clear();
 | |
|   ISelDAG = 0;
 | |
| }
 | |
| 
 | |
| // strip leading '0' characters from a string
 | |
| void munchLeadingZeros(std::string& inString) {
 | |
|   while(inString.c_str()[0]=='0') {
 | |
|     inString.erase(0, 1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // strip trailing '0' characters from a string
 | |
| void munchTrailingZeros(std::string& inString) {
 | |
|   int curPos=inString.length()-1;
 | |
| 
 | |
|   while(inString.c_str()[curPos]=='0') {
 | |
|     inString.erase(curPos, 1);
 | |
|     curPos--;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // return how many consecutive '0' characters are at the end of a string
 | |
| unsigned int countTrailingZeros(std::string& inString) {
 | |
|   int curPos=inString.length()-1;
 | |
|   unsigned int zeroCount=0;
 | |
|   // assert goes here
 | |
|   while(inString.c_str()[curPos--]=='0') {
 | |
|     zeroCount++;
 | |
|   }
 | |
|   return zeroCount;
 | |
| }
 | |
| 
 | |
| // booth encode a string of '1' and '0' characters (returns string of 'P' (+1)
 | |
| // '0' and 'N' (-1) characters)
 | |
| void boothEncode(std::string inString, std::string& boothEncodedString) {
 | |
| 
 | |
|   int curpos=0;
 | |
|   int replacements=0;
 | |
|   int lim=inString.size();
 | |
| 
 | |
|   while(curpos<lim) {
 | |
|     if(inString[curpos]=='1') { // if we see a '1', look for a run of them
 | |
|       int runlength=0;
 | |
|       std::string replaceString="N";
 | |
| 
 | |
|       // find the run length
 | |
|       for(;inString[curpos+runlength]=='1';runlength++) ;
 | |
| 
 | |
|       for(int i=0; i<runlength-1; i++)
 | |
|         replaceString+="0";
 | |
|       replaceString+="1";
 | |
| 
 | |
|       if(runlength>1) {
 | |
|         inString.replace(curpos, runlength+1, replaceString);
 | |
|         curpos+=runlength-1;
 | |
|       } else
 | |
|         curpos++;
 | |
|     } else { // a zero, we just keep chugging along
 | |
|       curpos++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // clean up (trim the string, reverse it and turn '1's into 'P's)
 | |
|   munchTrailingZeros(inString);
 | |
|   boothEncodedString="";
 | |
| 
 | |
|   for(int i=inString.size()-1;i>=0;i--)
 | |
|     if(inString[i]=='1')
 | |
|       boothEncodedString+="P";
 | |
|     else
 | |
|       boothEncodedString+=inString[i];
 | |
| 
 | |
| }
 | |
| 
 | |
| struct shiftaddblob { // this encodes stuff like (x=) "A << B [+-] C << D"
 | |
|   unsigned firstVal;    // A
 | |
|   unsigned firstShift;  // B
 | |
|   unsigned secondVal;   // C
 | |
|   unsigned secondShift; // D
 | |
|   bool isSub;
 | |
| };
 | |
| 
 | |
| /* this implements Lefevre's "pattern-based" constant multiplication,
 | |
|  * see "Multiplication by an Integer Constant", INRIA report 1999-06
 | |
|  *
 | |
|  * TODO: implement a method to try rewriting P0N<->0PP / N0P<->0NN
 | |
|  * to get better booth encodings - this does help in practice
 | |
|  * TODO: weight shifts appropriately (most architectures can't
 | |
|  * fuse a shift and an add for arbitrary shift amounts) */
 | |
| unsigned lefevre(const std::string inString,
 | |
|                  std::vector<struct shiftaddblob> &ops) {
 | |
|   std::string retstring;
 | |
|   std::string s = inString;
 | |
|   munchTrailingZeros(s);
 | |
| 
 | |
|   int length=s.length()-1;
 | |
| 
 | |
|   if(length==0) {
 | |
|     return(0);
 | |
|   }
 | |
| 
 | |
|   std::vector<int> p,n;
 | |
| 
 | |
|   for(int i=0; i<=length; i++) {
 | |
|     if (s.c_str()[length-i]=='P') {
 | |
|       p.push_back(i);
 | |
|     } else if (s.c_str()[length-i]=='N') {
 | |
|       n.push_back(i);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   std::string t, u;
 | |
|   int c = 0;
 | |
|   bool f;
 | |
|   std::map<const int, int> w;
 | |
| 
 | |
|   for(unsigned i=0; i<p.size(); i++) {
 | |
|     for(unsigned j=0; j<i; j++) {
 | |
|       w[p[i]-p[j]]++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for(unsigned i=1; i<n.size(); i++) {
 | |
|     for(unsigned j=0; j<i; j++) {
 | |
|       w[n[i]-n[j]]++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for(unsigned i=0; i<p.size(); i++) {
 | |
|     for(unsigned j=0; j<n.size(); j++) {
 | |
|       w[-abs(p[i]-n[j])]++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   std::map<const int, int>::const_iterator ii;
 | |
|   std::vector<int> d;
 | |
|   std::multimap<int, int> sorted_by_value;
 | |
| 
 | |
|   for(ii = w.begin(); ii!=w.end(); ii++)
 | |
|     sorted_by_value.insert(std::pair<int, int>((*ii).second,(*ii).first));
 | |
| 
 | |
|   for (std::multimap<int, int>::iterator it = sorted_by_value.begin();
 | |
|        it != sorted_by_value.end(); ++it) {
 | |
|     d.push_back((*it).second);
 | |
|   }
 | |
| 
 | |
|   int int_W=0;
 | |
|   int int_d;
 | |
| 
 | |
|   while(d.size()>0 && (w[int_d=d.back()] > int_W)) {
 | |
|     d.pop_back();
 | |
|     retstring=s; // hmmm
 | |
|     int x=0;
 | |
|     int z=abs(int_d)-1;
 | |
| 
 | |
|     if(int_d>0) {
 | |
| 
 | |
|       for(unsigned base=0; base<retstring.size(); base++) {
 | |
|         if( ((base+z+1) < retstring.size()) &&
 | |
|            retstring.c_str()[base]=='P' &&
 | |
|            retstring.c_str()[base+z+1]=='P')
 | |
|         {
 | |
|           // match
 | |
|           x++;
 | |
|           retstring.replace(base, 1, "0");
 | |
|           retstring.replace(base+z+1, 1, "p");
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       for(unsigned base=0; base<retstring.size(); base++) {
 | |
|         if( ((base+z+1) < retstring.size()) &&
 | |
|            retstring.c_str()[base]=='N' &&
 | |
|            retstring.c_str()[base+z+1]=='N')
 | |
|         {
 | |
|           // match
 | |
|           x++;
 | |
|           retstring.replace(base, 1, "0");
 | |
|           retstring.replace(base+z+1, 1, "n");
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     } else {
 | |
|       for(unsigned base=0; base<retstring.size(); base++) {
 | |
|         if( ((base+z+1) < retstring.size()) &&
 | |
|             ((retstring.c_str()[base]=='P' &&
 | |
|              retstring.c_str()[base+z+1]=='N') ||
 | |
|             (retstring.c_str()[base]=='N' &&
 | |
|              retstring.c_str()[base+z+1]=='P')) ) {
 | |
|           // match
 | |
|           x++;
 | |
| 
 | |
|           if(retstring.c_str()[base]=='P') {
 | |
|             retstring.replace(base, 1, "0");
 | |
|             retstring.replace(base+z+1, 1, "p");
 | |
|           } else { // retstring[base]=='N'
 | |
|             retstring.replace(base, 1, "0");
 | |
|             retstring.replace(base+z+1, 1, "n");
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if(x>int_W) {
 | |
|       int_W = x;
 | |
|       t = retstring;
 | |
|       c = int_d; // tofix
 | |
|     }
 | |
| 
 | |
|   } d.pop_back(); // hmm
 | |
| 
 | |
|   u = t;
 | |
| 
 | |
|   for(unsigned i=0; i<t.length(); i++) {
 | |
|     if(t.c_str()[i]=='p' || t.c_str()[i]=='n')
 | |
|       t.replace(i, 1, "0");
 | |
|   }
 | |
| 
 | |
|   for(unsigned i=0; i<u.length(); i++) {
 | |
|     if(u[i]=='P' || u[i]=='N')
 | |
|       u.replace(i, 1, "0");
 | |
|     if(u[i]=='p')
 | |
|       u.replace(i, 1, "P");
 | |
|     if(u[i]=='n')
 | |
|       u.replace(i, 1, "N");
 | |
|   }
 | |
| 
 | |
|   if( c<0 ) {
 | |
|     f=true;
 | |
|     c=-c;
 | |
|   } else
 | |
|     f=false;
 | |
| 
 | |
|   int pos=0;
 | |
|   while(u[pos]=='0')
 | |
|     pos++;
 | |
| 
 | |
|   bool hit=(u[pos]=='N');
 | |
| 
 | |
|   int g=0;
 | |
|   if(hit) {
 | |
|     g=1;
 | |
|     for(unsigned p=0; p<u.length(); p++) {
 | |
|       bool isP=(u[p]=='P');
 | |
|       bool isN=(u[p]=='N');
 | |
| 
 | |
|       if(isP)
 | |
|         u.replace(p, 1, "N");
 | |
|       if(isN)
 | |
|         u.replace(p, 1, "P");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   munchLeadingZeros(u);
 | |
| 
 | |
|   int i = lefevre(u, ops);
 | |
| 
 | |
|   shiftaddblob blob;
 | |
| 
 | |
|   blob.firstVal=i; blob.firstShift=c;
 | |
|   blob.isSub=f;
 | |
|   blob.secondVal=i; blob.secondShift=0;
 | |
| 
 | |
|   ops.push_back(blob);
 | |
| 
 | |
|   i = ops.size();
 | |
| 
 | |
|   munchLeadingZeros(t);
 | |
| 
 | |
|   if(t.length()==0)
 | |
|     return i;
 | |
| 
 | |
|   if(t.c_str()[0]!='P') {
 | |
|     g=2;
 | |
|     for(unsigned p=0; p<t.length(); p++) {
 | |
|       bool isP=(t.c_str()[p]=='P');
 | |
|       bool isN=(t.c_str()[p]=='N');
 | |
| 
 | |
|       if(isP)
 | |
|         t.replace(p, 1, "N");
 | |
|       if(isN)
 | |
|         t.replace(p, 1, "P");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   int j = lefevre(t, ops);
 | |
| 
 | |
|   int trail=countTrailingZeros(u);
 | |
|   blob.secondVal=i; blob.secondShift=trail;
 | |
| 
 | |
|   trail=countTrailingZeros(t);
 | |
|   blob.firstVal=j; blob.firstShift=trail;
 | |
| 
 | |
|   switch(g) {
 | |
|     case 0:
 | |
|       blob.isSub=false; // first + second
 | |
|       break;
 | |
|     case 1:
 | |
|       blob.isSub=true; // first - second
 | |
|       break;
 | |
|     case 2:
 | |
|       blob.isSub=true; // second - first
 | |
|       int tmpval, tmpshift;
 | |
|       tmpval=blob.firstVal;
 | |
|       tmpshift=blob.firstShift;
 | |
|       blob.firstVal=blob.secondVal;
 | |
|       blob.firstShift=blob.secondShift;
 | |
|       blob.secondVal=tmpval;
 | |
|       blob.secondShift=tmpshift;
 | |
|       break;
 | |
|       //assert
 | |
|   }
 | |
| 
 | |
|   ops.push_back(blob);
 | |
|   return ops.size();
 | |
| }
 | |
| 
 | |
| SDOperand ISel::BuildConstmulSequence(SDOperand N) {
 | |
|   //FIXME: we should shortcut this stuff for multiplies by 2^n+1
 | |
|   //       in particular, *3 is nicer as *2+1, not *4-1
 | |
|   int64_t constant=cast<ConstantSDNode>(N.getOperand(1))->getValue();
 | |
| 
 | |
|   bool flippedSign;
 | |
|   unsigned preliminaryShift=0;
 | |
| 
 | |
|   assert(constant != 0 && "erk, you're trying to multiply by constant zero\n");
 | |
| 
 | |
|   // first, we make the constant to multiply by positive
 | |
|   if(constant<0) {
 | |
|     constant=-constant;
 | |
|     flippedSign=true;
 | |
|   } else {
 | |
|     flippedSign=false;
 | |
|   }
 | |
| 
 | |
|   // next, we make it odd.
 | |
|   for(; (constant%2==0); preliminaryShift++)
 | |
|     constant>>=1;
 | |
| 
 | |
|   //OK, we have a positive, odd number of 64 bits or less. Convert it
 | |
|   //to a binary string, constantString[0] is the LSB
 | |
|   char constantString[65];
 | |
|   for(int i=0; i<64; i++)
 | |
|     constantString[i]='0'+((constant>>i)&0x1);
 | |
|   constantString[64]=0;
 | |
| 
 | |
|   // now, Booth encode it
 | |
|   std::string boothEncodedString;
 | |
|   boothEncode(constantString, boothEncodedString);
 | |
| 
 | |
|   std::vector<struct shiftaddblob> ops;
 | |
|   // do the transformation, filling out 'ops'
 | |
|   lefevre(boothEncodedString, ops);
 | |
| 
 | |
|   assert(ops.size() < 80 && "constmul code has gone haywire\n");
 | |
|   SDOperand results[80]; // temporary results (of adds/subs of shifts)
 | |
| 
 | |
|   // now turn 'ops' into DAG bits
 | |
|   for(unsigned i=0; i<ops.size(); i++) {
 | |
|     SDOperand amt = ISelDAG->getConstant(ops[i].firstShift, MVT::i64);
 | |
|     SDOperand val = (ops[i].firstVal == 0) ? N.getOperand(0) :
 | |
|       results[ops[i].firstVal-1];
 | |
|     SDOperand left = ISelDAG->getNode(ISD::SHL, MVT::i64, val, amt);
 | |
|     amt = ISelDAG->getConstant(ops[i].secondShift, MVT::i64);
 | |
|     val = (ops[i].secondVal == 0) ? N.getOperand(0) :
 | |
|       results[ops[i].secondVal-1];
 | |
|     SDOperand right = ISelDAG->getNode(ISD::SHL, MVT::i64, val, amt);
 | |
|     if(ops[i].isSub)
 | |
|       results[i] = ISelDAG->getNode(ISD::SUB, MVT::i64, left, right);
 | |
|     else
 | |
|       results[i] = ISelDAG->getNode(ISD::ADD, MVT::i64, left, right);
 | |
|   }
 | |
| 
 | |
|   // don't forget flippedSign and preliminaryShift!
 | |
|   SDOperand shiftedresult;
 | |
|   if(preliminaryShift) {
 | |
|     SDOperand finalshift = ISelDAG->getConstant(preliminaryShift, MVT::i64);
 | |
|     shiftedresult = ISelDAG->getNode(ISD::SHL, MVT::i64,
 | |
|         results[ops.size()-1], finalshift);
 | |
|   } else { // there was no preliminary divide-by-power-of-2 required
 | |
|     shiftedresult = results[ops.size()-1];
 | |
|   }
 | |
| 
 | |
|   SDOperand finalresult;
 | |
|   if(flippedSign) { // if we were multiplying by a negative constant:
 | |
|     SDOperand zero = ISelDAG->getConstant(0, MVT::i64);
 | |
|     // subtract the result from 0 to flip its sign
 | |
|     finalresult = ISelDAG->getNode(ISD::SUB, MVT::i64, zero, shiftedresult);
 | |
|   } else { // there was no preliminary multiply by -1 required
 | |
|     finalresult = shiftedresult;
 | |
|   }
 | |
| 
 | |
|   return finalresult;
 | |
| }
 | |
| 
 | |
| /// ponderIntegerDivisionBy - When handling integer divides, if the divide
 | |
| /// is by a constant such that we can efficiently codegen it, this
 | |
| /// function says what to do. Currently, it returns 0 if the division must
 | |
| /// become a genuine divide, and 1 if the division can be turned into a
 | |
| /// right shift.
 | |
| static unsigned ponderIntegerDivisionBy(SDOperand N, bool isSigned,
 | |
|                                       unsigned& Imm) {
 | |
|   if (N.getOpcode() != ISD::Constant) return 0; // if not a divide by
 | |
|                                                 // a constant, give up.
 | |
| 
 | |
|   int64_t v = (int64_t)cast<ConstantSDNode>(N)->getSignExtended();
 | |
| 
 | |
|   if (isPowerOf2_64(v)) { // if a division by a power of two, say so
 | |
|     Imm = Log2_64(v);
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   return 0; // fallthrough
 | |
| }
 | |
| 
 | |
| static unsigned ponderIntegerAndWith(SDOperand N, unsigned& Imm) {
 | |
|   if (N.getOpcode() != ISD::Constant) return 0; // if not ANDing with
 | |
|                                                 // a constant, give up.
 | |
| 
 | |
|   int64_t v = (int64_t)cast<ConstantSDNode>(N)->getSignExtended();
 | |
| 
 | |
|   if (isMask_64(v)) { // if ANDing with ((2^n)-1) for some n
 | |
|     Imm = Log2_64(v) + 1;
 | |
|     return 1; // say so
 | |
|   }
 | |
| 
 | |
|   return 0; // fallthrough
 | |
| }
 | |
| 
 | |
| static unsigned ponderIntegerAdditionWith(SDOperand N, unsigned& Imm) {
 | |
|   if (N.getOpcode() != ISD::Constant) return 0; // if not adding a
 | |
|                                                 // constant, give up.
 | |
|   int64_t v = (int64_t)cast<ConstantSDNode>(N)->getSignExtended();
 | |
| 
 | |
|   if (v <= 8191 && v >= -8192) { // if this constants fits in 14 bits, say so
 | |
|     Imm = v & 0x3FFF; // 14 bits
 | |
|     return 1;
 | |
|   }
 | |
|   return 0; // fallthrough
 | |
| }
 | |
| 
 | |
| static unsigned ponderIntegerSubtractionFrom(SDOperand N, unsigned& Imm) {
 | |
|   if (N.getOpcode() != ISD::Constant) return 0; // if not subtracting a
 | |
|                                                 // constant, give up.
 | |
|   int64_t v = (int64_t)cast<ConstantSDNode>(N)->getSignExtended();
 | |
| 
 | |
|   if (v <= 127 && v >= -128) { // if this constants fits in 8 bits, say so
 | |
|     Imm = v & 0xFF; // 8 bits
 | |
|     return 1;
 | |
|   }
 | |
|   return 0; // fallthrough
 | |
| }
 | |
| 
 | |
| unsigned ISel::SelectExpr(SDOperand N) {
 | |
|   unsigned Result;
 | |
|   unsigned Tmp1, Tmp2, Tmp3;
 | |
|   unsigned Opc = 0;
 | |
|   MVT::ValueType DestType = N.getValueType();
 | |
| 
 | |
|   unsigned opcode = N.getOpcode();
 | |
| 
 | |
|   SDNode *Node = N.Val;
 | |
|   SDOperand Op0, Op1;
 | |
| 
 | |
|   if (Node->getOpcode() == ISD::CopyFromReg)
 | |
|     // Just use the specified register as our input.
 | |
|     return cast<RegisterSDNode>(Node->getOperand(1))->getReg();
 | |
| 
 | |
|   unsigned &Reg = ExprMap[N];
 | |
|   if (Reg) return Reg;
 | |
| 
 | |
|   if (N.getOpcode() != ISD::CALL && N.getOpcode() != ISD::TAILCALL)
 | |
|     Reg = Result = (N.getValueType() != MVT::Other) ?
 | |
|       MakeReg(N.getValueType()) : 1;
 | |
|   else {
 | |
|     // If this is a call instruction, make sure to prepare ALL of the result
 | |
|     // values as well as the chain.
 | |
|     if (Node->getNumValues() == 1)
 | |
|       Reg = Result = 1;  // Void call, just a chain.
 | |
|     else {
 | |
|       Result = MakeReg(Node->getValueType(0));
 | |
|       ExprMap[N.getValue(0)] = Result;
 | |
|       for (unsigned i = 1, e = N.Val->getNumValues()-1; i != e; ++i)
 | |
|         ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i));
 | |
|       ExprMap[SDOperand(Node, Node->getNumValues()-1)] = 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   switch (N.getOpcode()) {
 | |
|   default:
 | |
|     Node->dump();
 | |
|     assert(0 && "Node not handled!\n");
 | |
| 
 | |
|   case ISD::FrameIndex: {
 | |
|     Tmp1 = cast<FrameIndexSDNode>(N)->getIndex();
 | |
|     BuildMI(BB, IA64::MOV, 1, Result).addFrameIndex(Tmp1);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::ConstantPool: {
 | |
|     Tmp1 = BB->getParent()->getConstantPool()->
 | |
|           getConstantPoolIndex(cast<ConstantPoolSDNode>(N)->get());
 | |
|     IA64Lowering.restoreGP(BB); // FIXME: do i really need this?
 | |
|     BuildMI(BB, IA64::ADD, 2, Result).addConstantPoolIndex(Tmp1)
 | |
|       .addReg(IA64::r1);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::ConstantFP: {
 | |
|     Tmp1 = Result;   // Intermediate Register
 | |
|     if (cast<ConstantFPSDNode>(N)->getValue() < 0.0 ||
 | |
|         cast<ConstantFPSDNode>(N)->isExactlyValue(-0.0))
 | |
|       Tmp1 = MakeReg(MVT::f64);
 | |
| 
 | |
|     if (cast<ConstantFPSDNode>(N)->isExactlyValue(+0.0) ||
 | |
|         cast<ConstantFPSDNode>(N)->isExactlyValue(-0.0))
 | |
|       BuildMI(BB, IA64::FMOV, 1, Tmp1).addReg(IA64::F0); // load 0.0
 | |
|     else if (cast<ConstantFPSDNode>(N)->isExactlyValue(+1.0) ||
 | |
|              cast<ConstantFPSDNode>(N)->isExactlyValue(-1.0))
 | |
|       BuildMI(BB, IA64::FMOV, 1, Tmp1).addReg(IA64::F1); // load 1.0
 | |
|     else
 | |
|       assert(0 && "Unexpected FP constant!");
 | |
|     if (Tmp1 != Result)
 | |
|       // we multiply by +1.0, negate (this is FNMA), and then add 0.0
 | |
|       BuildMI(BB, IA64::FNMA, 3, Result).addReg(Tmp1).addReg(IA64::F1)
 | |
|         .addReg(IA64::F0);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::DYNAMIC_STACKALLOC: {
 | |
|     // Generate both result values.
 | |
|     if (Result != 1)
 | |
|       ExprMap[N.getValue(1)] = 1;   // Generate the token
 | |
|     else
 | |
|       Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
 | |
| 
 | |
|     // FIXME: We are currently ignoring the requested alignment for handling
 | |
|     // greater than the stack alignment.  This will need to be revisited at some
 | |
|     // point.  Align = N.getOperand(2);
 | |
| 
 | |
|     if (!isa<ConstantSDNode>(N.getOperand(2)) ||
 | |
|         cast<ConstantSDNode>(N.getOperand(2))->getValue() != 0) {
 | |
|       std::cerr << "Cannot allocate stack object with greater alignment than"
 | |
|                 << " the stack alignment yet!";
 | |
|       abort();
 | |
|     }
 | |
| 
 | |
| /*
 | |
|     Select(N.getOperand(0));
 | |
|     if (ConstantSDNode* CN = dyn_cast<ConstantSDNode>(N.getOperand(1)))
 | |
|     {
 | |
|       if (CN->getValue() < 32000)
 | |
|       {
 | |
|         BuildMI(BB, IA64::ADDIMM22, 2, IA64::r12).addReg(IA64::r12)
 | |
|           .addImm(-CN->getValue());
 | |
|       } else {
 | |
|         Tmp1 = SelectExpr(N.getOperand(1));
 | |
|         // Subtract size from stack pointer, thereby allocating some space.
 | |
|         BuildMI(BB, IA64::SUB, 2, IA64::r12).addReg(IA64::r12).addReg(Tmp1);
 | |
|       }
 | |
|     } else {
 | |
|       Tmp1 = SelectExpr(N.getOperand(1));
 | |
|       // Subtract size from stack pointer, thereby allocating some space.
 | |
|       BuildMI(BB, IA64::SUB, 2, IA64::r12).addReg(IA64::r12).addReg(Tmp1);
 | |
|     }
 | |
| */
 | |
|     Select(N.getOperand(0));
 | |
|     Tmp1 = SelectExpr(N.getOperand(1));
 | |
|     // Subtract size from stack pointer, thereby allocating some space.
 | |
|     BuildMI(BB, IA64::SUB, 2, IA64::r12).addReg(IA64::r12).addReg(Tmp1);
 | |
|     // Put a pointer to the space into the result register, by copying the
 | |
|     // stack pointer.
 | |
|     BuildMI(BB, IA64::MOV, 1, Result).addReg(IA64::r12);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::SELECT: {
 | |
|       Tmp1 = SelectExpr(N.getOperand(0)); //Cond
 | |
|       Tmp2 = SelectExpr(N.getOperand(1)); //Use if TRUE
 | |
|       Tmp3 = SelectExpr(N.getOperand(2)); //Use if FALSE
 | |
| 
 | |
|       unsigned bogoResult;
 | |
| 
 | |
|       switch (N.getOperand(1).getValueType()) {
 | |
|         default: assert(0 &&
 | |
|         "ISD::SELECT: 'select'ing something other than i1, i64 or f64!\n");
 | |
|         // for i1, we load the condition into an integer register, then
 | |
|         // conditionally copy Tmp2 and Tmp3 to Tmp1 in parallel (only one
 | |
|         // of them will go through, since the integer register will hold
 | |
|         // either 0 or 1)
 | |
|         case MVT::i1: {
 | |
|           bogoResult=MakeReg(MVT::i1);
 | |
| 
 | |
|           // load the condition into an integer register
 | |
|           unsigned condReg=MakeReg(MVT::i64);
 | |
|           unsigned dummy=MakeReg(MVT::i64);
 | |
|           BuildMI(BB, IA64::MOV, 1, dummy).addReg(IA64::r0);
 | |
|           BuildMI(BB, IA64::TPCADDIMM22, 2, condReg).addReg(dummy)
 | |
|             .addImm(1).addReg(Tmp1);
 | |
| 
 | |
|           // initialize Result (bool) to false (hence UNC) and if
 | |
|           // the select condition (condReg) is false (0), copy Tmp3
 | |
|           BuildMI(BB, IA64::PCMPEQUNC, 3, bogoResult)
 | |
|             .addReg(condReg).addReg(IA64::r0).addReg(Tmp3);
 | |
| 
 | |
|           // now, if the selection condition is true, write 1 to the
 | |
|           // result if Tmp2 is 1
 | |
|           BuildMI(BB, IA64::TPCMPNE, 3, Result).addReg(bogoResult)
 | |
|             .addReg(condReg).addReg(IA64::r0).addReg(Tmp2);
 | |
|           break;
 | |
|         }
 | |
|         // for i64/f64, we just copy Tmp3 and then conditionally overwrite it
 | |
|         // with Tmp2 if Tmp1 is true
 | |
|         case MVT::i64:
 | |
|           bogoResult=MakeReg(MVT::i64);
 | |
|           BuildMI(BB, IA64::MOV, 1, bogoResult).addReg(Tmp3);
 | |
|           BuildMI(BB, IA64::CMOV, 2, Result).addReg(bogoResult).addReg(Tmp2)
 | |
|             .addReg(Tmp1);
 | |
|           break;
 | |
|         case MVT::f64:
 | |
|           bogoResult=MakeReg(MVT::f64);
 | |
|           BuildMI(BB, IA64::FMOV, 1, bogoResult).addReg(Tmp3);
 | |
|           BuildMI(BB, IA64::CFMOV, 2, Result).addReg(bogoResult).addReg(Tmp2)
 | |
|             .addReg(Tmp1);
 | |
|           break;
 | |
|       }
 | |
| 
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::Constant: {
 | |
|     unsigned depositPos=0;
 | |
|     unsigned depositLen=0;
 | |
|     switch (N.getValueType()) {
 | |
|       default: assert(0 && "Cannot use constants of this type!");
 | |
|       case MVT::i1: { // if a bool, we don't 'load' so much as generate
 | |
|         // the constant:
 | |
|         if(cast<ConstantSDNode>(N)->getValue())  // true:
 | |
|           BuildMI(BB, IA64::CMPEQ, 2, Result).addReg(IA64::r0).addReg(IA64::r0);
 | |
|         else // false:
 | |
|           BuildMI(BB, IA64::CMPNE, 2, Result).addReg(IA64::r0).addReg(IA64::r0);
 | |
|         return Result; // early exit
 | |
|       }
 | |
|       case MVT::i64: break;
 | |
|     }
 | |
| 
 | |
|     int64_t immediate = cast<ConstantSDNode>(N)->getValue();
 | |
| 
 | |
|     if(immediate==0) { // if the constant is just zero,
 | |
|       BuildMI(BB, IA64::MOV, 1, Result).addReg(IA64::r0); // just copy r0
 | |
|       return Result; // early exit
 | |
|     }
 | |
| 
 | |
|     if (immediate <= 8191 && immediate >= -8192) {
 | |
|       // if this constants fits in 14 bits, we use a mov the assembler will
 | |
|       // turn into:   "adds rDest=imm,r0"  (and _not_ "andl"...)
 | |
|       BuildMI(BB, IA64::MOVSIMM14, 1, Result).addSImm(immediate);
 | |
|       return Result; // early exit
 | |
|     }
 | |
| 
 | |
|     if (immediate <= 2097151 && immediate >= -2097152) {
 | |
|       // if this constants fits in 22 bits, we use a mov the assembler will
 | |
|       // turn into:   "addl rDest=imm,r0"
 | |
|       BuildMI(BB, IA64::MOVSIMM22, 1, Result).addSImm(immediate);
 | |
|       return Result; // early exit
 | |
|     }
 | |
| 
 | |
|     /* otherwise, our immediate is big, so we use movl */
 | |
|     uint64_t Imm = immediate;
 | |
|     BuildMI(BB, IA64::MOVLIMM64, 1, Result).addImm64(Imm);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::UNDEF: {
 | |
|     BuildMI(BB, IA64::IDEF, 0, Result);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::GlobalAddress: {
 | |
|     GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal();
 | |
|     unsigned Tmp1 = MakeReg(MVT::i64);
 | |
| 
 | |
|     BuildMI(BB, IA64::ADD, 2, Tmp1).addGlobalAddress(GV).addReg(IA64::r1);
 | |
|     BuildMI(BB, IA64::LD8, 1, Result).addReg(Tmp1);
 | |
| 
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::ExternalSymbol: {
 | |
|     const char *Sym = cast<ExternalSymbolSDNode>(N)->getSymbol();
 | |
| // assert(0 && "sorry, but what did you want an ExternalSymbol for again?");
 | |
|     BuildMI(BB, IA64::MOV, 1, Result).addExternalSymbol(Sym); // XXX
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::FP_EXTEND: {
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     BuildMI(BB, IA64::FMOV, 1, Result).addReg(Tmp1);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::ANY_EXTEND:
 | |
|   case ISD::ZERO_EXTEND: {
 | |
|     Tmp1 = SelectExpr(N.getOperand(0)); // value
 | |
| 
 | |
|     assert(N.getOperand(0).getValueType() == MVT::i1 && 
 | |
|            "Cannot zero-extend this type!");
 | |
| 
 | |
|     // if the predicate reg has 1, we want a '1' in our GR.
 | |
|     unsigned dummy = MakeReg(MVT::i64);
 | |
|     // first load zero:
 | |
|     BuildMI(BB, IA64::MOV, 1, dummy).addReg(IA64::r0);
 | |
|     // ...then conditionally (PR:Tmp1) add 1:
 | |
|     BuildMI(BB, IA64::TPCADDIMM22, 2, Result).addReg(dummy)
 | |
|       .addImm(1).addReg(Tmp1);
 | |
|     return Result; // XXX early exit!
 | |
|   }
 | |
| 
 | |
|   case ISD::SIGN_EXTEND:
 | |
|     assert(N.getOperand(0).getValueType() == MVT::i1 && 
 | |
|            "Cannot zero-extend this type!");
 | |
| 
 | |
|     Tmp1 = SelectExpr(N.getOperand(0)); // value
 | |
|     assert(0 && "don't know how to sign_extend from bool yet!");
 | |
|     abort();
 | |
| 
 | |
|   case ISD::TRUNCATE:
 | |
|     // we use the funky dep.z (deposit (zero)) instruction to deposit bits
 | |
|     // of R0 appropriately.
 | |
|     assert(N.getOperand(0).getValueType() == MVT::i64 && 
 | |
|            N.getValueType() == MVT::i1 && "Unknown truncate!");
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
| 
 | |
|     // if input (normal reg) is 0, 0!=0 -> false (0), if 1, 1!=0 ->true (1):
 | |
|     BuildMI(BB, IA64::CMPNE, 2, Result).addReg(Tmp1).addReg(IA64::r0);
 | |
|     return Result; // XXX early exit!
 | |
| 
 | |
| /*
 | |
|   case ISD::FP_ROUND: {
 | |
|     assert (DestType == MVT::f32 && N.getOperand(0).getValueType() == MVT::f64 &&
 | |
|   "error: trying to FP_ROUND something other than f64 -> f32!\n");
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     BuildMI(BB, IA64::FADDS, 2, Result).addReg(Tmp1).addReg(IA64::F0);
 | |
|     // we add 0.0 using a single precision add to do rounding
 | |
|     return Result;
 | |
|   }
 | |
| */
 | |
| 
 | |
| // FIXME: the following 4 cases need cleaning
 | |
|   case ISD::SINT_TO_FP: {
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     Tmp2 = MakeReg(MVT::f64);
 | |
|     unsigned dummy = MakeReg(MVT::f64);
 | |
|     BuildMI(BB, IA64::SETFSIG, 1, Tmp2).addReg(Tmp1);
 | |
|     BuildMI(BB, IA64::FCVTXF, 1, dummy).addReg(Tmp2);
 | |
|     BuildMI(BB, IA64::FNORMD, 1, Result).addReg(dummy);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::UINT_TO_FP: {
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     Tmp2 = MakeReg(MVT::f64);
 | |
|     unsigned dummy = MakeReg(MVT::f64);
 | |
|     BuildMI(BB, IA64::SETFSIG, 1, Tmp2).addReg(Tmp1);
 | |
|     BuildMI(BB, IA64::FCVTXUF, 1, dummy).addReg(Tmp2);
 | |
|     BuildMI(BB, IA64::FNORMD, 1, Result).addReg(dummy);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::FP_TO_SINT: {
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     Tmp2 = MakeReg(MVT::f64);
 | |
|     BuildMI(BB, IA64::FCVTFXTRUNC, 1, Tmp2).addReg(Tmp1);
 | |
|     BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(Tmp2);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::FP_TO_UINT: {
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     Tmp2 = MakeReg(MVT::f64);
 | |
|     BuildMI(BB, IA64::FCVTFXUTRUNC, 1, Tmp2).addReg(Tmp1);
 | |
|     BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(Tmp2);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::ADD: {
 | |
|     if(DestType == MVT::f64 && N.getOperand(0).getOpcode() == ISD::MUL &&
 | |
|        N.getOperand(0).Val->hasOneUse()) { // if we can fold this add
 | |
|                                            // into an fma, do so:
 | |
|       // ++FusedFP; // Statistic
 | |
|       Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
 | |
|       Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
 | |
|       Tmp3 = SelectExpr(N.getOperand(1));
 | |
|       BuildMI(BB, IA64::FMA, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
 | |
|       return Result; // early exit
 | |
|     }
 | |
| 
 | |
|     if(DestType != MVT::f64 && N.getOperand(0).getOpcode() == ISD::SHL &&
 | |
|         N.getOperand(0).Val->hasOneUse()) { // if we might be able to fold
 | |
|                                             // this add into a shladd, try:
 | |
|       ConstantSDNode *CSD = NULL;
 | |
|       if((CSD = dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) &&
 | |
|           (CSD->getValue() >= 1) && (CSD->getValue() <= 4) ) { // we can:
 | |
| 
 | |
|         // ++FusedSHLADD; // Statistic
 | |
|         Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
 | |
|         int shl_amt = CSD->getValue();
 | |
|         Tmp3 = SelectExpr(N.getOperand(1));
 | |
| 
 | |
|         BuildMI(BB, IA64::SHLADD, 3, Result)
 | |
|           .addReg(Tmp1).addImm(shl_amt).addReg(Tmp3);
 | |
|         return Result; // early exit
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     //else, fallthrough:
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     if(DestType != MVT::f64) { // integer addition:
 | |
|         switch (ponderIntegerAdditionWith(N.getOperand(1), Tmp3)) {
 | |
|           case 1: // adding a constant that's 14 bits
 | |
|             BuildMI(BB, IA64::ADDIMM14, 2, Result).addReg(Tmp1).addSImm(Tmp3);
 | |
|             return Result; // early exit
 | |
|         } // fallthrough and emit a reg+reg ADD:
 | |
|         Tmp2 = SelectExpr(N.getOperand(1));
 | |
|         BuildMI(BB, IA64::ADD, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|     } else { // this is a floating point addition
 | |
|       Tmp2 = SelectExpr(N.getOperand(1));
 | |
|       BuildMI(BB, IA64::FADD, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|     }
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::MUL: {
 | |
| 
 | |
|     if(DestType != MVT::f64) { // TODO: speed!
 | |
| /* FIXME if(N.getOperand(1).getOpcode() != ISD::Constant) { // if not a const mul
 | |
|  */
 | |
|         // boring old integer multiply with xma
 | |
|         Tmp1 = SelectExpr(N.getOperand(0));
 | |
|         Tmp2 = SelectExpr(N.getOperand(1));
 | |
| 
 | |
|         unsigned TempFR1=MakeReg(MVT::f64);
 | |
|         unsigned TempFR2=MakeReg(MVT::f64);
 | |
|         unsigned TempFR3=MakeReg(MVT::f64);
 | |
|         BuildMI(BB, IA64::SETFSIG, 1, TempFR1).addReg(Tmp1);
 | |
|         BuildMI(BB, IA64::SETFSIG, 1, TempFR2).addReg(Tmp2);
 | |
|         BuildMI(BB, IA64::XMAL, 1, TempFR3).addReg(TempFR1).addReg(TempFR2)
 | |
|           .addReg(IA64::F0);
 | |
|         BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(TempFR3);
 | |
|         return Result; // early exit
 | |
|      /* FIXME } else { // we are multiplying by an integer constant! yay
 | |
|         return Reg = SelectExpr(BuildConstmulSequence(N)); // avert your eyes!
 | |
|       } */
 | |
|     }
 | |
|     else { // floating point multiply
 | |
|       Tmp1 = SelectExpr(N.getOperand(0));
 | |
|       Tmp2 = SelectExpr(N.getOperand(1));
 | |
|       BuildMI(BB, IA64::FMPY, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|       return Result;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   case ISD::SUB: {
 | |
|     if(DestType == MVT::f64 && N.getOperand(0).getOpcode() == ISD::MUL &&
 | |
|        N.getOperand(0).Val->hasOneUse()) { // if we can fold this sub
 | |
|                                            // into an fms, do so:
 | |
|       // ++FusedFP; // Statistic
 | |
|       Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
 | |
|       Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
 | |
|       Tmp3 = SelectExpr(N.getOperand(1));
 | |
|       BuildMI(BB, IA64::FMS, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
 | |
|       return Result; // early exit
 | |
|     }
 | |
|     Tmp2 = SelectExpr(N.getOperand(1));
 | |
|     if(DestType != MVT::f64) { // integer subtraction:
 | |
|         switch (ponderIntegerSubtractionFrom(N.getOperand(0), Tmp3)) {
 | |
|           case 1: // subtracting *from* an 8 bit constant:
 | |
|             BuildMI(BB, IA64::SUBIMM8, 2, Result).addSImm(Tmp3).addReg(Tmp2);
 | |
|             return Result; // early exit
 | |
|         } // fallthrough and emit a reg+reg SUB:
 | |
|         Tmp1 = SelectExpr(N.getOperand(0));
 | |
|         BuildMI(BB, IA64::SUB, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|     } else { // this is a floating point subtraction
 | |
|       Tmp1 = SelectExpr(N.getOperand(0));
 | |
|       BuildMI(BB, IA64::FSUB, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|     }
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::FABS: {
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     assert(DestType == MVT::f64 && "trying to fabs something other than f64?");
 | |
|     BuildMI(BB, IA64::FABS, 1, Result).addReg(Tmp1);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::FNEG: {
 | |
|     assert(DestType == MVT::f64 && "trying to fneg something other than f64?");
 | |
| 
 | |
|     if (ISD::FABS == N.getOperand(0).getOpcode()) { // && hasOneUse()?
 | |
|       Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
 | |
|       BuildMI(BB, IA64::FNEGABS, 1, Result).addReg(Tmp1); // fold in abs
 | |
|     } else {
 | |
|       Tmp1 = SelectExpr(N.getOperand(0));
 | |
|       BuildMI(BB, IA64::FNEG, 1, Result).addReg(Tmp1); // plain old fneg
 | |
|     }
 | |
| 
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::AND: {
 | |
|      switch (N.getValueType()) {
 | |
|     default: assert(0 && "Cannot AND this type!");
 | |
|     case MVT::i1: { // if a bool, we emit a pseudocode AND
 | |
|       unsigned pA = SelectExpr(N.getOperand(0));
 | |
|       unsigned pB = SelectExpr(N.getOperand(1));
 | |
| 
 | |
| /* our pseudocode for AND is:
 | |
|  *
 | |
| (pA) cmp.eq.unc pC,p0 = r0,r0   // pC = pA
 | |
|      cmp.eq pTemp,p0 = r0,r0    // pTemp = NOT pB
 | |
|      ;;
 | |
| (pB) cmp.ne pTemp,p0 = r0,r0
 | |
|      ;;
 | |
| (pTemp)cmp.ne pC,p0 = r0,r0    // if (NOT pB) pC = 0
 | |
| 
 | |
| */
 | |
|       unsigned pTemp = MakeReg(MVT::i1);
 | |
| 
 | |
|       unsigned bogusTemp1 = MakeReg(MVT::i1);
 | |
|       unsigned bogusTemp2 = MakeReg(MVT::i1);
 | |
|       unsigned bogusTemp3 = MakeReg(MVT::i1);
 | |
|       unsigned bogusTemp4 = MakeReg(MVT::i1);
 | |
| 
 | |
|       BuildMI(BB, IA64::PCMPEQUNC, 3, bogusTemp1)
 | |
|         .addReg(IA64::r0).addReg(IA64::r0).addReg(pA);
 | |
|       BuildMI(BB, IA64::CMPEQ, 2, bogusTemp2)
 | |
|         .addReg(IA64::r0).addReg(IA64::r0);
 | |
|       BuildMI(BB, IA64::TPCMPNE, 3, pTemp)
 | |
|         .addReg(bogusTemp2).addReg(IA64::r0).addReg(IA64::r0).addReg(pB);
 | |
|       BuildMI(BB, IA64::TPCMPNE, 3, Result)
 | |
|         .addReg(bogusTemp1).addReg(IA64::r0).addReg(IA64::r0).addReg(pTemp);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // if not a bool, we just AND away:
 | |
|     case MVT::i8:
 | |
|     case MVT::i16:
 | |
|     case MVT::i32:
 | |
|     case MVT::i64: {
 | |
|       Tmp1 = SelectExpr(N.getOperand(0));
 | |
|       switch (ponderIntegerAndWith(N.getOperand(1), Tmp3)) {
 | |
|         case 1: // ANDing a constant that is 2^n-1 for some n
 | |
|           switch (Tmp3) {
 | |
|             case 8:  // if AND 0x00000000000000FF, be quaint and use zxt1
 | |
|               BuildMI(BB, IA64::ZXT1, 1, Result).addReg(Tmp1);
 | |
|               break;
 | |
|             case 16: // if AND 0x000000000000FFFF, be quaint and use zxt2
 | |
|               BuildMI(BB, IA64::ZXT2, 1, Result).addReg(Tmp1);
 | |
|               break;
 | |
|             case 32: // if AND 0x00000000FFFFFFFF, be quaint and use zxt4
 | |
|               BuildMI(BB, IA64::ZXT4, 1, Result).addReg(Tmp1);
 | |
|               break;
 | |
|             default: // otherwise, use dep.z to paste zeros
 | |
|             // FIXME: assert the dep.z is in bounds
 | |
| 	      BuildMI(BB, IA64::DEPZ, 3, Result).addReg(Tmp1)
 | |
|                 .addImm(0).addImm(Tmp3);
 | |
|               break;
 | |
| 	  }
 | |
| 	  return Result; // early exit
 | |
|       } // fallthrough and emit a simple AND:
 | |
|       Tmp2 = SelectExpr(N.getOperand(1));
 | |
|       BuildMI(BB, IA64::AND, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|     }
 | |
|     }
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::OR: {
 | |
|   switch (N.getValueType()) {
 | |
|     default: assert(0 && "Cannot OR this type!");
 | |
|     case MVT::i1: { // if a bool, we emit a pseudocode OR
 | |
|       unsigned pA = SelectExpr(N.getOperand(0));
 | |
|       unsigned pB = SelectExpr(N.getOperand(1));
 | |
| 
 | |
|       unsigned pTemp1 = MakeReg(MVT::i1);
 | |
| 
 | |
| /* our pseudocode for OR is:
 | |
|  *
 | |
| 
 | |
| pC = pA OR pB
 | |
| -------------
 | |
| 
 | |
| (pA) cmp.eq.unc pC,p0 = r0,r0  // pC = pA
 | |
|  ;;
 | |
| (pB) cmp.eq pC,p0 = r0,r0 // if (pB) pC = 1
 | |
| 
 | |
| */
 | |
|       BuildMI(BB, IA64::PCMPEQUNC, 3, pTemp1)
 | |
|         .addReg(IA64::r0).addReg(IA64::r0).addReg(pA);
 | |
|       BuildMI(BB, IA64::TPCMPEQ, 3, Result)
 | |
|         .addReg(pTemp1).addReg(IA64::r0).addReg(IA64::r0).addReg(pB);
 | |
|       break;
 | |
|     }
 | |
|     // if not a bool, we just OR away:
 | |
|     case MVT::i8:
 | |
|     case MVT::i16:
 | |
|     case MVT::i32:
 | |
|     case MVT::i64: {
 | |
|       Tmp1 = SelectExpr(N.getOperand(0));
 | |
|       Tmp2 = SelectExpr(N.getOperand(1));
 | |
|       BuildMI(BB, IA64::OR, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::XOR: {
 | |
|      switch (N.getValueType()) {
 | |
|     default: assert(0 && "Cannot XOR this type!");
 | |
|     case MVT::i1: { // if a bool, we emit a pseudocode XOR
 | |
|       unsigned pY = SelectExpr(N.getOperand(0));
 | |
|       unsigned pZ = SelectExpr(N.getOperand(1));
 | |
| 
 | |
| /* one possible routine for XOR is:
 | |
| 
 | |
|       // Compute px = py ^ pz
 | |
|         // using sum of products: px = (py & !pz) | (pz & !py)
 | |
|         // Uses 5 instructions in 3 cycles.
 | |
|         // cycle 1
 | |
| (pz)    cmp.eq.unc      px = r0, r0     // px = pz
 | |
| (py)    cmp.eq.unc      pt = r0, r0     // pt = py
 | |
|         ;;
 | |
|         // cycle 2
 | |
| (pt)    cmp.ne.and      px = r0, r0     // px = px & !pt (px = pz & !pt)
 | |
| (pz)    cmp.ne.and      pt = r0, r0     // pt = pt & !pz
 | |
|         ;;
 | |
|         } { .mmi
 | |
|         // cycle 3
 | |
| (pt)    cmp.eq.or       px = r0, r0     // px = px | pt
 | |
| 
 | |
| *** Another, which we use here, requires one scratch GR. it is:
 | |
| 
 | |
|         mov             rt = 0          // initialize rt off critical path
 | |
|         ;;
 | |
| 
 | |
|         // cycle 1
 | |
| (pz)    cmp.eq.unc      px = r0, r0     // px = pz
 | |
| (pz)    mov             rt = 1          // rt = pz
 | |
|         ;;
 | |
|         // cycle 2
 | |
| (py)    cmp.ne          px = 1, rt      // if (py) px = !pz
 | |
| 
 | |
| .. these routines kindly provided by Jim Hull
 | |
| */
 | |
|       unsigned rt = MakeReg(MVT::i64);
 | |
| 
 | |
|       // these two temporaries will never actually appear,
 | |
|       // due to the two-address form of some of the instructions below
 | |
|       unsigned bogoPR = MakeReg(MVT::i1);  // becomes Result
 | |
|       unsigned bogoGR = MakeReg(MVT::i64); // becomes rt
 | |
| 
 | |
|       BuildMI(BB, IA64::MOV, 1, bogoGR).addReg(IA64::r0);
 | |
|       BuildMI(BB, IA64::PCMPEQUNC, 3, bogoPR)
 | |
|         .addReg(IA64::r0).addReg(IA64::r0).addReg(pZ);
 | |
|       BuildMI(BB, IA64::TPCADDIMM22, 2, rt)
 | |
|         .addReg(bogoGR).addImm(1).addReg(pZ);
 | |
|       BuildMI(BB, IA64::TPCMPIMM8NE, 3, Result)
 | |
|         .addReg(bogoPR).addImm(1).addReg(rt).addReg(pY);
 | |
|       break;
 | |
|     }
 | |
|     // if not a bool, we just XOR away:
 | |
|     case MVT::i8:
 | |
|     case MVT::i16:
 | |
|     case MVT::i32:
 | |
|     case MVT::i64: {
 | |
|       Tmp1 = SelectExpr(N.getOperand(0));
 | |
|       Tmp2 = SelectExpr(N.getOperand(1));
 | |
|       BuildMI(BB, IA64::XOR, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::CTPOP: {
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     BuildMI(BB, IA64::POPCNT, 1, Result).addReg(Tmp1);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::SHL: {
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | |
|       Tmp2 = CN->getValue();
 | |
|       BuildMI(BB, IA64::SHLI, 2, Result).addReg(Tmp1).addImm(Tmp2);
 | |
|     } else {
 | |
|       Tmp2 = SelectExpr(N.getOperand(1));
 | |
|       BuildMI(BB, IA64::SHL, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|     }
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::SRL: {
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | |
|       Tmp2 = CN->getValue();
 | |
|       BuildMI(BB, IA64::SHRUI, 2, Result).addReg(Tmp1).addImm(Tmp2);
 | |
|     } else {
 | |
|       Tmp2 = SelectExpr(N.getOperand(1));
 | |
|       BuildMI(BB, IA64::SHRU, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|     }
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::SRA: {
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | |
|       Tmp2 = CN->getValue();
 | |
|       BuildMI(BB, IA64::SHRSI, 2, Result).addReg(Tmp1).addImm(Tmp2);
 | |
|     } else {
 | |
|       Tmp2 = SelectExpr(N.getOperand(1));
 | |
|       BuildMI(BB, IA64::SHRS, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|     }
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::SDIV:
 | |
|   case ISD::UDIV:
 | |
|   case ISD::SREM:
 | |
|   case ISD::UREM: {
 | |
| 
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     Tmp2 = SelectExpr(N.getOperand(1));
 | |
| 
 | |
|     bool isFP=false;
 | |
| 
 | |
|     if(DestType == MVT::f64) // XXX: we're not gonna be fed MVT::f32, are we?
 | |
|       isFP=true;
 | |
| 
 | |
|     bool isModulus=false; // is it a division or a modulus?
 | |
|     bool isSigned=false;
 | |
| 
 | |
|     switch(N.getOpcode()) {
 | |
|       case ISD::SDIV:  isModulus=false; isSigned=true;  break;
 | |
|       case ISD::UDIV:  isModulus=false; isSigned=false; break;
 | |
|       case ISD::SREM:  isModulus=true;  isSigned=true;  break;
 | |
|       case ISD::UREM:  isModulus=true;  isSigned=false; break;
 | |
|     }
 | |
| 
 | |
|     if(!isModulus && !isFP) { // if this is an integer divide,
 | |
|       switch (ponderIntegerDivisionBy(N.getOperand(1), isSigned, Tmp3)) {
 | |
|         case 1: // division by a constant that's a power of 2
 | |
|           Tmp1 = SelectExpr(N.getOperand(0));
 | |
|           if(isSigned) {  // argument could be negative, so emit some code:
 | |
|             unsigned divAmt=Tmp3;
 | |
|             unsigned tempGR1=MakeReg(MVT::i64);
 | |
|             unsigned tempGR2=MakeReg(MVT::i64);
 | |
|             unsigned tempGR3=MakeReg(MVT::i64);
 | |
|             BuildMI(BB, IA64::SHRS, 2, tempGR1)
 | |
|               .addReg(Tmp1).addImm(divAmt-1);
 | |
|             BuildMI(BB, IA64::EXTRU, 3, tempGR2)
 | |
|               .addReg(tempGR1).addImm(64-divAmt).addImm(divAmt);
 | |
|             BuildMI(BB, IA64::ADD, 2, tempGR3)
 | |
|               .addReg(Tmp1).addReg(tempGR2);
 | |
|             BuildMI(BB, IA64::SHRS, 2, Result)
 | |
|               .addReg(tempGR3).addImm(divAmt);
 | |
|           }
 | |
|           else // unsigned div-by-power-of-2 becomes a simple shift right:
 | |
|             BuildMI(BB, IA64::SHRU, 2, Result).addReg(Tmp1).addImm(Tmp3);
 | |
|           return Result; // early exit
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     unsigned TmpPR=MakeReg(MVT::i1);  // we need two scratch
 | |
|     unsigned TmpPR2=MakeReg(MVT::i1); // predicate registers,
 | |
|     unsigned TmpF1=MakeReg(MVT::f64); // and one metric truckload of FP regs.
 | |
|     unsigned TmpF2=MakeReg(MVT::f64); // lucky we have IA64?
 | |
|     unsigned TmpF3=MakeReg(MVT::f64); // well, the real FIXME is to have
 | |
|     unsigned TmpF4=MakeReg(MVT::f64); // isTwoAddress forms of these
 | |
|     unsigned TmpF5=MakeReg(MVT::f64); // FP instructions so we can end up with
 | |
|     unsigned TmpF6=MakeReg(MVT::f64); // stuff like setf.sig f10=f10 etc.
 | |
|     unsigned TmpF7=MakeReg(MVT::f64);
 | |
|     unsigned TmpF8=MakeReg(MVT::f64);
 | |
|     unsigned TmpF9=MakeReg(MVT::f64);
 | |
|     unsigned TmpF10=MakeReg(MVT::f64);
 | |
|     unsigned TmpF11=MakeReg(MVT::f64);
 | |
|     unsigned TmpF12=MakeReg(MVT::f64);
 | |
|     unsigned TmpF13=MakeReg(MVT::f64);
 | |
|     unsigned TmpF14=MakeReg(MVT::f64);
 | |
|     unsigned TmpF15=MakeReg(MVT::f64);
 | |
| 
 | |
|     // OK, emit some code:
 | |
| 
 | |
|     if(!isFP) {
 | |
|       // first, load the inputs into FP regs.
 | |
|       BuildMI(BB, IA64::SETFSIG, 1, TmpF1).addReg(Tmp1);
 | |
|       BuildMI(BB, IA64::SETFSIG, 1, TmpF2).addReg(Tmp2);
 | |
| 
 | |
|       // next, convert the inputs to FP
 | |
|       if(isSigned) {
 | |
|         BuildMI(BB, IA64::FCVTXF, 1, TmpF3).addReg(TmpF1);
 | |
|         BuildMI(BB, IA64::FCVTXF, 1, TmpF4).addReg(TmpF2);
 | |
|       } else {
 | |
|         BuildMI(BB, IA64::FCVTXUFS1, 1, TmpF3).addReg(TmpF1);
 | |
|         BuildMI(BB, IA64::FCVTXUFS1, 1, TmpF4).addReg(TmpF2);
 | |
|       }
 | |
| 
 | |
|     } else { // this is an FP divide/remainder, so we 'leak' some temp
 | |
|              // regs and assign TmpF3=Tmp1, TmpF4=Tmp2
 | |
|       TmpF3=Tmp1;
 | |
|       TmpF4=Tmp2;
 | |
|     }
 | |
| 
 | |
|     // we start by computing an approximate reciprocal (good to 9 bits?)
 | |
|     // note, this instruction writes _both_ TmpF5 (answer) and TmpPR (predicate)
 | |
|     BuildMI(BB, IA64::FRCPAS1, 4)
 | |
|       .addReg(TmpF5, MachineOperand::Def)
 | |
|       .addReg(TmpPR, MachineOperand::Def)
 | |
|       .addReg(TmpF3).addReg(TmpF4);
 | |
| 
 | |
|     if(!isModulus) { // if this is a divide, we worry about div-by-zero
 | |
|       unsigned bogusPR=MakeReg(MVT::i1); // won't appear, due to twoAddress
 | |
|                                        // TPCMPNE below
 | |
|       BuildMI(BB, IA64::CMPEQ, 2, bogusPR).addReg(IA64::r0).addReg(IA64::r0);
 | |
|       BuildMI(BB, IA64::TPCMPNE, 3, TmpPR2).addReg(bogusPR)
 | |
|         .addReg(IA64::r0).addReg(IA64::r0).addReg(TmpPR);
 | |
|     }
 | |
| 
 | |
|     // now we apply newton's method, thrice! (FIXME: this is ~72 bits of
 | |
|     // precision, don't need this much for f32/i32)
 | |
|     BuildMI(BB, IA64::CFNMAS1, 4, TmpF6)
 | |
|       .addReg(TmpF4).addReg(TmpF5).addReg(IA64::F1).addReg(TmpPR);
 | |
|     BuildMI(BB, IA64::CFMAS1,  4, TmpF7)
 | |
|       .addReg(TmpF3).addReg(TmpF5).addReg(IA64::F0).addReg(TmpPR);
 | |
|     BuildMI(BB, IA64::CFMAS1,  4, TmpF8)
 | |
|       .addReg(TmpF6).addReg(TmpF6).addReg(IA64::F0).addReg(TmpPR);
 | |
|     BuildMI(BB, IA64::CFMAS1,  4, TmpF9)
 | |
|       .addReg(TmpF6).addReg(TmpF7).addReg(TmpF7).addReg(TmpPR);
 | |
|     BuildMI(BB, IA64::CFMAS1,  4,TmpF10)
 | |
|       .addReg(TmpF6).addReg(TmpF5).addReg(TmpF5).addReg(TmpPR);
 | |
|     BuildMI(BB, IA64::CFMAS1,  4,TmpF11)
 | |
|       .addReg(TmpF8).addReg(TmpF9).addReg(TmpF9).addReg(TmpPR);
 | |
|     BuildMI(BB, IA64::CFMAS1,  4,TmpF12)
 | |
|       .addReg(TmpF8).addReg(TmpF10).addReg(TmpF10).addReg(TmpPR);
 | |
|     BuildMI(BB, IA64::CFNMAS1, 4,TmpF13)
 | |
|       .addReg(TmpF4).addReg(TmpF11).addReg(TmpF3).addReg(TmpPR);
 | |
| 
 | |
|        // FIXME: this is unfortunate :(
 | |
|        // the story is that the dest reg of the fnma above and the fma below
 | |
|        // (and therefore possibly the src of the fcvt.fx[u] as well) cannot
 | |
|        // be the same register, or this code breaks if the first argument is
 | |
|        // zero. (e.g. without this hack, 0%8 yields -64, not 0.)
 | |
|     BuildMI(BB, IA64::CFMAS1,  4,TmpF14)
 | |
|       .addReg(TmpF13).addReg(TmpF12).addReg(TmpF11).addReg(TmpPR);
 | |
| 
 | |
|     if(isModulus) { // XXX: fragile! fixes _only_ mod, *breaks* div! !
 | |
|       BuildMI(BB, IA64::IUSE, 1).addReg(TmpF13); // hack :(
 | |
|     }
 | |
| 
 | |
|     if(!isFP) {
 | |
|       // round to an integer
 | |
|       if(isSigned)
 | |
|         BuildMI(BB, IA64::FCVTFXTRUNCS1, 1, TmpF15).addReg(TmpF14);
 | |
|       else
 | |
|         BuildMI(BB, IA64::FCVTFXUTRUNCS1, 1, TmpF15).addReg(TmpF14);
 | |
|     } else {
 | |
|       BuildMI(BB, IA64::FMOV, 1, TmpF15).addReg(TmpF14);
 | |
|      // EXERCISE: can you see why TmpF15=TmpF14 does not work here, and
 | |
|      // we really do need the above FMOV? ;)
 | |
|     }
 | |
| 
 | |
|     if(!isModulus) {
 | |
|       if(isFP) { // extra worrying about div-by-zero
 | |
|       unsigned bogoResult=MakeReg(MVT::f64);
 | |
| 
 | |
|       // we do a 'conditional fmov' (of the correct result, depending
 | |
|       // on how the frcpa predicate turned out)
 | |
|       BuildMI(BB, IA64::PFMOV, 2, bogoResult)
 | |
|         .addReg(TmpF12).addReg(TmpPR2);
 | |
|       BuildMI(BB, IA64::CFMOV, 2, Result)
 | |
|         .addReg(bogoResult).addReg(TmpF15).addReg(TmpPR);
 | |
|       }
 | |
|       else {
 | |
|         BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(TmpF15);
 | |
|       }
 | |
|     } else { // this is a modulus
 | |
|       if(!isFP) {
 | |
|         // answer = q * (-b) + a
 | |
|         unsigned ModulusResult = MakeReg(MVT::f64);
 | |
|         unsigned TmpF = MakeReg(MVT::f64);
 | |
|         unsigned TmpI = MakeReg(MVT::i64);
 | |
| 
 | |
|         BuildMI(BB, IA64::SUB, 2, TmpI).addReg(IA64::r0).addReg(Tmp2);
 | |
|         BuildMI(BB, IA64::SETFSIG, 1, TmpF).addReg(TmpI);
 | |
|         BuildMI(BB, IA64::XMAL, 3, ModulusResult)
 | |
|           .addReg(TmpF15).addReg(TmpF).addReg(TmpF1);
 | |
|         BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(ModulusResult);
 | |
|       } else { // FP modulus! The horror... the horror....
 | |
|         assert(0 && "sorry, no FP modulus just yet!\n!\n");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::SIGN_EXTEND_INREG: {
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     switch(cast<VTSDNode>(Node->getOperand(1))->getVT()) {
 | |
|     default:
 | |
|       Node->dump();
 | |
|       assert(0 && "don't know how to sign extend this type");
 | |
|       break;
 | |
|     case MVT::i8: Opc = IA64::SXT1; break;
 | |
|     case MVT::i16: Opc = IA64::SXT2; break;
 | |
|     case MVT::i32: Opc = IA64::SXT4; break;
 | |
|     }
 | |
|     BuildMI(BB, Opc, 1, Result).addReg(Tmp1);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::SETCC: {
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     ISD::CondCode CC = cast<CondCodeSDNode>(Node->getOperand(2))->get();
 | |
|     if (MVT::isInteger(N.getOperand(0).getValueType())) {
 | |
| 
 | |
|       if(ConstantSDNode *CSDN =
 | |
|            dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | |
|       // if we are comparing against a constant zero
 | |
|       if(CSDN->getValue()==0)
 | |
|         Tmp2 = IA64::r0; // then we can just compare against r0
 | |
|       else
 | |
|         Tmp2 = SelectExpr(N.getOperand(1));
 | |
|       } else // not comparing against a constant
 | |
|         Tmp2 = SelectExpr(N.getOperand(1));
 | |
| 
 | |
|       switch (CC) {
 | |
|       default: assert(0 && "Unknown integer comparison!");
 | |
|       case ISD::SETEQ:
 | |
|         BuildMI(BB, IA64::CMPEQ, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|         break;
 | |
|       case ISD::SETGT:
 | |
|         BuildMI(BB, IA64::CMPGT, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|         break;
 | |
|       case ISD::SETGE:
 | |
|         BuildMI(BB, IA64::CMPGE, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|         break;
 | |
|       case ISD::SETLT:
 | |
|         BuildMI(BB, IA64::CMPLT, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|         break;
 | |
|       case ISD::SETLE:
 | |
|         BuildMI(BB, IA64::CMPLE, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|         break;
 | |
|       case ISD::SETNE:
 | |
|         BuildMI(BB, IA64::CMPNE, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|         break;
 | |
|       case ISD::SETULT:
 | |
|         BuildMI(BB, IA64::CMPLTU, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|         break;
 | |
|       case ISD::SETUGT:
 | |
|         BuildMI(BB, IA64::CMPGTU, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|         break;
 | |
|       case ISD::SETULE:
 | |
|         BuildMI(BB, IA64::CMPLEU, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|         break;
 | |
|       case ISD::SETUGE:
 | |
|         BuildMI(BB, IA64::CMPGEU, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|         break;
 | |
|       }
 | |
|     } else { // if not integer, should be FP.
 | |
|       assert(N.getOperand(0).getValueType() != MVT::f32 &&
 | |
|           "error: SETCC should have had incoming f32 promoted to f64!\n");
 | |
| 
 | |
|       if(ConstantFPSDNode *CFPSDN =
 | |
|            dyn_cast<ConstantFPSDNode>(N.getOperand(1))) {
 | |
| 
 | |
|         // if we are comparing against a constant +0.0 or +1.0
 | |
|         if(CFPSDN->isExactlyValue(+0.0))
 | |
|           Tmp2 = IA64::F0; // then we can just compare against f0
 | |
|         else if(CFPSDN->isExactlyValue(+1.0))
 | |
|           Tmp2 = IA64::F1; // or f1
 | |
|         else
 | |
|           Tmp2 = SelectExpr(N.getOperand(1));
 | |
|       } else // not comparing against a constant
 | |
|         Tmp2 = SelectExpr(N.getOperand(1));
 | |
| 
 | |
|       switch (CC) {
 | |
|       default: assert(0 && "Unknown FP comparison!");
 | |
|       case ISD::SETEQ:
 | |
|         BuildMI(BB, IA64::FCMPEQ, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|         break;
 | |
|       case ISD::SETGT:
 | |
|         BuildMI(BB, IA64::FCMPGT, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|         break;
 | |
|       case ISD::SETGE:
 | |
|         BuildMI(BB, IA64::FCMPGE, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|         break;
 | |
|       case ISD::SETLT:
 | |
|         BuildMI(BB, IA64::FCMPLT, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|         break;
 | |
|       case ISD::SETLE:
 | |
|         BuildMI(BB, IA64::FCMPLE, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|         break;
 | |
|       case ISD::SETNE:
 | |
|         BuildMI(BB, IA64::FCMPNE, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|         break;
 | |
|       case ISD::SETULT:
 | |
|         BuildMI(BB, IA64::FCMPLTU, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|         break;
 | |
|       case ISD::SETUGT:
 | |
|         BuildMI(BB, IA64::FCMPGTU, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|         break;
 | |
|       case ISD::SETULE:
 | |
|         BuildMI(BB, IA64::FCMPLEU, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|         break;
 | |
|       case ISD::SETUGE:
 | |
|         BuildMI(BB, IA64::FCMPGEU, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::EXTLOAD:
 | |
|   case ISD::ZEXTLOAD:
 | |
|   case ISD::LOAD: {
 | |
|     // Make sure we generate both values.
 | |
|     if (Result != 1)
 | |
|       ExprMap[N.getValue(1)] = 1;   // Generate the token
 | |
|     else
 | |
|       Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
 | |
| 
 | |
|     bool isBool=false;
 | |
| 
 | |
|     if(opcode == ISD::LOAD) { // this is a LOAD
 | |
|       switch (Node->getValueType(0)) {
 | |
|         default: assert(0 && "Cannot load this type!");
 | |
|         case MVT::i1:  Opc = IA64::LD1; isBool=true; break;
 | |
|               // FIXME: for now, we treat bool loads the same as i8 loads */
 | |
|         case MVT::i8:  Opc = IA64::LD1; break;
 | |
|         case MVT::i16: Opc = IA64::LD2; break;
 | |
|         case MVT::i32: Opc = IA64::LD4; break;
 | |
|         case MVT::i64: Opc = IA64::LD8; break;
 | |
| 
 | |
|         case MVT::f32: Opc = IA64::LDF4; break;
 | |
|         case MVT::f64: Opc = IA64::LDF8; break;
 | |
|       }
 | |
|     } else { // this is an EXTLOAD or ZEXTLOAD
 | |
|       MVT::ValueType TypeBeingLoaded =
 | |
|         cast<VTSDNode>(Node->getOperand(3))->getVT();
 | |
|       switch (TypeBeingLoaded) {
 | |
|         default: assert(0 && "Cannot extload/zextload this type!");
 | |
|         // FIXME: bools?
 | |
|         case MVT::i8: Opc = IA64::LD1; break;
 | |
|         case MVT::i16: Opc = IA64::LD2; break;
 | |
|         case MVT::i32: Opc = IA64::LD4; break;
 | |
|         case MVT::f32: Opc = IA64::LDF4; break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     SDOperand Chain = N.getOperand(0);
 | |
|     SDOperand Address = N.getOperand(1);
 | |
| 
 | |
|     if(Address.getOpcode() == ISD::GlobalAddress) {
 | |
|       Select(Chain);
 | |
|       unsigned dummy = MakeReg(MVT::i64);
 | |
|       unsigned dummy2 = MakeReg(MVT::i64);
 | |
|       BuildMI(BB, IA64::ADD, 2, dummy)
 | |
|         .addGlobalAddress(cast<GlobalAddressSDNode>(Address)->getGlobal())
 | |
|         .addReg(IA64::r1);
 | |
|       BuildMI(BB, IA64::LD8, 1, dummy2).addReg(dummy);
 | |
|       if(!isBool)
 | |
|         BuildMI(BB, Opc, 1, Result).addReg(dummy2);
 | |
|       else { // emit a little pseudocode to load a bool (stored in one byte)
 | |
|              // into a predicate register
 | |
|         assert(Opc==IA64::LD1 && "problem loading a bool");
 | |
|         unsigned dummy3 = MakeReg(MVT::i64);
 | |
|         BuildMI(BB, Opc, 1, dummy3).addReg(dummy2);
 | |
|         // we compare to 0. true? 0. false? 1.
 | |
|         BuildMI(BB, IA64::CMPNE, 2, Result).addReg(dummy3).addReg(IA64::r0);
 | |
|       }
 | |
|     } else if(ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Address)) {
 | |
|       unsigned CPIdx = BB->getParent()->getConstantPool()->
 | |
|                            getConstantPoolIndex(CP->get());
 | |
|       Select(Chain);
 | |
|       IA64Lowering.restoreGP(BB);
 | |
|       unsigned dummy = MakeReg(MVT::i64);
 | |
|       BuildMI(BB, IA64::ADD, 2, dummy).addConstantPoolIndex(CPIdx)
 | |
|         .addReg(IA64::r1); // CPI+GP
 | |
|       if(!isBool)
 | |
|         BuildMI(BB, Opc, 1, Result).addReg(dummy);
 | |
|       else { // emit a little pseudocode to load a bool (stored in one byte)
 | |
|              // into a predicate register
 | |
|         assert(Opc==IA64::LD1 && "problem loading a bool");
 | |
|         unsigned dummy3 = MakeReg(MVT::i64);
 | |
|         BuildMI(BB, Opc, 1, dummy3).addReg(dummy);
 | |
|         // we compare to 0. true? 0. false? 1.
 | |
|         BuildMI(BB, IA64::CMPNE, 2, Result).addReg(dummy3).addReg(IA64::r0);
 | |
|       }
 | |
|     } else if(Address.getOpcode() == ISD::FrameIndex) {
 | |
|       Select(Chain);  // FIXME ? what about bools?
 | |
|       unsigned dummy = MakeReg(MVT::i64);
 | |
|       BuildMI(BB, IA64::MOV, 1, dummy)
 | |
|         .addFrameIndex(cast<FrameIndexSDNode>(Address)->getIndex());
 | |
|       if(!isBool)
 | |
|         BuildMI(BB, Opc, 1, Result).addReg(dummy);
 | |
|       else { // emit a little pseudocode to load a bool (stored in one byte)
 | |
|              // into a predicate register
 | |
|         assert(Opc==IA64::LD1 && "problem loading a bool");
 | |
|         unsigned dummy3 = MakeReg(MVT::i64);
 | |
|         BuildMI(BB, Opc, 1, dummy3).addReg(dummy);
 | |
|         // we compare to 0. true? 0. false? 1.
 | |
|         BuildMI(BB, IA64::CMPNE, 2, Result).addReg(dummy3).addReg(IA64::r0);
 | |
|       }
 | |
|     } else { // none of the above...
 | |
|       Select(Chain);
 | |
|       Tmp2 = SelectExpr(Address);
 | |
|       if(!isBool)
 | |
|         BuildMI(BB, Opc, 1, Result).addReg(Tmp2);
 | |
|       else { // emit a little pseudocode to load a bool (stored in one byte)
 | |
|              // into a predicate register
 | |
|         assert(Opc==IA64::LD1 && "problem loading a bool");
 | |
|         unsigned dummy = MakeReg(MVT::i64);
 | |
|         BuildMI(BB, Opc, 1, dummy).addReg(Tmp2);
 | |
|         // we compare to 0. true? 0. false? 1.
 | |
|         BuildMI(BB, IA64::CMPNE, 2, Result).addReg(dummy).addReg(IA64::r0);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::CopyFromReg: {
 | |
|     if (Result == 1)
 | |
|         Result = ExprMap[N.getValue(0)] =
 | |
|           MakeReg(N.getValue(0).getValueType());
 | |
| 
 | |
|       SDOperand Chain   = N.getOperand(0);
 | |
| 
 | |
|       Select(Chain);
 | |
|       unsigned r = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
 | |
| 
 | |
|       if(N.getValueType() == MVT::i1) // if a bool, we use pseudocode
 | |
|         BuildMI(BB, IA64::PCMPEQUNC, 3, Result)
 | |
|           .addReg(IA64::r0).addReg(IA64::r0).addReg(r);
 | |
|                             // (r) Result =cmp.eq.unc(r0,r0)
 | |
|       else
 | |
|         BuildMI(BB, IA64::MOV, 1, Result).addReg(r); // otherwise MOV
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::TAILCALL:
 | |
|   case ISD::CALL: {
 | |
|       Select(N.getOperand(0));
 | |
| 
 | |
|       // The chain for this call is now lowered.
 | |
|       ExprMap.insert(std::make_pair(N.getValue(Node->getNumValues()-1), 1));
 | |
| 
 | |
|       //grab the arguments
 | |
|       std::vector<unsigned> argvregs;
 | |
| 
 | |
|       for(int i = 2, e = Node->getNumOperands(); i < e; ++i)
 | |
|         argvregs.push_back(SelectExpr(N.getOperand(i)));
 | |
| 
 | |
|       // see section 8.5.8 of "Itanium Software Conventions and
 | |
|       // Runtime Architecture Guide to see some examples of what's going
 | |
|       // on here. (in short: int args get mapped 1:1 'slot-wise' to out0->out7,
 | |
|       // while FP args get mapped to F8->F15 as needed)
 | |
| 
 | |
|       unsigned used_FPArgs=0; // how many FP Args have been used so far?
 | |
| 
 | |
|       // in reg args
 | |
|       for(int i = 0, e = std::min(8, (int)argvregs.size()); i < e; ++i)
 | |
|       {
 | |
|         unsigned intArgs[] = {IA64::out0, IA64::out1, IA64::out2, IA64::out3,
 | |
|                               IA64::out4, IA64::out5, IA64::out6, IA64::out7 };
 | |
|         unsigned FPArgs[] = {IA64::F8, IA64::F9, IA64::F10, IA64::F11,
 | |
|                              IA64::F12, IA64::F13, IA64::F14, IA64::F15 };
 | |
| 
 | |
|         switch(N.getOperand(i+2).getValueType())
 | |
|         {
 | |
|           default:  // XXX do we need to support MVT::i1 here?
 | |
|             Node->dump();
 | |
|             N.getOperand(i).Val->dump();
 | |
|             std::cerr << "Type for " << i << " is: " <<
 | |
|               N.getOperand(i+2).getValueType() << std::endl;
 | |
|             assert(0 && "Unknown value type for call");
 | |
|           case MVT::i64:
 | |
|             BuildMI(BB, IA64::MOV, 1, intArgs[i]).addReg(argvregs[i]);
 | |
|             break;
 | |
|           case MVT::f64:
 | |
|             BuildMI(BB, IA64::FMOV, 1, FPArgs[used_FPArgs++])
 | |
|               .addReg(argvregs[i]);
 | |
|             // FIXME: we don't need to do this _all_ the time:
 | |
|             BuildMI(BB, IA64::GETFD, 1, intArgs[i]).addReg(argvregs[i]);
 | |
|             break;
 | |
|           }
 | |
|       }
 | |
| 
 | |
|       //in mem args
 | |
|       for (int i = 8, e = argvregs.size(); i < e; ++i)
 | |
|       {
 | |
|         unsigned tempAddr = MakeReg(MVT::i64);
 | |
| 
 | |
|         switch(N.getOperand(i+2).getValueType()) {
 | |
|         default:
 | |
|           Node->dump();
 | |
|           N.getOperand(i).Val->dump();
 | |
|           std::cerr << "Type for " << i << " is: " <<
 | |
|             N.getOperand(i+2).getValueType() << "\n";
 | |
|           assert(0 && "Unknown value type for call");
 | |
|         case MVT::i1: // FIXME?
 | |
|         case MVT::i8:
 | |
|         case MVT::i16:
 | |
|         case MVT::i32:
 | |
|         case MVT::i64:
 | |
|           BuildMI(BB, IA64::ADDIMM22, 2, tempAddr)
 | |
|             .addReg(IA64::r12).addImm(16 + (i - 8) * 8); // r12 is SP
 | |
|           BuildMI(BB, IA64::ST8, 2).addReg(tempAddr).addReg(argvregs[i]);
 | |
|           break;
 | |
|         case MVT::f32:
 | |
|         case MVT::f64:
 | |
|           BuildMI(BB, IA64::ADDIMM22, 2, tempAddr)
 | |
|             .addReg(IA64::r12).addImm(16 + (i - 8) * 8); // r12 is SP
 | |
|           BuildMI(BB, IA64::STF8, 2).addReg(tempAddr).addReg(argvregs[i]);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     // build the right kind of call. if we can branch directly, do so:
 | |
|     if (GlobalAddressSDNode *GASD =
 | |
|                dyn_cast<GlobalAddressSDNode>(N.getOperand(1)))
 | |
|       {
 | |
|         BuildMI(BB, IA64::BRCALL, 1).addGlobalAddress(GASD->getGlobal(),true);
 | |
|         IA64Lowering.restoreGP_SP_RP(BB);
 | |
|       } else
 | |
|     if (ExternalSymbolSDNode *ESSDN =
 | |
|              dyn_cast<ExternalSymbolSDNode>(N.getOperand(1)))
 | |
|       { // FIXME : currently need this case for correctness, to avoid
 | |
|         // "non-pic code with imm relocation against dynamic symbol" errors
 | |
|         BuildMI(BB, IA64::BRCALL, 1)
 | |
|           .addExternalSymbol(ESSDN->getSymbol(), true);
 | |
|         IA64Lowering.restoreGP_SP_RP(BB);
 | |
|       }
 | |
|     else { // otherwise we need to get the function descriptor
 | |
|            // load the branch target (function)'s entry point and
 | |
|            // GP, then branch
 | |
|       Tmp1 = SelectExpr(N.getOperand(1));
 | |
| 
 | |
|       unsigned targetEntryPoint=MakeReg(MVT::i64);
 | |
|       unsigned targetGPAddr=MakeReg(MVT::i64);
 | |
|       unsigned currentGP=MakeReg(MVT::i64);
 | |
| 
 | |
|       // b6 is a scratch branch register, we load the target entry point
 | |
|       // from the base of the function descriptor
 | |
|       BuildMI(BB, IA64::LD8, 1, targetEntryPoint).addReg(Tmp1);
 | |
|       BuildMI(BB, IA64::MOV, 1, IA64::B6).addReg(targetEntryPoint);
 | |
| 
 | |
|       // save the current GP:
 | |
|       BuildMI(BB, IA64::MOV, 1, currentGP).addReg(IA64::r1);
 | |
| 
 | |
|       /* TODO: we need to make sure doing this never, ever loads a
 | |
|        * bogus value into r1 (GP). */
 | |
|       // load the target GP (which is at mem[functiondescriptor+8])
 | |
|       BuildMI(BB, IA64::ADDIMM22, 2, targetGPAddr)
 | |
|         .addReg(Tmp1).addImm(8); // FIXME: addimm22? why not postincrement ld
 | |
|       BuildMI(BB, IA64::LD8, 1, IA64::r1).addReg(targetGPAddr);
 | |
| 
 | |
|       // and then jump: (well, call)
 | |
|       BuildMI(BB, IA64::BRCALL, 1).addReg(IA64::B6);
 | |
|       // and finally restore the old GP
 | |
|       BuildMI(BB, IA64::MOV, 1, IA64::r1).addReg(currentGP);
 | |
|       IA64Lowering.restoreSP_RP(BB);
 | |
|     }
 | |
| 
 | |
|     switch (Node->getValueType(0)) {
 | |
|     default: assert(0 && "Unknown value type for call result!");
 | |
|     case MVT::Other: return 1;
 | |
|     case MVT::i1:
 | |
|       BuildMI(BB, IA64::CMPNE, 2, Result)
 | |
|         .addReg(IA64::r8).addReg(IA64::r0);
 | |
|       break;
 | |
|     case MVT::i8:
 | |
|     case MVT::i16:
 | |
|     case MVT::i32:
 | |
|     case MVT::i64:
 | |
|       BuildMI(BB, IA64::MOV, 1, Result).addReg(IA64::r8);
 | |
|       break;
 | |
|     case MVT::f64:
 | |
|       BuildMI(BB, IA64::FMOV, 1, Result).addReg(IA64::F8);
 | |
|       break;
 | |
|     }
 | |
|     return Result+N.ResNo;
 | |
|   }
 | |
| 
 | |
|   } // <- uhhh XXX
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void ISel::Select(SDOperand N) {
 | |
|   unsigned Tmp1, Tmp2, Opc;
 | |
|   unsigned opcode = N.getOpcode();
 | |
| 
 | |
|   if (!LoweredTokens.insert(N).second)
 | |
|     return;  // Already selected.
 | |
| 
 | |
|   SDNode *Node = N.Val;
 | |
| 
 | |
|   switch (Node->getOpcode()) {
 | |
|   default:
 | |
|     Node->dump(); std::cerr << "\n";
 | |
|     assert(0 && "Node not handled yet!");
 | |
| 
 | |
|   case ISD::EntryToken: return;  // Noop
 | |
| 
 | |
|   case ISD::TokenFactor: {
 | |
|     for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
 | |
|       Select(Node->getOperand(i));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case ISD::CopyToReg: {
 | |
|     Select(N.getOperand(0));
 | |
|     Tmp1 = SelectExpr(N.getOperand(2));
 | |
|     Tmp2 = cast<RegisterSDNode>(N.getOperand(1))->getReg();
 | |
| 
 | |
|     if (Tmp1 != Tmp2) {
 | |
|       // if a bool, we use pseudocode
 | |
|       if (N.getOperand(2).getValueType() == MVT::i1)
 | |
|         BuildMI(BB, IA64::PCMPEQUNC, 3, Tmp2)
 | |
|           .addReg(IA64::r0).addReg(IA64::r0).addReg(Tmp1);
 | |
|                                    // (Tmp1) Tmp2 = cmp.eq.unc(r0,r0)
 | |
|       else
 | |
|         BuildMI(BB, IA64::MOV, 1, Tmp2).addReg(Tmp1);
 | |
|                       // XXX is this the right way 'round? ;)
 | |
|       // FIXME: WHAT ABOUT FLOATING POINT?
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case ISD::RET: {
 | |
| 
 | |
|   /* what the heck is going on here:
 | |
| 
 | |
| <_sabre_> ret with two operands is obvious: chain and value
 | |
| <camel_> yep
 | |
| <_sabre_> ret with 3 values happens when 'expansion' occurs
 | |
| <_sabre_> e.g. i64 gets split into 2x i32
 | |
| <camel_> oh right
 | |
| <_sabre_> you don't have this case on ia64
 | |
| <camel_> yep
 | |
| <_sabre_> so the two returned values go into EAX/EDX on ia32
 | |
| <camel_> ahhh *memories*
 | |
| <_sabre_> :)
 | |
| <camel_> ok, thanks :)
 | |
| <_sabre_> so yeah, everything that has a side effect takes a 'token chain'
 | |
| <_sabre_> this is the first operand always
 | |
| <_sabre_> these operand often define chains, they are the last operand
 | |
| <_sabre_> they are printed as 'ch' if you do DAG.dump()
 | |
|   */
 | |
| 
 | |
|     switch (N.getNumOperands()) {
 | |
|     default:
 | |
|       assert(0 && "Unknown return instruction!");
 | |
|     case 2:
 | |
|         Select(N.getOperand(0));
 | |
|         Tmp1 = SelectExpr(N.getOperand(1));
 | |
|       switch (N.getOperand(1).getValueType()) {
 | |
|       default: assert(0 && "All other types should have been promoted!!");
 | |
|                // FIXME: do I need to add support for bools here?
 | |
|                // (return '0' or '1' r8, basically...)
 | |
|                //
 | |
|                // FIXME: need to round floats - 80 bits is bad, the tester
 | |
|                // told me so
 | |
|       case MVT::i64:
 | |
|         // we mark r8 as live on exit up above in LowerArguments()
 | |
|         BuildMI(BB, IA64::MOV, 1, IA64::r8).addReg(Tmp1);
 | |
|         break;
 | |
|       case MVT::f64:
 | |
|         // we mark F8 as live on exit up above in LowerArguments()
 | |
|         BuildMI(BB, IA64::FMOV, 1, IA64::F8).addReg(Tmp1);
 | |
|       }
 | |
|       break;
 | |
|     case 1:
 | |
|       Select(N.getOperand(0));
 | |
|       break;
 | |
|     }
 | |
|     // before returning, restore the ar.pfs register (set by the 'alloc' up top)
 | |
|     BuildMI(BB, IA64::MOV, 1).addReg(IA64::AR_PFS).addReg(IA64Lowering.VirtGPR);
 | |
|     BuildMI(BB, IA64::RET, 0); // and then just emit a 'ret' instruction
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case ISD::BR: {
 | |
|     Select(N.getOperand(0));
 | |
|     MachineBasicBlock *Dest =
 | |
|       cast<BasicBlockSDNode>(N.getOperand(1))->getBasicBlock();
 | |
|     BuildMI(BB, IA64::BRLCOND_NOTCALL, 1).addReg(IA64::p0).addMBB(Dest);
 | |
|     // XXX HACK! we do _not_ need long branches all the time
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case ISD::ImplicitDef: {
 | |
|     Select(N.getOperand(0));
 | |
|     BuildMI(BB, IA64::IDEF, 0, 
 | |
|             cast<RegisterSDNode>(N.getOperand(1))->getReg());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case ISD::BRCOND: {
 | |
|     MachineBasicBlock *Dest =
 | |
|       cast<BasicBlockSDNode>(N.getOperand(2))->getBasicBlock();
 | |
| 
 | |
|     Select(N.getOperand(0));
 | |
|     Tmp1 = SelectExpr(N.getOperand(1));
 | |
|     BuildMI(BB, IA64::BRLCOND_NOTCALL, 1).addReg(Tmp1).addMBB(Dest);
 | |
|     // XXX HACK! we do _not_ need long branches all the time
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case ISD::EXTLOAD:
 | |
|   case ISD::ZEXTLOAD:
 | |
|   case ISD::SEXTLOAD:
 | |
|   case ISD::LOAD:
 | |
|   case ISD::TAILCALL:
 | |
|   case ISD::CALL:
 | |
|   case ISD::CopyFromReg:
 | |
|   case ISD::DYNAMIC_STACKALLOC:
 | |
|     SelectExpr(N);
 | |
|     return;
 | |
| 
 | |
|   case ISD::TRUNCSTORE:
 | |
|   case ISD::STORE: {
 | |
|       Select(N.getOperand(0));
 | |
|       Tmp1 = SelectExpr(N.getOperand(1)); // value
 | |
| 
 | |
|       bool isBool=false;
 | |
| 
 | |
|       if(opcode == ISD::STORE) {
 | |
|         switch (N.getOperand(1).getValueType()) {
 | |
|           default: assert(0 && "Cannot store this type!");
 | |
|           case MVT::i1:  Opc = IA64::ST1; isBool=true; break;
 | |
|               // FIXME?: for now, we treat bool loads the same as i8 stores */
 | |
|           case MVT::i8:  Opc = IA64::ST1; break;
 | |
|           case MVT::i16: Opc = IA64::ST2; break;
 | |
|           case MVT::i32: Opc = IA64::ST4; break;
 | |
|           case MVT::i64: Opc = IA64::ST8; break;
 | |
| 
 | |
|           case MVT::f32: Opc = IA64::STF4; break;
 | |
|           case MVT::f64: Opc = IA64::STF8; break;
 | |
|         }
 | |
|       } else { // truncstore
 | |
|         switch(cast<VTSDNode>(Node->getOperand(4))->getVT()) {
 | |
|           default: assert(0 && "unknown type in truncstore");
 | |
|           case MVT::i1: Opc = IA64::ST1; isBool=true; break;
 | |
|                         //FIXME: DAG does not promote this load?
 | |
|           case MVT::i8: Opc = IA64::ST1; break;
 | |
|           case MVT::i16: Opc = IA64::ST2; break;
 | |
|           case MVT::i32: Opc = IA64::ST4; break;
 | |
|           case MVT::f32: Opc = IA64::STF4; break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if(N.getOperand(2).getOpcode() == ISD::GlobalAddress) {
 | |
|         unsigned dummy = MakeReg(MVT::i64);
 | |
|         unsigned dummy2 = MakeReg(MVT::i64);
 | |
|         BuildMI(BB, IA64::ADD, 2, dummy)
 | |
|           .addGlobalAddress(cast<GlobalAddressSDNode>
 | |
|               (N.getOperand(2))->getGlobal()).addReg(IA64::r1);
 | |
|         BuildMI(BB, IA64::LD8, 1, dummy2).addReg(dummy);
 | |
| 
 | |
|         if(!isBool)
 | |
|           BuildMI(BB, Opc, 2).addReg(dummy2).addReg(Tmp1);
 | |
|         else { // we are storing a bool, so emit a little pseudocode
 | |
|                // to store a predicate register as one byte
 | |
|           assert(Opc==IA64::ST1);
 | |
|           unsigned dummy3 = MakeReg(MVT::i64);
 | |
|           unsigned dummy4 = MakeReg(MVT::i64);
 | |
|           BuildMI(BB, IA64::MOV, 1, dummy3).addReg(IA64::r0);
 | |
|           BuildMI(BB, IA64::TPCADDIMM22, 2, dummy4)
 | |
|             .addReg(dummy3).addImm(1).addReg(Tmp1); // if(Tmp1) dummy=0+1;
 | |
|           BuildMI(BB, Opc, 2).addReg(dummy2).addReg(dummy4);
 | |
|         }
 | |
|       } else if(N.getOperand(2).getOpcode() == ISD::FrameIndex) {
 | |
| 
 | |
|         // FIXME? (what about bools?)
 | |
| 
 | |
|         unsigned dummy = MakeReg(MVT::i64);
 | |
|         BuildMI(BB, IA64::MOV, 1, dummy)
 | |
|           .addFrameIndex(cast<FrameIndexSDNode>(N.getOperand(2))->getIndex());
 | |
|         BuildMI(BB, Opc, 2).addReg(dummy).addReg(Tmp1);
 | |
|       } else { // otherwise
 | |
|         Tmp2 = SelectExpr(N.getOperand(2)); //address
 | |
|         if(!isBool)
 | |
|           BuildMI(BB, Opc, 2).addReg(Tmp2).addReg(Tmp1);
 | |
|         else { // we are storing a bool, so emit a little pseudocode
 | |
|                // to store a predicate register as one byte
 | |
|           assert(Opc==IA64::ST1);
 | |
|           unsigned dummy3 = MakeReg(MVT::i64);
 | |
|           unsigned dummy4 = MakeReg(MVT::i64);
 | |
|           BuildMI(BB, IA64::MOV, 1, dummy3).addReg(IA64::r0);
 | |
|           BuildMI(BB, IA64::TPCADDIMM22, 2, dummy4)
 | |
|             .addReg(dummy3).addImm(1).addReg(Tmp1); // if(Tmp1) dummy=0+1;
 | |
|           BuildMI(BB, Opc, 2).addReg(Tmp2).addReg(dummy4);
 | |
|         }
 | |
|       }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case ISD::CALLSEQ_START:
 | |
|   case ISD::CALLSEQ_END: {
 | |
|     Select(N.getOperand(0));
 | |
|     Tmp1 = cast<ConstantSDNode>(N.getOperand(1))->getValue();
 | |
| 
 | |
|     Opc = N.getOpcode() == ISD::CALLSEQ_START ? IA64::ADJUSTCALLSTACKDOWN :
 | |
|                                                 IA64::ADJUSTCALLSTACKUP;
 | |
|     BuildMI(BB, Opc, 1).addImm(Tmp1);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|     return;
 | |
|   }
 | |
|   assert(0 && "GAME OVER. INSERT COIN?");
 | |
| }
 | |
| 
 | |
| 
 | |
| /// createIA64PatternInstructionSelector - This pass converts an LLVM function
 | |
| /// into a machine code representation using pattern matching and a machine
 | |
| /// description file.
 | |
| ///
 | |
| FunctionPass *llvm::createIA64PatternInstructionSelector(TargetMachine &TM) {
 | |
|   return new ISel(TM);
 | |
| }
 | |
| 
 | |
| 
 |