mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-17 06:33:21 +00:00
a559a2317c
Take two disjoint Loops L1 and L2. LoopSimplify fails to simplify some loops (e.g. when indirect branches are involved). In such situations, it can happen that an exit for L1 is the header of L2. Thus, when we create PHIs in one of such exits we are also inserting PHIs in L2 header. This could break LCSSA form for L2 because these inserted PHIs can also have uses in L2 exits, which are never handled in the current implementation. Provide a fix for this corner case and test that we don't assert/crash on that. Differential Revision: http://reviews.llvm.org/D6624 rdar://problem/19166231 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224740 91177308-0d34-0410-b5e6-96231b3b80d8
347 lines
12 KiB
C++
347 lines
12 KiB
C++
//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass transforms loops by placing phi nodes at the end of the loops for
|
|
// all values that are live across the loop boundary. For example, it turns
|
|
// the left into the right code:
|
|
//
|
|
// for (...) for (...)
|
|
// if (c) if (c)
|
|
// X1 = ... X1 = ...
|
|
// else else
|
|
// X2 = ... X2 = ...
|
|
// X3 = phi(X1, X2) X3 = phi(X1, X2)
|
|
// ... = X3 + 4 X4 = phi(X3)
|
|
// ... = X4 + 4
|
|
//
|
|
// This is still valid LLVM; the extra phi nodes are purely redundant, and will
|
|
// be trivially eliminated by InstCombine. The major benefit of this
|
|
// transformation is that it makes many other loop optimizations, such as
|
|
// LoopUnswitching, simpler.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/PredIteratorCache.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
#include "llvm/Transforms/Utils/SSAUpdater.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "lcssa"
|
|
|
|
STATISTIC(NumLCSSA, "Number of live out of a loop variables");
|
|
|
|
/// Return true if the specified block is in the list.
|
|
static bool isExitBlock(BasicBlock *BB,
|
|
const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
|
|
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
|
|
if (ExitBlocks[i] == BB)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// Given an instruction in the loop, check to see if it has any uses that are
|
|
/// outside the current loop. If so, insert LCSSA PHI nodes and rewrite the
|
|
/// uses.
|
|
static bool processInstruction(Loop &L, Instruction &Inst, DominatorTree &DT,
|
|
const SmallVectorImpl<BasicBlock *> &ExitBlocks,
|
|
PredIteratorCache &PredCache, LoopInfo *LI) {
|
|
SmallVector<Use *, 16> UsesToRewrite;
|
|
|
|
BasicBlock *InstBB = Inst.getParent();
|
|
|
|
for (Use &U : Inst.uses()) {
|
|
Instruction *User = cast<Instruction>(U.getUser());
|
|
BasicBlock *UserBB = User->getParent();
|
|
if (PHINode *PN = dyn_cast<PHINode>(User))
|
|
UserBB = PN->getIncomingBlock(U);
|
|
|
|
if (InstBB != UserBB && !L.contains(UserBB))
|
|
UsesToRewrite.push_back(&U);
|
|
}
|
|
|
|
// If there are no uses outside the loop, exit with no change.
|
|
if (UsesToRewrite.empty())
|
|
return false;
|
|
|
|
++NumLCSSA; // We are applying the transformation
|
|
|
|
// Invoke instructions are special in that their result value is not available
|
|
// along their unwind edge. The code below tests to see whether DomBB
|
|
// dominates
|
|
// the value, so adjust DomBB to the normal destination block, which is
|
|
// effectively where the value is first usable.
|
|
BasicBlock *DomBB = Inst.getParent();
|
|
if (InvokeInst *Inv = dyn_cast<InvokeInst>(&Inst))
|
|
DomBB = Inv->getNormalDest();
|
|
|
|
DomTreeNode *DomNode = DT.getNode(DomBB);
|
|
|
|
SmallVector<PHINode *, 16> AddedPHIs;
|
|
SmallVector<PHINode *, 8> PostProcessPHIs;
|
|
|
|
SSAUpdater SSAUpdate;
|
|
SSAUpdate.Initialize(Inst.getType(), Inst.getName());
|
|
|
|
// Insert the LCSSA phi's into all of the exit blocks dominated by the
|
|
// value, and add them to the Phi's map.
|
|
for (SmallVectorImpl<BasicBlock *>::const_iterator BBI = ExitBlocks.begin(),
|
|
BBE = ExitBlocks.end();
|
|
BBI != BBE; ++BBI) {
|
|
BasicBlock *ExitBB = *BBI;
|
|
if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
|
|
continue;
|
|
|
|
// If we already inserted something for this BB, don't reprocess it.
|
|
if (SSAUpdate.HasValueForBlock(ExitBB))
|
|
continue;
|
|
|
|
PHINode *PN = PHINode::Create(Inst.getType(), PredCache.GetNumPreds(ExitBB),
|
|
Inst.getName() + ".lcssa", ExitBB->begin());
|
|
|
|
// Add inputs from inside the loop for this PHI.
|
|
for (BasicBlock **PI = PredCache.GetPreds(ExitBB); *PI; ++PI) {
|
|
PN->addIncoming(&Inst, *PI);
|
|
|
|
// If the exit block has a predecessor not within the loop, arrange for
|
|
// the incoming value use corresponding to that predecessor to be
|
|
// rewritten in terms of a different LCSSA PHI.
|
|
if (!L.contains(*PI))
|
|
UsesToRewrite.push_back(
|
|
&PN->getOperandUse(PN->getOperandNumForIncomingValue(
|
|
PN->getNumIncomingValues() - 1)));
|
|
}
|
|
|
|
AddedPHIs.push_back(PN);
|
|
|
|
// Remember that this phi makes the value alive in this block.
|
|
SSAUpdate.AddAvailableValue(ExitBB, PN);
|
|
|
|
// LoopSimplify might fail to simplify some loops (e.g. when indirect
|
|
// branches are involved). In such situations, it might happen that an exit
|
|
// for Loop L1 is the header of a disjoint Loop L2. Thus, when we create
|
|
// PHIs in such an exit block, we are also inserting PHIs into L2's header.
|
|
// This could break LCSSA form for L2 because these inserted PHIs can also
|
|
// have uses outside of L2. Remember all PHIs in such situation as to
|
|
// revisit than later on. FIXME: Remove this if indirectbr support into
|
|
// LoopSimplify gets improved.
|
|
if (auto *OtherLoop = LI->getLoopFor(ExitBB))
|
|
if (!L.contains(OtherLoop))
|
|
PostProcessPHIs.push_back(PN);
|
|
}
|
|
|
|
// Rewrite all uses outside the loop in terms of the new PHIs we just
|
|
// inserted.
|
|
for (unsigned i = 0, e = UsesToRewrite.size(); i != e; ++i) {
|
|
// If this use is in an exit block, rewrite to use the newly inserted PHI.
|
|
// This is required for correctness because SSAUpdate doesn't handle uses in
|
|
// the same block. It assumes the PHI we inserted is at the end of the
|
|
// block.
|
|
Instruction *User = cast<Instruction>(UsesToRewrite[i]->getUser());
|
|
BasicBlock *UserBB = User->getParent();
|
|
if (PHINode *PN = dyn_cast<PHINode>(User))
|
|
UserBB = PN->getIncomingBlock(*UsesToRewrite[i]);
|
|
|
|
if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
|
|
// Tell the VHs that the uses changed. This updates SCEV's caches.
|
|
if (UsesToRewrite[i]->get()->hasValueHandle())
|
|
ValueHandleBase::ValueIsRAUWd(*UsesToRewrite[i], UserBB->begin());
|
|
UsesToRewrite[i]->set(UserBB->begin());
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, do full PHI insertion.
|
|
SSAUpdate.RewriteUse(*UsesToRewrite[i]);
|
|
}
|
|
|
|
// Post process PHI instructions that were inserted into another disjoint loop
|
|
// and update their exits properly.
|
|
for (auto *I : PostProcessPHIs) {
|
|
if (I->use_empty())
|
|
continue;
|
|
|
|
BasicBlock *PHIBB = I->getParent();
|
|
Loop *OtherLoop = LI->getLoopFor(PHIBB);
|
|
SmallVector<BasicBlock *, 8> EBs;
|
|
OtherLoop->getExitBlocks(EBs);
|
|
if (EBs.empty())
|
|
continue;
|
|
|
|
// Recurse and re-process each PHI instruction. FIXME: we should really
|
|
// convert this entire thing to a worklist approach where we process a
|
|
// vector of instructions...
|
|
processInstruction(*OtherLoop, *I, DT, EBs, PredCache, LI);
|
|
}
|
|
|
|
// Remove PHI nodes that did not have any uses rewritten.
|
|
for (unsigned i = 0, e = AddedPHIs.size(); i != e; ++i) {
|
|
if (AddedPHIs[i]->use_empty())
|
|
AddedPHIs[i]->eraseFromParent();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Return true if the specified block dominates at least
|
|
/// one of the blocks in the specified list.
|
|
static bool
|
|
blockDominatesAnExit(BasicBlock *BB,
|
|
DominatorTree &DT,
|
|
const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
|
|
DomTreeNode *DomNode = DT.getNode(BB);
|
|
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
|
|
if (DT.dominates(DomNode, DT.getNode(ExitBlocks[i])))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI,
|
|
ScalarEvolution *SE) {
|
|
bool Changed = false;
|
|
|
|
// Get the set of exiting blocks.
|
|
SmallVector<BasicBlock *, 8> ExitBlocks;
|
|
L.getExitBlocks(ExitBlocks);
|
|
|
|
if (ExitBlocks.empty())
|
|
return false;
|
|
|
|
PredIteratorCache PredCache;
|
|
|
|
// Look at all the instructions in the loop, checking to see if they have uses
|
|
// outside the loop. If so, rewrite those uses.
|
|
for (Loop::block_iterator BBI = L.block_begin(), BBE = L.block_end();
|
|
BBI != BBE; ++BBI) {
|
|
BasicBlock *BB = *BBI;
|
|
|
|
// For large loops, avoid use-scanning by using dominance information: In
|
|
// particular, if a block does not dominate any of the loop exits, then none
|
|
// of the values defined in the block could be used outside the loop.
|
|
if (!blockDominatesAnExit(BB, DT, ExitBlocks))
|
|
continue;
|
|
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
|
|
// Reject two common cases fast: instructions with no uses (like stores)
|
|
// and instructions with one use that is in the same block as this.
|
|
if (I->use_empty() ||
|
|
(I->hasOneUse() && I->user_back()->getParent() == BB &&
|
|
!isa<PHINode>(I->user_back())))
|
|
continue;
|
|
|
|
Changed |= processInstruction(L, *I, DT, ExitBlocks, PredCache, LI);
|
|
}
|
|
}
|
|
|
|
// If we modified the code, remove any caches about the loop from SCEV to
|
|
// avoid dangling entries.
|
|
// FIXME: This is a big hammer, can we clear the cache more selectively?
|
|
if (SE && Changed)
|
|
SE->forgetLoop(&L);
|
|
|
|
assert(L.isLCSSAForm(DT));
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Process a loop nest depth first.
|
|
bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI,
|
|
ScalarEvolution *SE) {
|
|
bool Changed = false;
|
|
|
|
// Recurse depth-first through inner loops.
|
|
for (Loop::iterator I = L.begin(), E = L.end(); I != E; ++I)
|
|
Changed |= formLCSSARecursively(**I, DT, LI, SE);
|
|
|
|
Changed |= formLCSSA(L, DT, LI, SE);
|
|
return Changed;
|
|
}
|
|
|
|
namespace {
|
|
struct LCSSA : public FunctionPass {
|
|
static char ID; // Pass identification, replacement for typeid
|
|
LCSSA() : FunctionPass(ID) {
|
|
initializeLCSSAPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
// Cached analysis information for the current function.
|
|
DominatorTree *DT;
|
|
LoopInfo *LI;
|
|
ScalarEvolution *SE;
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
/// This transformation requires natural loop information & requires that
|
|
/// loop preheaders be inserted into the CFG. It maintains both of these,
|
|
/// as well as the CFG. It also requires dominator information.
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<LoopInfo>();
|
|
AU.addPreservedID(LoopSimplifyID);
|
|
AU.addPreserved<AliasAnalysis>();
|
|
AU.addPreserved<ScalarEvolution>();
|
|
}
|
|
|
|
private:
|
|
void verifyAnalysis() const override;
|
|
};
|
|
}
|
|
|
|
char LCSSA::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
|
|
INITIALIZE_PASS_END(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false)
|
|
|
|
Pass *llvm::createLCSSAPass() { return new LCSSA(); }
|
|
char &llvm::LCSSAID = LCSSA::ID;
|
|
|
|
|
|
/// Process all loops in the function, inner-most out.
|
|
bool LCSSA::runOnFunction(Function &F) {
|
|
bool Changed = false;
|
|
LI = &getAnalysis<LoopInfo>();
|
|
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
SE = getAnalysisIfAvailable<ScalarEvolution>();
|
|
|
|
// Simplify each loop nest in the function.
|
|
for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
|
|
Changed |= formLCSSARecursively(**I, *DT, LI, SE);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
static void verifyLoop(Loop &L, DominatorTree &DT) {
|
|
// Recurse depth-first through inner loops.
|
|
for (Loop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI)
|
|
verifyLoop(**LI, DT);
|
|
|
|
// Check the special guarantees that LCSSA makes.
|
|
//assert(L.isLCSSAForm(DT) && "LCSSA form not preserved!");
|
|
}
|
|
|
|
void LCSSA::verifyAnalysis() const {
|
|
// Verify each loop nest in the function, assuming LI still points at that
|
|
// function's loop info.
|
|
for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
|
|
verifyLoop(**I, *DT);
|
|
}
|