mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-22 10:33:23 +00:00
0651a556fe
address of the stack guard was being spilled to the stack. Previously the address of the stack guard would get spilled to the stack if it was impossible to keep it in a register. This patch introduces a new target independent node and pseudo instruction which gets expanded post-RA to a sequence of instructions that load the stack guard value. Register allocator can now just remat the value when it can't keep it in a register. <rdar://problem/12475629> git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213967 91177308-0d34-0410-b5e6-96231b3b80d8
600 lines
22 KiB
C++
600 lines
22 KiB
C++
//===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This class wraps target description classes used by the various code
|
|
// generation TableGen backends. This makes it easier to access the data and
|
|
// provides a single place that needs to check it for validity. All of these
|
|
// classes abort on error conditions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenTarget.h"
|
|
#include "CodeGenIntrinsics.h"
|
|
#include "CodeGenSchedule.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/TableGen/Error.h"
|
|
#include "llvm/TableGen/Record.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
static cl::opt<unsigned>
|
|
AsmParserNum("asmparsernum", cl::init(0),
|
|
cl::desc("Make -gen-asm-parser emit assembly parser #N"));
|
|
|
|
static cl::opt<unsigned>
|
|
AsmWriterNum("asmwriternum", cl::init(0),
|
|
cl::desc("Make -gen-asm-writer emit assembly writer #N"));
|
|
|
|
/// getValueType - Return the MVT::SimpleValueType that the specified TableGen
|
|
/// record corresponds to.
|
|
MVT::SimpleValueType llvm::getValueType(Record *Rec) {
|
|
return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
|
|
}
|
|
|
|
std::string llvm::getName(MVT::SimpleValueType T) {
|
|
switch (T) {
|
|
case MVT::Other: return "UNKNOWN";
|
|
case MVT::iPTR: return "TLI.getPointerTy()";
|
|
case MVT::iPTRAny: return "TLI.getPointerTy()";
|
|
default: return getEnumName(T);
|
|
}
|
|
}
|
|
|
|
std::string llvm::getEnumName(MVT::SimpleValueType T) {
|
|
switch (T) {
|
|
case MVT::Other: return "MVT::Other";
|
|
case MVT::i1: return "MVT::i1";
|
|
case MVT::i8: return "MVT::i8";
|
|
case MVT::i16: return "MVT::i16";
|
|
case MVT::i32: return "MVT::i32";
|
|
case MVT::i64: return "MVT::i64";
|
|
case MVT::i128: return "MVT::i128";
|
|
case MVT::iAny: return "MVT::iAny";
|
|
case MVT::fAny: return "MVT::fAny";
|
|
case MVT::vAny: return "MVT::vAny";
|
|
case MVT::f16: return "MVT::f16";
|
|
case MVT::f32: return "MVT::f32";
|
|
case MVT::f64: return "MVT::f64";
|
|
case MVT::f80: return "MVT::f80";
|
|
case MVT::f128: return "MVT::f128";
|
|
case MVT::ppcf128: return "MVT::ppcf128";
|
|
case MVT::x86mmx: return "MVT::x86mmx";
|
|
case MVT::Glue: return "MVT::Glue";
|
|
case MVT::isVoid: return "MVT::isVoid";
|
|
case MVT::v2i1: return "MVT::v2i1";
|
|
case MVT::v4i1: return "MVT::v4i1";
|
|
case MVT::v8i1: return "MVT::v8i1";
|
|
case MVT::v16i1: return "MVT::v16i1";
|
|
case MVT::v32i1: return "MVT::v32i1";
|
|
case MVT::v64i1: return "MVT::v64i1";
|
|
case MVT::v1i8: return "MVT::v1i8";
|
|
case MVT::v2i8: return "MVT::v2i8";
|
|
case MVT::v4i8: return "MVT::v4i8";
|
|
case MVT::v8i8: return "MVT::v8i8";
|
|
case MVT::v16i8: return "MVT::v16i8";
|
|
case MVT::v32i8: return "MVT::v32i8";
|
|
case MVT::v64i8: return "MVT::v64i8";
|
|
case MVT::v1i16: return "MVT::v1i16";
|
|
case MVT::v2i16: return "MVT::v2i16";
|
|
case MVT::v4i16: return "MVT::v4i16";
|
|
case MVT::v8i16: return "MVT::v8i16";
|
|
case MVT::v16i16: return "MVT::v16i16";
|
|
case MVT::v32i16: return "MVT::v32i16";
|
|
case MVT::v1i32: return "MVT::v1i32";
|
|
case MVT::v2i32: return "MVT::v2i32";
|
|
case MVT::v4i32: return "MVT::v4i32";
|
|
case MVT::v8i32: return "MVT::v8i32";
|
|
case MVT::v16i32: return "MVT::v16i32";
|
|
case MVT::v1i64: return "MVT::v1i64";
|
|
case MVT::v2i64: return "MVT::v2i64";
|
|
case MVT::v4i64: return "MVT::v4i64";
|
|
case MVT::v8i64: return "MVT::v8i64";
|
|
case MVT::v16i64: return "MVT::v16i64";
|
|
case MVT::v2f16: return "MVT::v2f16";
|
|
case MVT::v4f16: return "MVT::v4f16";
|
|
case MVT::v8f16: return "MVT::v8f16";
|
|
case MVT::v1f32: return "MVT::v1f32";
|
|
case MVT::v2f32: return "MVT::v2f32";
|
|
case MVT::v4f32: return "MVT::v4f32";
|
|
case MVT::v8f32: return "MVT::v8f32";
|
|
case MVT::v16f32: return "MVT::v16f32";
|
|
case MVT::v1f64: return "MVT::v1f64";
|
|
case MVT::v2f64: return "MVT::v2f64";
|
|
case MVT::v4f64: return "MVT::v4f64";
|
|
case MVT::v8f64: return "MVT::v8f64";
|
|
case MVT::Metadata: return "MVT::Metadata";
|
|
case MVT::iPTR: return "MVT::iPTR";
|
|
case MVT::iPTRAny: return "MVT::iPTRAny";
|
|
case MVT::Untyped: return "MVT::Untyped";
|
|
default: llvm_unreachable("ILLEGAL VALUE TYPE!");
|
|
}
|
|
}
|
|
|
|
/// getQualifiedName - Return the name of the specified record, with a
|
|
/// namespace qualifier if the record contains one.
|
|
///
|
|
std::string llvm::getQualifiedName(const Record *R) {
|
|
std::string Namespace;
|
|
if (R->getValue("Namespace"))
|
|
Namespace = R->getValueAsString("Namespace");
|
|
if (Namespace.empty()) return R->getName();
|
|
return Namespace + "::" + R->getName();
|
|
}
|
|
|
|
|
|
/// getTarget - Return the current instance of the Target class.
|
|
///
|
|
CodeGenTarget::CodeGenTarget(RecordKeeper &records)
|
|
: Records(records), RegBank(nullptr), SchedModels(nullptr) {
|
|
std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
|
|
if (Targets.size() == 0)
|
|
PrintFatalError("ERROR: No 'Target' subclasses defined!");
|
|
if (Targets.size() != 1)
|
|
PrintFatalError("ERROR: Multiple subclasses of Target defined!");
|
|
TargetRec = Targets[0];
|
|
}
|
|
|
|
CodeGenTarget::~CodeGenTarget() {
|
|
DeleteContainerSeconds(Instructions);
|
|
delete RegBank;
|
|
delete SchedModels;
|
|
}
|
|
|
|
const std::string &CodeGenTarget::getName() const {
|
|
return TargetRec->getName();
|
|
}
|
|
|
|
std::string CodeGenTarget::getInstNamespace() const {
|
|
for (inst_iterator i = inst_begin(), e = inst_end(); i != e; ++i) {
|
|
// Make sure not to pick up "TargetOpcode" by accidentally getting
|
|
// the namespace off the PHI instruction or something.
|
|
if ((*i)->Namespace != "TargetOpcode")
|
|
return (*i)->Namespace;
|
|
}
|
|
|
|
return "";
|
|
}
|
|
|
|
Record *CodeGenTarget::getInstructionSet() const {
|
|
return TargetRec->getValueAsDef("InstructionSet");
|
|
}
|
|
|
|
|
|
/// getAsmParser - Return the AssemblyParser definition for this target.
|
|
///
|
|
Record *CodeGenTarget::getAsmParser() const {
|
|
std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
|
|
if (AsmParserNum >= LI.size())
|
|
PrintFatalError("Target does not have an AsmParser #" +
|
|
Twine(AsmParserNum) + "!");
|
|
return LI[AsmParserNum];
|
|
}
|
|
|
|
/// getAsmParserVariant - Return the AssmblyParserVariant definition for
|
|
/// this target.
|
|
///
|
|
Record *CodeGenTarget::getAsmParserVariant(unsigned i) const {
|
|
std::vector<Record*> LI =
|
|
TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
|
|
if (i >= LI.size())
|
|
PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) +
|
|
"!");
|
|
return LI[i];
|
|
}
|
|
|
|
/// getAsmParserVariantCount - Return the AssmblyParserVariant definition
|
|
/// available for this target.
|
|
///
|
|
unsigned CodeGenTarget::getAsmParserVariantCount() const {
|
|
std::vector<Record*> LI =
|
|
TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
|
|
return LI.size();
|
|
}
|
|
|
|
/// getAsmWriter - Return the AssemblyWriter definition for this target.
|
|
///
|
|
Record *CodeGenTarget::getAsmWriter() const {
|
|
std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
|
|
if (AsmWriterNum >= LI.size())
|
|
PrintFatalError("Target does not have an AsmWriter #" +
|
|
Twine(AsmWriterNum) + "!");
|
|
return LI[AsmWriterNum];
|
|
}
|
|
|
|
CodeGenRegBank &CodeGenTarget::getRegBank() const {
|
|
if (!RegBank)
|
|
RegBank = new CodeGenRegBank(Records);
|
|
return *RegBank;
|
|
}
|
|
|
|
void CodeGenTarget::ReadRegAltNameIndices() const {
|
|
RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
|
|
std::sort(RegAltNameIndices.begin(), RegAltNameIndices.end(), LessRecord());
|
|
}
|
|
|
|
/// getRegisterByName - If there is a register with the specific AsmName,
|
|
/// return it.
|
|
const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
|
|
const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName();
|
|
StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name);
|
|
if (I == Regs.end())
|
|
return nullptr;
|
|
return I->second;
|
|
}
|
|
|
|
std::vector<MVT::SimpleValueType> CodeGenTarget::
|
|
getRegisterVTs(Record *R) const {
|
|
const CodeGenRegister *Reg = getRegBank().getReg(R);
|
|
std::vector<MVT::SimpleValueType> Result;
|
|
ArrayRef<CodeGenRegisterClass*> RCs = getRegBank().getRegClasses();
|
|
for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
|
|
const CodeGenRegisterClass &RC = *RCs[i];
|
|
if (RC.contains(Reg)) {
|
|
ArrayRef<MVT::SimpleValueType> InVTs = RC.getValueTypes();
|
|
Result.insert(Result.end(), InVTs.begin(), InVTs.end());
|
|
}
|
|
}
|
|
|
|
// Remove duplicates.
|
|
array_pod_sort(Result.begin(), Result.end());
|
|
Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
|
|
return Result;
|
|
}
|
|
|
|
|
|
void CodeGenTarget::ReadLegalValueTypes() const {
|
|
ArrayRef<CodeGenRegisterClass*> RCs = getRegBank().getRegClasses();
|
|
for (unsigned i = 0, e = RCs.size(); i != e; ++i)
|
|
for (unsigned ri = 0, re = RCs[i]->VTs.size(); ri != re; ++ri)
|
|
LegalValueTypes.push_back(RCs[i]->VTs[ri]);
|
|
|
|
// Remove duplicates.
|
|
std::sort(LegalValueTypes.begin(), LegalValueTypes.end());
|
|
LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
|
|
LegalValueTypes.end()),
|
|
LegalValueTypes.end());
|
|
}
|
|
|
|
CodeGenSchedModels &CodeGenTarget::getSchedModels() const {
|
|
if (!SchedModels)
|
|
SchedModels = new CodeGenSchedModels(Records, *this);
|
|
return *SchedModels;
|
|
}
|
|
|
|
void CodeGenTarget::ReadInstructions() const {
|
|
std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
|
|
if (Insts.size() <= 2)
|
|
PrintFatalError("No 'Instruction' subclasses defined!");
|
|
|
|
// Parse the instructions defined in the .td file.
|
|
for (unsigned i = 0, e = Insts.size(); i != e; ++i)
|
|
Instructions[Insts[i]] = new CodeGenInstruction(Insts[i]);
|
|
}
|
|
|
|
static const CodeGenInstruction *
|
|
GetInstByName(const char *Name,
|
|
const DenseMap<const Record*, CodeGenInstruction*> &Insts,
|
|
RecordKeeper &Records) {
|
|
const Record *Rec = Records.getDef(Name);
|
|
|
|
DenseMap<const Record*, CodeGenInstruction*>::const_iterator
|
|
I = Insts.find(Rec);
|
|
if (!Rec || I == Insts.end())
|
|
PrintFatalError(Twine("Could not find '") + Name + "' instruction!");
|
|
return I->second;
|
|
}
|
|
|
|
/// \brief Return all of the instructions defined by the target, ordered by
|
|
/// their enum value.
|
|
void CodeGenTarget::ComputeInstrsByEnum() const {
|
|
// The ordering here must match the ordering in TargetOpcodes.h.
|
|
static const char *const FixedInstrs[] = {
|
|
"PHI", "INLINEASM", "CFI_INSTRUCTION", "EH_LABEL",
|
|
"GC_LABEL", "KILL", "EXTRACT_SUBREG", "INSERT_SUBREG",
|
|
"IMPLICIT_DEF", "SUBREG_TO_REG", "COPY_TO_REGCLASS", "DBG_VALUE",
|
|
"REG_SEQUENCE", "COPY", "BUNDLE", "LIFETIME_START",
|
|
"LIFETIME_END", "STACKMAP", "PATCHPOINT", "LOAD_STACK_GUARD",
|
|
nullptr};
|
|
const DenseMap<const Record*, CodeGenInstruction*> &Insts = getInstructions();
|
|
for (const char *const *p = FixedInstrs; *p; ++p) {
|
|
const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
|
|
assert(Instr && "Missing target independent instruction");
|
|
assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
|
|
InstrsByEnum.push_back(Instr);
|
|
}
|
|
unsigned EndOfPredefines = InstrsByEnum.size();
|
|
|
|
for (DenseMap<const Record*, CodeGenInstruction*>::const_iterator
|
|
I = Insts.begin(), E = Insts.end(); I != E; ++I) {
|
|
const CodeGenInstruction *CGI = I->second;
|
|
if (CGI->Namespace != "TargetOpcode")
|
|
InstrsByEnum.push_back(CGI);
|
|
}
|
|
|
|
assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
|
|
|
|
// All of the instructions are now in random order based on the map iteration.
|
|
// Sort them by name.
|
|
std::sort(InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(),
|
|
[](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) {
|
|
return Rec1->TheDef->getName() < Rec2->TheDef->getName();
|
|
});
|
|
}
|
|
|
|
|
|
/// isLittleEndianEncoding - Return whether this target encodes its instruction
|
|
/// in little-endian format, i.e. bits laid out in the order [0..n]
|
|
///
|
|
bool CodeGenTarget::isLittleEndianEncoding() const {
|
|
return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
|
|
}
|
|
|
|
/// reverseBitsForLittleEndianEncoding - For little-endian instruction bit
|
|
/// encodings, reverse the bit order of all instructions.
|
|
void CodeGenTarget::reverseBitsForLittleEndianEncoding() {
|
|
if (!isLittleEndianEncoding())
|
|
return;
|
|
|
|
std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
|
|
for (std::vector<Record*>::iterator I = Insts.begin(), E = Insts.end();
|
|
I != E; ++I) {
|
|
Record *R = *I;
|
|
if (R->getValueAsString("Namespace") == "TargetOpcode" ||
|
|
R->getValueAsBit("isPseudo"))
|
|
continue;
|
|
|
|
BitsInit *BI = R->getValueAsBitsInit("Inst");
|
|
|
|
unsigned numBits = BI->getNumBits();
|
|
|
|
SmallVector<Init *, 16> NewBits(numBits);
|
|
|
|
for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) {
|
|
unsigned bitSwapIdx = numBits - bit - 1;
|
|
Init *OrigBit = BI->getBit(bit);
|
|
Init *BitSwap = BI->getBit(bitSwapIdx);
|
|
NewBits[bit] = BitSwap;
|
|
NewBits[bitSwapIdx] = OrigBit;
|
|
}
|
|
if (numBits % 2) {
|
|
unsigned middle = (numBits + 1) / 2;
|
|
NewBits[middle] = BI->getBit(middle);
|
|
}
|
|
|
|
BitsInit *NewBI = BitsInit::get(NewBits);
|
|
|
|
// Update the bits in reversed order so that emitInstrOpBits will get the
|
|
// correct endianness.
|
|
R->getValue("Inst")->setValue(NewBI);
|
|
}
|
|
}
|
|
|
|
/// guessInstructionProperties - Return true if it's OK to guess instruction
|
|
/// properties instead of raising an error.
|
|
///
|
|
/// This is configurable as a temporary migration aid. It will eventually be
|
|
/// permanently false.
|
|
bool CodeGenTarget::guessInstructionProperties() const {
|
|
return getInstructionSet()->getValueAsBit("guessInstructionProperties");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ComplexPattern implementation
|
|
//
|
|
ComplexPattern::ComplexPattern(Record *R) {
|
|
Ty = ::getValueType(R->getValueAsDef("Ty"));
|
|
NumOperands = R->getValueAsInt("NumOperands");
|
|
SelectFunc = R->getValueAsString("SelectFunc");
|
|
RootNodes = R->getValueAsListOfDefs("RootNodes");
|
|
|
|
// Parse the properties.
|
|
Properties = 0;
|
|
std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
|
|
for (unsigned i = 0, e = PropList.size(); i != e; ++i)
|
|
if (PropList[i]->getName() == "SDNPHasChain") {
|
|
Properties |= 1 << SDNPHasChain;
|
|
} else if (PropList[i]->getName() == "SDNPOptInGlue") {
|
|
Properties |= 1 << SDNPOptInGlue;
|
|
} else if (PropList[i]->getName() == "SDNPMayStore") {
|
|
Properties |= 1 << SDNPMayStore;
|
|
} else if (PropList[i]->getName() == "SDNPMayLoad") {
|
|
Properties |= 1 << SDNPMayLoad;
|
|
} else if (PropList[i]->getName() == "SDNPSideEffect") {
|
|
Properties |= 1 << SDNPSideEffect;
|
|
} else if (PropList[i]->getName() == "SDNPMemOperand") {
|
|
Properties |= 1 << SDNPMemOperand;
|
|
} else if (PropList[i]->getName() == "SDNPVariadic") {
|
|
Properties |= 1 << SDNPVariadic;
|
|
} else if (PropList[i]->getName() == "SDNPWantRoot") {
|
|
Properties |= 1 << SDNPWantRoot;
|
|
} else if (PropList[i]->getName() == "SDNPWantParent") {
|
|
Properties |= 1 << SDNPWantParent;
|
|
} else {
|
|
errs() << "Unsupported SD Node property '" << PropList[i]->getName()
|
|
<< "' on ComplexPattern '" << R->getName() << "'!\n";
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CodeGenIntrinsic Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC,
|
|
bool TargetOnly) {
|
|
std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic");
|
|
|
|
std::vector<CodeGenIntrinsic> Result;
|
|
|
|
for (unsigned i = 0, e = I.size(); i != e; ++i) {
|
|
bool isTarget = I[i]->getValueAsBit("isTarget");
|
|
if (isTarget == TargetOnly)
|
|
Result.push_back(CodeGenIntrinsic(I[i]));
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
CodeGenIntrinsic::CodeGenIntrinsic(Record *R) {
|
|
TheDef = R;
|
|
std::string DefName = R->getName();
|
|
ModRef = ReadWriteMem;
|
|
isOverloaded = false;
|
|
isCommutative = false;
|
|
canThrow = false;
|
|
isNoReturn = false;
|
|
isNoDuplicate = false;
|
|
|
|
if (DefName.size() <= 4 ||
|
|
std::string(DefName.begin(), DefName.begin() + 4) != "int_")
|
|
PrintFatalError("Intrinsic '" + DefName + "' does not start with 'int_'!");
|
|
|
|
EnumName = std::string(DefName.begin()+4, DefName.end());
|
|
|
|
if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field.
|
|
GCCBuiltinName = R->getValueAsString("GCCBuiltinName");
|
|
if (R->getValue("MSBuiltinName")) // Ignore a missing MSBuiltinName field.
|
|
MSBuiltinName = R->getValueAsString("MSBuiltinName");
|
|
|
|
TargetPrefix = R->getValueAsString("TargetPrefix");
|
|
Name = R->getValueAsString("LLVMName");
|
|
|
|
if (Name == "") {
|
|
// If an explicit name isn't specified, derive one from the DefName.
|
|
Name = "llvm.";
|
|
|
|
for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
|
|
Name += (EnumName[i] == '_') ? '.' : EnumName[i];
|
|
} else {
|
|
// Verify it starts with "llvm.".
|
|
if (Name.size() <= 5 ||
|
|
std::string(Name.begin(), Name.begin() + 5) != "llvm.")
|
|
PrintFatalError("Intrinsic '" + DefName + "'s name does not start with 'llvm.'!");
|
|
}
|
|
|
|
// If TargetPrefix is specified, make sure that Name starts with
|
|
// "llvm.<targetprefix>.".
|
|
if (!TargetPrefix.empty()) {
|
|
if (Name.size() < 6+TargetPrefix.size() ||
|
|
std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
|
|
!= (TargetPrefix + "."))
|
|
PrintFatalError("Intrinsic '" + DefName + "' does not start with 'llvm." +
|
|
TargetPrefix + ".'!");
|
|
}
|
|
|
|
// Parse the list of return types.
|
|
std::vector<MVT::SimpleValueType> OverloadedVTs;
|
|
ListInit *TypeList = R->getValueAsListInit("RetTypes");
|
|
for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
|
|
Record *TyEl = TypeList->getElementAsRecord(i);
|
|
assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
|
|
MVT::SimpleValueType VT;
|
|
if (TyEl->isSubClassOf("LLVMMatchType")) {
|
|
unsigned MatchTy = TyEl->getValueAsInt("Number");
|
|
assert(MatchTy < OverloadedVTs.size() &&
|
|
"Invalid matching number!");
|
|
VT = OverloadedVTs[MatchTy];
|
|
// It only makes sense to use the extended and truncated vector element
|
|
// variants with iAny types; otherwise, if the intrinsic is not
|
|
// overloaded, all the types can be specified directly.
|
|
assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
|
|
!TyEl->isSubClassOf("LLVMTruncatedType")) ||
|
|
VT == MVT::iAny || VT == MVT::vAny) &&
|
|
"Expected iAny or vAny type");
|
|
} else {
|
|
VT = getValueType(TyEl->getValueAsDef("VT"));
|
|
}
|
|
if (MVT(VT).isOverloaded()) {
|
|
OverloadedVTs.push_back(VT);
|
|
isOverloaded = true;
|
|
}
|
|
|
|
// Reject invalid types.
|
|
if (VT == MVT::isVoid)
|
|
PrintFatalError("Intrinsic '" + DefName + " has void in result type list!");
|
|
|
|
IS.RetVTs.push_back(VT);
|
|
IS.RetTypeDefs.push_back(TyEl);
|
|
}
|
|
|
|
// Parse the list of parameter types.
|
|
TypeList = R->getValueAsListInit("ParamTypes");
|
|
for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
|
|
Record *TyEl = TypeList->getElementAsRecord(i);
|
|
assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
|
|
MVT::SimpleValueType VT;
|
|
if (TyEl->isSubClassOf("LLVMMatchType")) {
|
|
unsigned MatchTy = TyEl->getValueAsInt("Number");
|
|
assert(MatchTy < OverloadedVTs.size() &&
|
|
"Invalid matching number!");
|
|
VT = OverloadedVTs[MatchTy];
|
|
// It only makes sense to use the extended and truncated vector element
|
|
// variants with iAny types; otherwise, if the intrinsic is not
|
|
// overloaded, all the types can be specified directly.
|
|
assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
|
|
!TyEl->isSubClassOf("LLVMTruncatedType")) ||
|
|
VT == MVT::iAny || VT == MVT::vAny) &&
|
|
"Expected iAny or vAny type");
|
|
} else
|
|
VT = getValueType(TyEl->getValueAsDef("VT"));
|
|
|
|
if (MVT(VT).isOverloaded()) {
|
|
OverloadedVTs.push_back(VT);
|
|
isOverloaded = true;
|
|
}
|
|
|
|
// Reject invalid types.
|
|
if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
|
|
PrintFatalError("Intrinsic '" + DefName + " has void in result type list!");
|
|
|
|
IS.ParamVTs.push_back(VT);
|
|
IS.ParamTypeDefs.push_back(TyEl);
|
|
}
|
|
|
|
// Parse the intrinsic properties.
|
|
ListInit *PropList = R->getValueAsListInit("Properties");
|
|
for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) {
|
|
Record *Property = PropList->getElementAsRecord(i);
|
|
assert(Property->isSubClassOf("IntrinsicProperty") &&
|
|
"Expected a property!");
|
|
|
|
if (Property->getName() == "IntrNoMem")
|
|
ModRef = NoMem;
|
|
else if (Property->getName() == "IntrReadArgMem")
|
|
ModRef = ReadArgMem;
|
|
else if (Property->getName() == "IntrReadMem")
|
|
ModRef = ReadMem;
|
|
else if (Property->getName() == "IntrReadWriteArgMem")
|
|
ModRef = ReadWriteArgMem;
|
|
else if (Property->getName() == "Commutative")
|
|
isCommutative = true;
|
|
else if (Property->getName() == "Throws")
|
|
canThrow = true;
|
|
else if (Property->getName() == "IntrNoDuplicate")
|
|
isNoDuplicate = true;
|
|
else if (Property->getName() == "IntrNoReturn")
|
|
isNoReturn = true;
|
|
else if (Property->isSubClassOf("NoCapture")) {
|
|
unsigned ArgNo = Property->getValueAsInt("ArgNo");
|
|
ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture));
|
|
} else if (Property->isSubClassOf("ReadOnly")) {
|
|
unsigned ArgNo = Property->getValueAsInt("ArgNo");
|
|
ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadOnly));
|
|
} else if (Property->isSubClassOf("ReadNone")) {
|
|
unsigned ArgNo = Property->getValueAsInt("ArgNo");
|
|
ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadNone));
|
|
} else
|
|
llvm_unreachable("Unknown property!");
|
|
}
|
|
|
|
// Sort the argument attributes for later benefit.
|
|
std::sort(ArgumentAttributes.begin(), ArgumentAttributes.end());
|
|
}
|