llvm-6502/include/llvm/Transforms/Scalar.h
Chris Lattner 1ee7855dfa Add prototype for tail-dup pass
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@6847 91177308-0d34-0410-b5e6-96231b3b80d8
2003-06-22 20:10:42 +00:00

257 lines
8.9 KiB
C++

//===-- Scalar.h - Scalar Transformations ------------------------*- C++ -*-==//
//
// This header file defines prototypes for accessor functions that expose passes
// in the Scalar transformations library.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_SCALAR_H
#define LLVM_TRANSFORMS_SCALAR_H
class Pass;
class GetElementPtrInst;
class PassInfo;
class TerminatorInst;
//===----------------------------------------------------------------------===//
//
// Constant Propagation Pass - A worklist driven constant propagation pass
//
Pass *createConstantPropagationPass();
//===----------------------------------------------------------------------===//
//
// Sparse Conditional Constant Propagation Pass
//
Pass *createSCCPPass();
//===----------------------------------------------------------------------===//
//
// DeadInstElimination - This pass quickly removes trivially dead instructions
// without modifying the CFG of the function. It is a BasicBlockPass, so it
// runs efficiently when queued next to other BasicBlockPass's.
//
Pass *createDeadInstEliminationPass();
//===----------------------------------------------------------------------===//
//
// DeadCodeElimination - This pass is more powerful than DeadInstElimination,
// because it is worklist driven that can potentially revisit instructions when
// their other instructions become dead, to eliminate chains of dead
// computations.
//
Pass *createDeadCodeEliminationPass();
//===----------------------------------------------------------------------===//
//
// AggressiveDCE - This pass uses the SSA based Aggressive DCE algorithm. This
// algorithm assumes instructions are dead until proven otherwise, which makes
// it more successful are removing non-obviously dead instructions.
//
Pass *createAggressiveDCEPass();
//===----------------------------------------------------------------------===//
//
// Scalar Replacement of Aggregates - Break up alloca's of aggregates into
// multiple allocas if possible.
//
Pass *createScalarReplAggregatesPass();
//===----------------------------------------------------------------------===//
//
// DecomposeMultiDimRefs - Convert multi-dimensional references consisting of
// any combination of 2 or more array and structure indices into a sequence of
// instructions (using getelementpr and cast) so that each instruction has at
// most one index (except structure references, which need an extra leading
// index of [0]).
// This pass decomposes all multi-dimensional references in a function.
Pass *createDecomposeMultiDimRefsPass();
// This function decomposes a single instance of such a reference.
// Return value: true if the instruction was replaced; false otherwise.
//
bool DecomposeArrayRef(GetElementPtrInst* GEP);
//===----------------------------------------------------------------------===//
//
// GCSE - This pass is designed to be a very quick global transformation that
// eliminates global common subexpressions from a function. It does this by
// examining the SSA value graph of the function, instead of doing slow
// bit-vector computations.
//
Pass *createGCSEPass();
//===----------------------------------------------------------------------===//
//
// InductionVariableSimplify - Transform induction variables in a program to all
// use a single cannonical induction variable per loop.
//
Pass *createIndVarSimplifyPass();
//===----------------------------------------------------------------------===//
//
// InstructionCombining - Combine instructions to form fewer, simple
// instructions. This pass does not modify the CFG, and has a tendancy to
// make instructions dead, so a subsequent DCE pass is useful.
//
// This pass combines things like:
// %Y = add int 1, %X
// %Z = add int 1, %Y
// into:
// %Z = add int 2, %X
//
Pass *createInstructionCombiningPass();
//===----------------------------------------------------------------------===//
//
// LICM - This pass is a simple natural loop based loop invariant code motion
// pass.
//
Pass *createLICMPass();
//===----------------------------------------------------------------------===//
//
// PiNodeInsertion - This pass inserts single entry Phi nodes into basic blocks
// that are preceeded by a conditional branch, where the branch gives
// information about the operands of the condition. For example, this C code:
// if (x == 0) { ... = x + 4;
// becomes:
// if (x == 0) {
// x2 = phi(x); // Node that can hold data flow information about X
// ... = x2 + 4;
//
// Since the direction of the condition branch gives information about X itself
// (whether or not it is zero), some passes (like value numbering or ABCD) can
// use the inserted Phi/Pi nodes as a place to attach information, in this case
// saying that X has a value of 0 in this scope. The power of this analysis
// information is that "in the scope" translates to "for all uses of x2".
//
// This special form of Phi node is refered to as a Pi node, following the
// terminology defined in the "Array Bounds Checks on Demand" paper.
//
Pass *createPiNodeInsertionPass();
//===----------------------------------------------------------------------===//
//
// This pass is used to promote memory references to be register references. A
// simple example of the transformation performed by this pass is:
//
// FROM CODE TO CODE
// %X = alloca int, uint 1 ret int 42
// store int 42, int *%X
// %Y = load int* %X
// ret int %Y
//
Pass *createPromoteMemoryToRegister();
//===----------------------------------------------------------------------===//
//
// This pass reassociates commutative expressions in an order that is designed
// to promote better constant propagation, GCSE, LICM, PRE...
//
// For example: 4 + (x + 5) -> x + (4 + 5)
//
Pass *createReassociatePass();
//===----------------------------------------------------------------------===//
//
// This pass eliminates correlated conditions, such as these:
// if (X == 0)
// if (X > 2) ; // Known false
// else
// Y = X * Z; // = 0
//
Pass *createCorrelatedExpressionEliminationPass();
//===----------------------------------------------------------------------===//
//
// TailDuplication - Eliminate unconditional branches through controlled code
// duplication, creating simpler CFG structures.
//
Pass *createTailDuplicationPass();
//===----------------------------------------------------------------------===//
//
// CFG Simplification - Merge basic blocks, eliminate unreachable blocks,
// simplify terminator instructions, etc...
//
Pass *createCFGSimplificationPass();
//===----------------------------------------------------------------------===//
//
// BreakCriticalEdges pass - Break all of the critical edges in the CFG by
// inserting a dummy basic block. This pass may be "required" by passes that
// cannot deal with critical edges. For this usage, a pass must call:
//
// AU.addRequiredID(BreakCriticalEdgesID);
//
// This pass obviously invalidates the CFG, but can update forward dominator
// (set, immediate dominators, and tree) information.
//
Pass *createBreakCriticalEdgesPass();
extern const PassInfo *BreakCriticalEdgesID;
// The BreakCriticalEdges pass also exposes some low-level functionality that
// may be used by other passes.
/// isCriticalEdge - Return true if the specified edge is a critical edge.
/// Critical edges are edges from a block with multiple successors to a block
/// with multiple predecessors.
///
bool isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum);
/// SplitCriticalEdge - Insert a new node node to split the critical edge. This
/// will update DominatorSet, ImmediateDominator and DominatorTree information
/// if a pass is specified, thus calling this pass will not invalidate these
/// analyses.
///
void SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum, Pass *P = 0);
//===----------------------------------------------------------------------===//
//
// LoopPreheaders pass - Insert Pre-header blocks into the CFG for every
// function in the module. This pass updates dominator information, loop
// information, and does not add critical edges to the CFG.
//
// AU.addRequiredID(LoopPreheadersID);
//
Pass *createLoopPreheaderInsertionPass();
extern const PassInfo *LoopPreheadersID;
//===----------------------------------------------------------------------===//
// These two passes convert malloc and free instructions to and from %malloc &
// %free function calls.
//
Pass *createLowerAllocationsPass();
Pass *createRaiseAllocationsPass();
//===----------------------------------------------------------------------===//
// This pass converts SwitchInst instructions into a sequence of chained binary
// branch instructions.
//
Pass *createLowerSwitchPass();
//===----------------------------------------------------------------------===//
//
// These functions removes symbols from functions and modules.
//
Pass *createSymbolStrippingPass();
Pass *createFullSymbolStrippingPass();
#endif