mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4157 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			346 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			346 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- SlotCalculator.cpp - Calculate what slots values land in ------------=//
 | 
						|
//
 | 
						|
// This file implements a useful analysis step to figure out what numbered 
 | 
						|
// slots values in a program will land in (keeping track of per plane
 | 
						|
// information as required.
 | 
						|
//
 | 
						|
// This is used primarily for when writing a file to disk, either in bytecode
 | 
						|
// or source format.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/SlotCalculator.h"
 | 
						|
#include "llvm/Analysis/ConstantsScanner.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/iOther.h"
 | 
						|
#include "llvm/Constant.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/SymbolTable.h"
 | 
						|
#include "Support/DepthFirstIterator.h"
 | 
						|
#include "Support/STLExtras.h"
 | 
						|
#include <algorithm>
 | 
						|
 | 
						|
#if 0
 | 
						|
#define SC_DEBUG(X) cerr << X
 | 
						|
#else
 | 
						|
#define SC_DEBUG(X)
 | 
						|
#endif
 | 
						|
 | 
						|
SlotCalculator::SlotCalculator(const Module *M, bool IgnoreNamed) {
 | 
						|
  IgnoreNamedNodes = IgnoreNamed;
 | 
						|
  TheModule = M;
 | 
						|
 | 
						|
  // Preload table... Make sure that all of the primitive types are in the table
 | 
						|
  // and that their Primitive ID is equal to their slot #
 | 
						|
  //
 | 
						|
  for (unsigned i = 0; i < Type::FirstDerivedTyID; ++i) {
 | 
						|
    assert(Type::getPrimitiveType((Type::PrimitiveID)i));
 | 
						|
    insertVal(Type::getPrimitiveType((Type::PrimitiveID)i), true);
 | 
						|
  }
 | 
						|
 | 
						|
  if (M == 0) return;   // Empty table...
 | 
						|
  processModule();
 | 
						|
}
 | 
						|
 | 
						|
SlotCalculator::SlotCalculator(const Function *M, bool IgnoreNamed) {
 | 
						|
  IgnoreNamedNodes = IgnoreNamed;
 | 
						|
  TheModule = M ? M->getParent() : 0;
 | 
						|
 | 
						|
  // Preload table... Make sure that all of the primitive types are in the table
 | 
						|
  // and that their Primitive ID is equal to their slot #
 | 
						|
  //
 | 
						|
  for (unsigned i = 0; i < Type::FirstDerivedTyID; ++i) {
 | 
						|
    assert(Type::getPrimitiveType((Type::PrimitiveID)i));
 | 
						|
    insertVal(Type::getPrimitiveType((Type::PrimitiveID)i), true);
 | 
						|
  }
 | 
						|
 | 
						|
  if (TheModule == 0) return;   // Empty table...
 | 
						|
 | 
						|
  processModule();              // Process module level stuff
 | 
						|
  incorporateFunction(M);         // Start out in incorporated state
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// processModule - Process all of the module level function declarations and
 | 
						|
// types that are available.
 | 
						|
//
 | 
						|
void SlotCalculator::processModule() {
 | 
						|
  SC_DEBUG("begin processModule!\n");
 | 
						|
 | 
						|
  // Add all of the constants that the global variables might refer to first.
 | 
						|
  //
 | 
						|
  for (Module::const_giterator I = TheModule->gbegin(), E = TheModule->gend();
 | 
						|
       I != E; ++I)
 | 
						|
    if (I->hasInitializer())
 | 
						|
      insertValue(I->getInitializer());
 | 
						|
 | 
						|
  // Add all of the global variables to the value table...
 | 
						|
  //
 | 
						|
  for(Module::const_giterator I = TheModule->gbegin(), E = TheModule->gend();
 | 
						|
      I != E; ++I)
 | 
						|
    insertValue(I);
 | 
						|
 | 
						|
  // Scavenge the types out of the functions, then add the functions themselves
 | 
						|
  // to the value table...
 | 
						|
  //
 | 
						|
  for(Module::const_iterator I = TheModule->begin(), E = TheModule->end();
 | 
						|
      I != E; ++I)
 | 
						|
    insertValue(I);
 | 
						|
 | 
						|
  // Insert constants that are named at module level into the slot pool so that
 | 
						|
  // the module symbol table can refer to them...
 | 
						|
  //
 | 
						|
  if (TheModule->hasSymbolTable() && !IgnoreNamedNodes) {
 | 
						|
    SC_DEBUG("Inserting SymbolTable values:\n");
 | 
						|
    processSymbolTable(TheModule->getSymbolTable());
 | 
						|
  }
 | 
						|
 | 
						|
  SC_DEBUG("end processModule!\n");
 | 
						|
}
 | 
						|
 | 
						|
// processSymbolTable - Insert all of the values in the specified symbol table
 | 
						|
// into the values table...
 | 
						|
//
 | 
						|
void SlotCalculator::processSymbolTable(const SymbolTable *ST) {
 | 
						|
  for (SymbolTable::const_iterator I = ST->begin(), E = ST->end(); I != E; ++I)
 | 
						|
    for (SymbolTable::type_const_iterator TI = I->second.begin(), 
 | 
						|
	   TE = I->second.end(); TI != TE; ++TI)
 | 
						|
      insertValue(TI->second);
 | 
						|
}
 | 
						|
 | 
						|
void SlotCalculator::processSymbolTableConstants(const SymbolTable *ST) {
 | 
						|
  for (SymbolTable::const_iterator I = ST->begin(), E = ST->end(); I != E; ++I)
 | 
						|
    for (SymbolTable::type_const_iterator TI = I->second.begin(), 
 | 
						|
	   TE = I->second.end(); TI != TE; ++TI)
 | 
						|
      if (isa<Constant>(TI->second))
 | 
						|
	insertValue(TI->second);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void SlotCalculator::incorporateFunction(const Function *M) {
 | 
						|
  assert(ModuleLevel.size() == 0 && "Module already incorporated!");
 | 
						|
 | 
						|
  SC_DEBUG("begin processFunction!\n");
 | 
						|
 | 
						|
  // Save the Table state before we process the function...
 | 
						|
  for (unsigned i = 0; i < Table.size(); ++i)
 | 
						|
    ModuleLevel.push_back(Table[i].size());
 | 
						|
 | 
						|
  SC_DEBUG("Inserting function arguments\n");
 | 
						|
 | 
						|
  // Iterate over function arguments, adding them to the value table...
 | 
						|
  for(Function::const_aiterator I = M->abegin(), E = M->aend(); I != E; ++I)
 | 
						|
    insertValue(I);
 | 
						|
 | 
						|
  // Iterate over all of the instructions in the function, looking for constant
 | 
						|
  // values that are referenced.  Add these to the value pools before any
 | 
						|
  // nonconstant values.  This will be turned into the constant pool for the
 | 
						|
  // bytecode writer.
 | 
						|
  //
 | 
						|
  if (!IgnoreNamedNodes) {                // Assembly writer does not need this!
 | 
						|
    SC_DEBUG("Inserting function constants:\n";
 | 
						|
	     for (constant_iterator I = constant_begin(M), E = constant_end(M);
 | 
						|
		  I != E; ++I) {
 | 
						|
	       cerr << "  " << *I->getType()
 | 
						|
		    << " " << *I << "\n";
 | 
						|
	     });
 | 
						|
 | 
						|
    // Emit all of the constants that are being used by the instructions in the
 | 
						|
    // function...
 | 
						|
    for_each(constant_begin(M), constant_end(M),
 | 
						|
	     bind_obj(this, &SlotCalculator::insertValue));
 | 
						|
 | 
						|
    // If there is a symbol table, it is possible that the user has names for
 | 
						|
    // constants that are not being used.  In this case, we will have problems
 | 
						|
    // if we don't emit the constants now, because otherwise we will get 
 | 
						|
    // symboltable references to constants not in the output.  Scan for these
 | 
						|
    // constants now.
 | 
						|
    //
 | 
						|
    if (M->hasSymbolTable())
 | 
						|
      processSymbolTableConstants(M->getSymbolTable());
 | 
						|
  }
 | 
						|
 | 
						|
  SC_DEBUG("Inserting Labels:\n");
 | 
						|
 | 
						|
  // Iterate over basic blocks, adding them to the value table...
 | 
						|
  for (Function::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
 | 
						|
    insertValue(I);
 | 
						|
  /*  for_each(M->begin(), M->end(),
 | 
						|
      bind_obj(this, &SlotCalculator::insertValue));*/
 | 
						|
 | 
						|
  SC_DEBUG("Inserting Instructions:\n");
 | 
						|
 | 
						|
  // Add all of the instructions to the type planes...
 | 
						|
  for_each(inst_begin(M), inst_end(M),
 | 
						|
	   bind_obj(this, &SlotCalculator::insertValue));
 | 
						|
 | 
						|
  if (M->hasSymbolTable() && !IgnoreNamedNodes) {
 | 
						|
    SC_DEBUG("Inserting SymbolTable values:\n");
 | 
						|
    processSymbolTable(M->getSymbolTable());
 | 
						|
  }
 | 
						|
 | 
						|
  SC_DEBUG("end processFunction!\n");
 | 
						|
}
 | 
						|
 | 
						|
void SlotCalculator::purgeFunction() {
 | 
						|
  assert(ModuleLevel.size() != 0 && "Module not incorporated!");
 | 
						|
  unsigned NumModuleTypes = ModuleLevel.size();
 | 
						|
 | 
						|
  SC_DEBUG("begin purgeFunction!\n");
 | 
						|
 | 
						|
  // First, remove values from existing type planes
 | 
						|
  for (unsigned i = 0; i < NumModuleTypes; ++i) {
 | 
						|
    unsigned ModuleSize = ModuleLevel[i];  // Size of plane before function came
 | 
						|
    TypePlane &CurPlane = Table[i];
 | 
						|
    //SC_DEBUG("Processing Plane " <<i<< " of size " << CurPlane.size() <<"\n");
 | 
						|
	     
 | 
						|
    while (CurPlane.size() != ModuleSize) {
 | 
						|
      //SC_DEBUG("  Removing [" << i << "] Value=" << CurPlane.back() << "\n");
 | 
						|
      std::map<const Value *, unsigned>::iterator NI =
 | 
						|
        NodeMap.find(CurPlane.back());
 | 
						|
      assert(NI != NodeMap.end() && "Node not in nodemap?");
 | 
						|
      NodeMap.erase(NI);   // Erase from nodemap
 | 
						|
      CurPlane.pop_back();                            // Shrink plane
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We don't need this state anymore, free it up.
 | 
						|
  ModuleLevel.clear();
 | 
						|
 | 
						|
  // Next, remove any type planes defined by the function...
 | 
						|
  while (NumModuleTypes != Table.size()) {
 | 
						|
    TypePlane &Plane = Table.back();
 | 
						|
    SC_DEBUG("Removing Plane " << (Table.size()-1) << " of size "
 | 
						|
	     << Plane.size() << "\n");
 | 
						|
    while (Plane.size()) {
 | 
						|
      NodeMap.erase(NodeMap.find(Plane.back()));   // Erase from nodemap
 | 
						|
      Plane.pop_back();                            // Shrink plane
 | 
						|
    }
 | 
						|
 | 
						|
    Table.pop_back();                      // Nuke the plane, we don't like it.
 | 
						|
  }
 | 
						|
 | 
						|
  SC_DEBUG("end purgeFunction!\n");
 | 
						|
}
 | 
						|
 | 
						|
int SlotCalculator::getValSlot(const Value *D) const {
 | 
						|
  std::map<const Value*, unsigned>::const_iterator I = NodeMap.find(D);
 | 
						|
  if (I == NodeMap.end()) return -1;
 | 
						|
 
 | 
						|
  return (int)I->second;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int SlotCalculator::insertValue(const Value *D) {
 | 
						|
  if (isa<Constant>(D) || isa<GlobalVariable>(D)) {
 | 
						|
    const User *U = cast<const User>(D);
 | 
						|
    // This makes sure that if a constant has uses (for example an array
 | 
						|
    // of const ints), that they are inserted also.  Same for global variable
 | 
						|
    // initializers.
 | 
						|
    //
 | 
						|
    for(User::const_op_iterator I = U->op_begin(), E = U->op_end(); I != E; ++I)
 | 
						|
      if (!isa<GlobalValue>(*I))     // Don't chain insert global values
 | 
						|
	insertValue(*I);
 | 
						|
  }
 | 
						|
 | 
						|
  int SlotNo = getValSlot(D);        // Check to see if it's already in!
 | 
						|
  if (SlotNo != -1) return SlotNo;
 | 
						|
  return insertVal(D); 
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int SlotCalculator::insertVal(const Value *D, bool dontIgnore) {
 | 
						|
  assert(D && "Can't insert a null value!");
 | 
						|
  assert(getValSlot(D) == -1 && "Value is already in the table!");
 | 
						|
 | 
						|
  // If this node does not contribute to a plane, or if the node has a 
 | 
						|
  // name and we don't want names, then ignore the silly node... Note that types
 | 
						|
  // do need slot numbers so that we can keep track of where other values land.
 | 
						|
  //
 | 
						|
  if (!dontIgnore)                               // Don't ignore nonignorables!
 | 
						|
    if (D->getType() == Type::VoidTy ||          // Ignore void type nodes
 | 
						|
	(IgnoreNamedNodes &&                     // Ignore named and constants
 | 
						|
	 (D->hasName() || isa<Constant>(D)) && !isa<Type>(D))) {
 | 
						|
      SC_DEBUG("ignored value " << D << "\n");
 | 
						|
      return -1;                  // We do need types unconditionally though
 | 
						|
    }
 | 
						|
 | 
						|
  // If it's a type, make sure that all subtypes of the type are included...
 | 
						|
  if (const Type *TheTy = dyn_cast<const Type>(D)) {
 | 
						|
 | 
						|
    // Insert the current type before any subtypes.  This is important because
 | 
						|
    // recursive types elements are inserted in a bottom up order.  Changing
 | 
						|
    // this here can break things.  For example:
 | 
						|
    //
 | 
						|
    //    global { \2 * } { { \2 }* null }
 | 
						|
    //
 | 
						|
    int ResultSlot;
 | 
						|
    if ((ResultSlot = getValSlot(TheTy)) == -1) {
 | 
						|
      ResultSlot = doInsertVal(TheTy);
 | 
						|
      SC_DEBUG("  Inserted type: " << TheTy->getDescription() << " slot=" <<
 | 
						|
	       ResultSlot << "\n");
 | 
						|
    }
 | 
						|
 | 
						|
    // Loop over any contained types in the definition... in reverse depth first
 | 
						|
    // order.  This assures that all of the leafs of a type are output before
 | 
						|
    // the type itself is. This also assures us that we will not hit infinite
 | 
						|
    // recursion on recursive types...
 | 
						|
    //
 | 
						|
    for (df_iterator<const Type*> I = df_begin(TheTy, true), 
 | 
						|
                                  E = df_end(TheTy); I != E; ++I)
 | 
						|
      if (*I != TheTy) {
 | 
						|
	// If we haven't seen this sub type before, add it to our type table!
 | 
						|
	const Type *SubTy = *I;
 | 
						|
	if (getValSlot(SubTy) == -1) {
 | 
						|
	  SC_DEBUG("  Inserting subtype: " << SubTy->getDescription() << "\n");
 | 
						|
	  int Slot = doInsertVal(SubTy);
 | 
						|
	  SC_DEBUG("  Inserted subtype: " << SubTy->getDescription() << 
 | 
						|
		   " slot=" << Slot << "\n");
 | 
						|
	}
 | 
						|
      }
 | 
						|
    return ResultSlot;
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, everything is happy, actually insert the silly value now...
 | 
						|
  return doInsertVal(D);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// doInsertVal - This is a small helper function to be called only be insertVal.
 | 
						|
//
 | 
						|
int SlotCalculator::doInsertVal(const Value *D) {
 | 
						|
  const Type *Typ = D->getType();
 | 
						|
  unsigned Ty;
 | 
						|
 | 
						|
  // Used for debugging DefSlot=-1 assertion...
 | 
						|
  //if (Typ == Type::TypeTy)
 | 
						|
  //  cerr << "Inserting type '" << cast<Type>(D)->getDescription() << "'!\n";
 | 
						|
 | 
						|
  if (Typ->isDerivedType()) {
 | 
						|
    int DefSlot = getValSlot(Typ);
 | 
						|
    if (DefSlot == -1) {                // Have we already entered this type?
 | 
						|
      // Nope, this is the first we have seen the type, process it.
 | 
						|
      DefSlot = insertVal(Typ, true);
 | 
						|
      assert(DefSlot != -1 && "ProcessType returned -1 for a type?");
 | 
						|
    }
 | 
						|
    Ty = (unsigned)DefSlot;
 | 
						|
  } else {
 | 
						|
    Ty = Typ->getPrimitiveID();
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (Table.size() <= Ty)    // Make sure we have the type plane allocated...
 | 
						|
    Table.resize(Ty+1, TypePlane());
 | 
						|
  
 | 
						|
  // Insert node into table and NodeMap...
 | 
						|
  unsigned DestSlot = NodeMap[D] = Table[Ty].size();
 | 
						|
  Table[Ty].push_back(D);
 | 
						|
 | 
						|
  SC_DEBUG("  Inserting value [" << Ty << "] = " << D << " slot=" << 
 | 
						|
	   DestSlot << " [");
 | 
						|
  // G = Global, C = Constant, T = Type, F = Function, o = other
 | 
						|
  SC_DEBUG((isa<GlobalVariable>(D) ? "G" : (isa<Constant>(D) ? "C" : 
 | 
						|
           (isa<Type>(D) ? "T" : (isa<Function>(D) ? "F" : "o")))));
 | 
						|
  SC_DEBUG("]\n");
 | 
						|
  return (int)DestSlot;
 | 
						|
}
 |