mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4341 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			924 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			924 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- SchedGraph.cpp - Scheduling Graph Implementation -------------------===//
 | 
						|
//
 | 
						|
// Scheduling graph based on SSA graph plus extra dependence edges capturing
 | 
						|
// dependences due to machine resources (machine registers, CC registers, and
 | 
						|
// any others).
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "SchedGraph.h"
 | 
						|
#include "llvm/CodeGen/InstrSelection.h"
 | 
						|
#include "llvm/CodeGen/MachineCodeForInstruction.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/Target/MachineRegInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/MachineInstrInfo.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/iOther.h"
 | 
						|
#include "Support/StringExtras.h"
 | 
						|
#include "Support/STLExtras.h"
 | 
						|
 | 
						|
using std::vector;
 | 
						|
using std::pair;
 | 
						|
using std::cerr;
 | 
						|
 | 
						|
//*********************** Internal Data Structures *************************/
 | 
						|
 | 
						|
// The following two types need to be classes, not typedefs, so we can use
 | 
						|
// opaque declarations in SchedGraph.h
 | 
						|
// 
 | 
						|
struct RefVec: public vector<pair<SchedGraphNode*, int> > {
 | 
						|
  typedef vector< pair<SchedGraphNode*, int> >::      iterator       iterator;
 | 
						|
  typedef vector< pair<SchedGraphNode*, int> >::const_iterator const_iterator;
 | 
						|
};
 | 
						|
 | 
						|
struct RegToRefVecMap: public hash_map<int, RefVec> {
 | 
						|
  typedef hash_map<int, RefVec>::      iterator       iterator;
 | 
						|
  typedef hash_map<int, RefVec>::const_iterator const_iterator;
 | 
						|
};
 | 
						|
 | 
						|
struct ValueToDefVecMap: public hash_map<const Instruction*, RefVec> {
 | 
						|
  typedef hash_map<const Instruction*, RefVec>::      iterator       iterator;
 | 
						|
  typedef hash_map<const Instruction*, RefVec>::const_iterator const_iterator;
 | 
						|
};
 | 
						|
 | 
						|
// 
 | 
						|
// class SchedGraphEdge
 | 
						|
// 
 | 
						|
 | 
						|
/*ctor*/
 | 
						|
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
 | 
						|
			       SchedGraphNode* _sink,
 | 
						|
			       SchedGraphEdgeDepType _depType,
 | 
						|
			       unsigned int     _depOrderType,
 | 
						|
			       int _minDelay)
 | 
						|
  : src(_src),
 | 
						|
    sink(_sink),
 | 
						|
    depType(_depType),
 | 
						|
    depOrderType(_depOrderType),
 | 
						|
    minDelay((_minDelay >= 0)? _minDelay : _src->getLatency()),
 | 
						|
    val(NULL)
 | 
						|
{
 | 
						|
  assert(src != sink && "Self-loop in scheduling graph!");
 | 
						|
  src->addOutEdge(this);
 | 
						|
  sink->addInEdge(this);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*ctor*/
 | 
						|
SchedGraphEdge::SchedGraphEdge(SchedGraphNode*  _src,
 | 
						|
			       SchedGraphNode*  _sink,
 | 
						|
			       const Value*     _val,
 | 
						|
			       unsigned int     _depOrderType,
 | 
						|
			       int              _minDelay)
 | 
						|
  : src(_src),
 | 
						|
    sink(_sink),
 | 
						|
    depType(ValueDep),
 | 
						|
    depOrderType(_depOrderType),
 | 
						|
    minDelay((_minDelay >= 0)? _minDelay : _src->getLatency()),
 | 
						|
    val(_val)
 | 
						|
{
 | 
						|
  assert(src != sink && "Self-loop in scheduling graph!");
 | 
						|
  src->addOutEdge(this);
 | 
						|
  sink->addInEdge(this);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*ctor*/
 | 
						|
SchedGraphEdge::SchedGraphEdge(SchedGraphNode*  _src,
 | 
						|
			       SchedGraphNode*  _sink,
 | 
						|
			       unsigned int     _regNum,
 | 
						|
			       unsigned int     _depOrderType,
 | 
						|
			       int             _minDelay)
 | 
						|
  : src(_src),
 | 
						|
    sink(_sink),
 | 
						|
    depType(MachineRegister),
 | 
						|
    depOrderType(_depOrderType),
 | 
						|
    minDelay((_minDelay >= 0)? _minDelay : _src->getLatency()),
 | 
						|
    machineRegNum(_regNum)
 | 
						|
{
 | 
						|
  assert(src != sink && "Self-loop in scheduling graph!");
 | 
						|
  src->addOutEdge(this);
 | 
						|
  sink->addInEdge(this);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*ctor*/
 | 
						|
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
 | 
						|
			       SchedGraphNode* _sink,
 | 
						|
			       ResourceId      _resourceId,
 | 
						|
			       int             _minDelay)
 | 
						|
  : src(_src),
 | 
						|
    sink(_sink),
 | 
						|
    depType(MachineResource),
 | 
						|
    depOrderType(NonDataDep),
 | 
						|
    minDelay((_minDelay >= 0)? _minDelay : _src->getLatency()),
 | 
						|
    resourceId(_resourceId)
 | 
						|
{
 | 
						|
  assert(src != sink && "Self-loop in scheduling graph!");
 | 
						|
  src->addOutEdge(this);
 | 
						|
  sink->addInEdge(this);
 | 
						|
}
 | 
						|
 | 
						|
/*dtor*/
 | 
						|
SchedGraphEdge::~SchedGraphEdge()
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
void SchedGraphEdge::dump(int indent) const {
 | 
						|
  cerr << std::string(indent*2, ' ') << *this; 
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// 
 | 
						|
// class SchedGraphNode
 | 
						|
// 
 | 
						|
 | 
						|
/*ctor*/
 | 
						|
SchedGraphNode::SchedGraphNode(unsigned NID,
 | 
						|
                               MachineBasicBlock *mbb,
 | 
						|
                               int   indexInBB,
 | 
						|
			       const TargetMachine& Target)
 | 
						|
  : nodeId(NID), MBB(mbb), minstr(mbb ? (*mbb)[indexInBB] : 0),
 | 
						|
    origIndexInBB(indexInBB), latency(0) {
 | 
						|
  if (minstr)
 | 
						|
    {
 | 
						|
      MachineOpCode mopCode = minstr->getOpCode();
 | 
						|
      latency = Target.getInstrInfo().hasResultInterlock(mopCode)
 | 
						|
	? Target.getInstrInfo().minLatency(mopCode)
 | 
						|
	: Target.getInstrInfo().maxLatency(mopCode);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*dtor*/
 | 
						|
SchedGraphNode::~SchedGraphNode()
 | 
						|
{
 | 
						|
  // for each node, delete its out-edges
 | 
						|
  std::for_each(beginOutEdges(), endOutEdges(),
 | 
						|
                deleter<SchedGraphEdge>);
 | 
						|
}
 | 
						|
 | 
						|
void SchedGraphNode::dump(int indent) const {
 | 
						|
  cerr << std::string(indent*2, ' ') << *this; 
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
inline void
 | 
						|
SchedGraphNode::addInEdge(SchedGraphEdge* edge)
 | 
						|
{
 | 
						|
  inEdges.push_back(edge);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
inline void
 | 
						|
SchedGraphNode::addOutEdge(SchedGraphEdge* edge)
 | 
						|
{
 | 
						|
  outEdges.push_back(edge);
 | 
						|
}
 | 
						|
 | 
						|
inline void
 | 
						|
SchedGraphNode::removeInEdge(const SchedGraphEdge* edge)
 | 
						|
{
 | 
						|
  assert(edge->getSink() == this);
 | 
						|
  
 | 
						|
  for (iterator I = beginInEdges(); I != endInEdges(); ++I)
 | 
						|
    if ((*I) == edge)
 | 
						|
      {
 | 
						|
	inEdges.erase(I);
 | 
						|
	break;
 | 
						|
      }
 | 
						|
}
 | 
						|
 | 
						|
inline void
 | 
						|
SchedGraphNode::removeOutEdge(const SchedGraphEdge* edge)
 | 
						|
{
 | 
						|
  assert(edge->getSrc() == this);
 | 
						|
  
 | 
						|
  for (iterator I = beginOutEdges(); I != endOutEdges(); ++I)
 | 
						|
    if ((*I) == edge)
 | 
						|
      {
 | 
						|
	outEdges.erase(I);
 | 
						|
	break;
 | 
						|
      }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// 
 | 
						|
// class SchedGraph
 | 
						|
// 
 | 
						|
 | 
						|
 | 
						|
/*ctor*/
 | 
						|
SchedGraph::SchedGraph(MachineBasicBlock &mbb, const TargetMachine& target)
 | 
						|
  : MBB(mbb) {
 | 
						|
  buildGraph(target);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*dtor*/
 | 
						|
SchedGraph::~SchedGraph()
 | 
						|
{
 | 
						|
  for (const_iterator I = begin(); I != end(); ++I)
 | 
						|
    delete I->second;
 | 
						|
  delete graphRoot;
 | 
						|
  delete graphLeaf;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
SchedGraph::dump() const
 | 
						|
{
 | 
						|
  cerr << "  Sched Graph for Basic Block: ";
 | 
						|
  cerr << MBB.getBasicBlock()->getName()
 | 
						|
       << " (" << MBB.getBasicBlock() << ")";
 | 
						|
  
 | 
						|
  cerr << "\n\n    Actual Root nodes : ";
 | 
						|
  for (unsigned i=0, N=graphRoot->outEdges.size(); i < N; i++)
 | 
						|
    cerr << graphRoot->outEdges[i]->getSink()->getNodeId()
 | 
						|
	 << ((i == N-1)? "" : ", ");
 | 
						|
  
 | 
						|
  cerr << "\n    Graph Nodes:\n";
 | 
						|
  for (const_iterator I=begin(); I != end(); ++I)
 | 
						|
    cerr << "\n" << *I->second;
 | 
						|
  
 | 
						|
  cerr << "\n";
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
SchedGraph::eraseIncomingEdges(SchedGraphNode* node, bool addDummyEdges)
 | 
						|
{
 | 
						|
  // Delete and disconnect all in-edges for the node
 | 
						|
  for (SchedGraphNode::iterator I = node->beginInEdges();
 | 
						|
       I != node->endInEdges(); ++I)
 | 
						|
    {
 | 
						|
      SchedGraphNode* srcNode = (*I)->getSrc();
 | 
						|
      srcNode->removeOutEdge(*I);
 | 
						|
      delete *I;
 | 
						|
      
 | 
						|
      if (addDummyEdges &&
 | 
						|
	  srcNode != getRoot() &&
 | 
						|
	  srcNode->beginOutEdges() == srcNode->endOutEdges())
 | 
						|
	{ // srcNode has no more out edges, so add an edge to dummy EXIT node
 | 
						|
	  assert(node != getLeaf() && "Adding edge that was just removed?");
 | 
						|
	  (void) new SchedGraphEdge(srcNode, getLeaf(),
 | 
						|
		    SchedGraphEdge::CtrlDep, SchedGraphEdge::NonDataDep, 0);
 | 
						|
	}
 | 
						|
    }
 | 
						|
  
 | 
						|
  node->inEdges.clear();
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
SchedGraph::eraseOutgoingEdges(SchedGraphNode* node, bool addDummyEdges)
 | 
						|
{
 | 
						|
  // Delete and disconnect all out-edges for the node
 | 
						|
  for (SchedGraphNode::iterator I = node->beginOutEdges();
 | 
						|
       I != node->endOutEdges(); ++I)
 | 
						|
    {
 | 
						|
      SchedGraphNode* sinkNode = (*I)->getSink();
 | 
						|
      sinkNode->removeInEdge(*I);
 | 
						|
      delete *I;
 | 
						|
      
 | 
						|
      if (addDummyEdges &&
 | 
						|
	  sinkNode != getLeaf() &&
 | 
						|
	  sinkNode->beginInEdges() == sinkNode->endInEdges())
 | 
						|
	{ //sinkNode has no more in edges, so add an edge from dummy ENTRY node
 | 
						|
	  assert(node != getRoot() && "Adding edge that was just removed?");
 | 
						|
	  (void) new SchedGraphEdge(getRoot(), sinkNode,
 | 
						|
		    SchedGraphEdge::CtrlDep, SchedGraphEdge::NonDataDep, 0);
 | 
						|
	}
 | 
						|
    }
 | 
						|
  
 | 
						|
  node->outEdges.clear();
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
SchedGraph::eraseIncidentEdges(SchedGraphNode* node, bool addDummyEdges)
 | 
						|
{
 | 
						|
  this->eraseIncomingEdges(node, addDummyEdges);	
 | 
						|
  this->eraseOutgoingEdges(node, addDummyEdges);	
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
SchedGraph::addDummyEdges()
 | 
						|
{
 | 
						|
  assert(graphRoot->outEdges.size() == 0);
 | 
						|
  
 | 
						|
  for (const_iterator I=begin(); I != end(); ++I)
 | 
						|
    {
 | 
						|
      SchedGraphNode* node = (*I).second;
 | 
						|
      assert(node != graphRoot && node != graphLeaf);
 | 
						|
      if (node->beginInEdges() == node->endInEdges())
 | 
						|
	(void) new SchedGraphEdge(graphRoot, node, SchedGraphEdge::CtrlDep,
 | 
						|
				  SchedGraphEdge::NonDataDep, 0);
 | 
						|
      if (node->beginOutEdges() == node->endOutEdges())
 | 
						|
	(void) new SchedGraphEdge(node, graphLeaf, SchedGraphEdge::CtrlDep,
 | 
						|
				  SchedGraphEdge::NonDataDep, 0);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
SchedGraph::addCDEdges(const TerminatorInst* term,
 | 
						|
		       const TargetMachine& target)
 | 
						|
{
 | 
						|
  const MachineInstrInfo& mii = target.getInstrInfo();
 | 
						|
  MachineCodeForInstruction &termMvec = MachineCodeForInstruction::get(term);
 | 
						|
  
 | 
						|
  // Find the first branch instr in the sequence of machine instrs for term
 | 
						|
  // 
 | 
						|
  unsigned first = 0;
 | 
						|
  while (! mii.isBranch(termMvec[first]->getOpCode()) &&
 | 
						|
         ! mii.isReturn(termMvec[first]->getOpCode()))
 | 
						|
    ++first;
 | 
						|
  assert(first < termMvec.size() &&
 | 
						|
	 "No branch instructions for terminator?  Ok, but weird!");
 | 
						|
  if (first == termMvec.size())
 | 
						|
    return;
 | 
						|
 | 
						|
  SchedGraphNode* firstBrNode = getGraphNodeForInstr(termMvec[first]);
 | 
						|
 | 
						|
  // Add CD edges from each instruction in the sequence to the
 | 
						|
  // *last preceding* branch instr. in the sequence 
 | 
						|
  // Use a latency of 0 because we only need to prevent out-of-order issue.
 | 
						|
  // 
 | 
						|
  for (unsigned i = termMvec.size(); i > first+1; --i)
 | 
						|
    {
 | 
						|
      SchedGraphNode* toNode = getGraphNodeForInstr(termMvec[i-1]);
 | 
						|
      assert(toNode && "No node for instr generated for branch/ret?");
 | 
						|
      
 | 
						|
      for (unsigned j = i-1; j != 0; --j) 
 | 
						|
	if (mii.isBranch(termMvec[j-1]->getOpCode()) ||
 | 
						|
            mii.isReturn(termMvec[j-1]->getOpCode()))
 | 
						|
	  {
 | 
						|
	    SchedGraphNode* brNode = getGraphNodeForInstr(termMvec[j-1]);
 | 
						|
	    assert(brNode && "No node for instr generated for branch/ret?");
 | 
						|
	    (void) new SchedGraphEdge(brNode, toNode, SchedGraphEdge::CtrlDep,
 | 
						|
				      SchedGraphEdge::NonDataDep, 0);
 | 
						|
	    break;			// only one incoming edge is enough
 | 
						|
	  }
 | 
						|
    }
 | 
						|
  
 | 
						|
  // Add CD edges from each instruction preceding the first branch
 | 
						|
  // to the first branch.  Use a latency of 0 as above.
 | 
						|
  // 
 | 
						|
  for (unsigned i = first; i != 0; --i)
 | 
						|
    {
 | 
						|
      SchedGraphNode* fromNode = getGraphNodeForInstr(termMvec[i-1]);
 | 
						|
      assert(fromNode && "No node for instr generated for branch?");
 | 
						|
      (void) new SchedGraphEdge(fromNode, firstBrNode, SchedGraphEdge::CtrlDep,
 | 
						|
				SchedGraphEdge::NonDataDep, 0);
 | 
						|
    }
 | 
						|
  
 | 
						|
  // Now add CD edges to the first branch instruction in the sequence from
 | 
						|
  // all preceding instructions in the basic block.  Use 0 latency again.
 | 
						|
  // 
 | 
						|
  for (unsigned i=0, N=MBB.size(); i < N; i++) 
 | 
						|
    {
 | 
						|
      if (MBB[i] == termMvec[first])   // reached the first branch
 | 
						|
        break;
 | 
						|
      
 | 
						|
      SchedGraphNode* fromNode = this->getGraphNodeForInstr(MBB[i]);
 | 
						|
      if (fromNode == NULL)
 | 
						|
        continue;			// dummy instruction, e.g., PHI
 | 
						|
      
 | 
						|
      (void) new SchedGraphEdge(fromNode, firstBrNode,
 | 
						|
                                SchedGraphEdge::CtrlDep,
 | 
						|
                                SchedGraphEdge::NonDataDep, 0);
 | 
						|
      
 | 
						|
      // If we find any other machine instructions (other than due to
 | 
						|
      // the terminator) that also have delay slots, add an outgoing edge
 | 
						|
      // from the instruction to the instructions in the delay slots.
 | 
						|
      // 
 | 
						|
      unsigned d = mii.getNumDelaySlots(MBB[i]->getOpCode());
 | 
						|
      assert(i+d < N && "Insufficient delay slots for instruction?");
 | 
						|
      
 | 
						|
      for (unsigned j=1; j <= d; j++)
 | 
						|
        {
 | 
						|
          SchedGraphNode* toNode = this->getGraphNodeForInstr(MBB[i+j]);
 | 
						|
          assert(toNode && "No node for machine instr in delay slot?");
 | 
						|
          (void) new SchedGraphEdge(fromNode, toNode,
 | 
						|
                                    SchedGraphEdge::CtrlDep,
 | 
						|
                                    SchedGraphEdge::NonDataDep, 0);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static const int SG_LOAD_REF  = 0;
 | 
						|
static const int SG_STORE_REF = 1;
 | 
						|
static const int SG_CALL_REF  = 2;
 | 
						|
 | 
						|
static const unsigned int SG_DepOrderArray[][3] = {
 | 
						|
  { SchedGraphEdge::NonDataDep,
 | 
						|
            SchedGraphEdge::AntiDep,
 | 
						|
                        SchedGraphEdge::AntiDep },
 | 
						|
  { SchedGraphEdge::TrueDep,
 | 
						|
            SchedGraphEdge::OutputDep,
 | 
						|
                        SchedGraphEdge::TrueDep | SchedGraphEdge::OutputDep },
 | 
						|
  { SchedGraphEdge::TrueDep,
 | 
						|
            SchedGraphEdge::AntiDep | SchedGraphEdge::OutputDep,
 | 
						|
                        SchedGraphEdge::TrueDep | SchedGraphEdge::AntiDep
 | 
						|
                                                | SchedGraphEdge::OutputDep }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
// Add a dependence edge between every pair of machine load/store/call
 | 
						|
// instructions, where at least one is a store or a call.
 | 
						|
// Use latency 1 just to ensure that memory operations are ordered;
 | 
						|
// latency does not otherwise matter (true dependences enforce that).
 | 
						|
// 
 | 
						|
void
 | 
						|
SchedGraph::addMemEdges(const vector<SchedGraphNode*>& memNodeVec,
 | 
						|
			const TargetMachine& target)
 | 
						|
{
 | 
						|
  const MachineInstrInfo& mii = target.getInstrInfo();
 | 
						|
  
 | 
						|
  // Instructions in memNodeVec are in execution order within the basic block,
 | 
						|
  // so simply look at all pairs <memNodeVec[i], memNodeVec[j: j > i]>.
 | 
						|
  // 
 | 
						|
  for (unsigned im=0, NM=memNodeVec.size(); im < NM; im++)
 | 
						|
    {
 | 
						|
      MachineOpCode fromOpCode = memNodeVec[im]->getOpCode();
 | 
						|
      int fromType = mii.isCall(fromOpCode)? SG_CALL_REF
 | 
						|
                       : mii.isLoad(fromOpCode)? SG_LOAD_REF
 | 
						|
                                               : SG_STORE_REF;
 | 
						|
      for (unsigned jm=im+1; jm < NM; jm++)
 | 
						|
	{
 | 
						|
          MachineOpCode toOpCode = memNodeVec[jm]->getOpCode();
 | 
						|
          int toType = mii.isCall(toOpCode)? SG_CALL_REF
 | 
						|
                         : mii.isLoad(toOpCode)? SG_LOAD_REF
 | 
						|
                                               : SG_STORE_REF;
 | 
						|
          
 | 
						|
          if (fromType != SG_LOAD_REF || toType != SG_LOAD_REF)
 | 
						|
            (void) new SchedGraphEdge(memNodeVec[im], memNodeVec[jm],
 | 
						|
                                      SchedGraphEdge::MemoryDep,
 | 
						|
                                      SG_DepOrderArray[fromType][toType], 1);
 | 
						|
        }
 | 
						|
    }
 | 
						|
} 
 | 
						|
 | 
						|
// Add edges from/to CC reg instrs to/from call instrs.
 | 
						|
// Essentially this prevents anything that sets or uses a CC reg from being
 | 
						|
// reordered w.r.t. a call.
 | 
						|
// Use a latency of 0 because we only need to prevent out-of-order issue,
 | 
						|
// like with control dependences.
 | 
						|
// 
 | 
						|
void
 | 
						|
SchedGraph::addCallCCEdges(const vector<SchedGraphNode*>& memNodeVec,
 | 
						|
                           MachineBasicBlock& bbMvec,
 | 
						|
                           const TargetMachine& target)
 | 
						|
{
 | 
						|
  const MachineInstrInfo& mii = target.getInstrInfo();
 | 
						|
  vector<SchedGraphNode*> callNodeVec;
 | 
						|
  
 | 
						|
  // Find the call instruction nodes and put them in a vector.
 | 
						|
  for (unsigned im=0, NM=memNodeVec.size(); im < NM; im++)
 | 
						|
    if (mii.isCall(memNodeVec[im]->getOpCode()))
 | 
						|
      callNodeVec.push_back(memNodeVec[im]);
 | 
						|
  
 | 
						|
  // Now walk the entire basic block, looking for CC instructions *and*
 | 
						|
  // call instructions, and keep track of the order of the instructions.
 | 
						|
  // Use the call node vec to quickly find earlier and later call nodes
 | 
						|
  // relative to the current CC instruction.
 | 
						|
  // 
 | 
						|
  int lastCallNodeIdx = -1;
 | 
						|
  for (unsigned i=0, N=bbMvec.size(); i < N; i++)
 | 
						|
    if (mii.isCall(bbMvec[i]->getOpCode()))
 | 
						|
      {
 | 
						|
        ++lastCallNodeIdx;
 | 
						|
        for ( ; lastCallNodeIdx < (int)callNodeVec.size(); ++lastCallNodeIdx)
 | 
						|
          if (callNodeVec[lastCallNodeIdx]->getMachineInstr() == bbMvec[i])
 | 
						|
            break;
 | 
						|
        assert(lastCallNodeIdx < (int)callNodeVec.size() && "Missed Call?");
 | 
						|
      }
 | 
						|
    else if (mii.isCCInstr(bbMvec[i]->getOpCode()))
 | 
						|
      { // Add incoming/outgoing edges from/to preceding/later calls
 | 
						|
        SchedGraphNode* ccNode = this->getGraphNodeForInstr(bbMvec[i]);
 | 
						|
        int j=0;
 | 
						|
        for ( ; j <= lastCallNodeIdx; j++)
 | 
						|
          (void) new SchedGraphEdge(callNodeVec[j], ccNode,
 | 
						|
                                    MachineCCRegsRID, 0);
 | 
						|
        for ( ; j < (int) callNodeVec.size(); j++)
 | 
						|
          (void) new SchedGraphEdge(ccNode, callNodeVec[j],
 | 
						|
                                    MachineCCRegsRID, 0);
 | 
						|
      }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
SchedGraph::addMachineRegEdges(RegToRefVecMap& regToRefVecMap,
 | 
						|
			       const TargetMachine& target)
 | 
						|
{
 | 
						|
  // This assumes that such hardwired registers are never allocated
 | 
						|
  // to any LLVM value (since register allocation happens later), i.e.,
 | 
						|
  // any uses or defs of this register have been made explicit!
 | 
						|
  // Also assumes that two registers with different numbers are
 | 
						|
  // not aliased!
 | 
						|
  // 
 | 
						|
  for (RegToRefVecMap::iterator I = regToRefVecMap.begin();
 | 
						|
       I != regToRefVecMap.end(); ++I)
 | 
						|
    {
 | 
						|
      int regNum        = (*I).first;
 | 
						|
      RefVec& regRefVec = (*I).second;
 | 
						|
      
 | 
						|
      // regRefVec is ordered by control flow order in the basic block
 | 
						|
      for (unsigned i=0; i < regRefVec.size(); ++i)
 | 
						|
	{
 | 
						|
	  SchedGraphNode* node = regRefVec[i].first;
 | 
						|
	  unsigned int opNum   = regRefVec[i].second;
 | 
						|
	  bool isDef = node->getMachineInstr()->operandIsDefined(opNum);
 | 
						|
	  bool isDefAndUse =
 | 
						|
            node->getMachineInstr()->operandIsDefinedAndUsed(opNum);
 | 
						|
          
 | 
						|
          for (unsigned p=0; p < i; ++p)
 | 
						|
            {
 | 
						|
              SchedGraphNode* prevNode = regRefVec[p].first;
 | 
						|
              if (prevNode != node)
 | 
						|
                {
 | 
						|
                  unsigned int prevOpNum = regRefVec[p].second;
 | 
						|
                  bool prevIsDef =
 | 
						|
                    prevNode->getMachineInstr()->operandIsDefined(prevOpNum);
 | 
						|
                  bool prevIsDefAndUse =
 | 
						|
                    prevNode->getMachineInstr()->operandIsDefinedAndUsed(prevOpNum);
 | 
						|
                  if (isDef)
 | 
						|
                    {
 | 
						|
                      if (prevIsDef)
 | 
						|
                        new SchedGraphEdge(prevNode, node, regNum,
 | 
						|
                                           SchedGraphEdge::OutputDep);
 | 
						|
                      if (!prevIsDef || prevIsDefAndUse)
 | 
						|
                        new SchedGraphEdge(prevNode, node, regNum,
 | 
						|
                                           SchedGraphEdge::AntiDep);
 | 
						|
                    }
 | 
						|
                  
 | 
						|
                  if (prevIsDef)
 | 
						|
                    if (!isDef || isDefAndUse)
 | 
						|
                      new SchedGraphEdge(prevNode, node, regNum,
 | 
						|
                                         SchedGraphEdge::TrueDep);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Adds dependences to/from refNode from/to all other defs
 | 
						|
// in the basic block.  refNode may be a use, a def, or both.
 | 
						|
// We do not consider other uses because we are not building use-use deps.
 | 
						|
// 
 | 
						|
void
 | 
						|
SchedGraph::addEdgesForValue(SchedGraphNode* refNode,
 | 
						|
                             const RefVec& defVec,
 | 
						|
                             const Value* defValue,
 | 
						|
                             bool  refNodeIsDef,
 | 
						|
                             bool  refNodeIsDefAndUse,
 | 
						|
                             const TargetMachine& target)
 | 
						|
{
 | 
						|
  bool refNodeIsUse = !refNodeIsDef || refNodeIsDefAndUse;
 | 
						|
  
 | 
						|
  // Add true or output dep edges from all def nodes before refNode in BB.
 | 
						|
  // Add anti or output dep edges to all def nodes after refNode.
 | 
						|
  for (RefVec::const_iterator I=defVec.begin(), E=defVec.end(); I != E; ++I)
 | 
						|
    {
 | 
						|
      if ((*I).first == refNode)
 | 
						|
        continue;                       // Dont add any self-loops
 | 
						|
      
 | 
						|
      if ((*I).first->getOrigIndexInBB() < refNode->getOrigIndexInBB())
 | 
						|
        { // (*).first is before refNode
 | 
						|
          if (refNodeIsDef)
 | 
						|
            (void) new SchedGraphEdge((*I).first, refNode, defValue,
 | 
						|
                                      SchedGraphEdge::OutputDep);
 | 
						|
          if (refNodeIsUse)
 | 
						|
            (void) new SchedGraphEdge((*I).first, refNode, defValue,
 | 
						|
                                      SchedGraphEdge::TrueDep);
 | 
						|
        }
 | 
						|
      else
 | 
						|
        { // (*).first is after refNode
 | 
						|
          if (refNodeIsDef)
 | 
						|
            (void) new SchedGraphEdge(refNode, (*I).first, defValue,
 | 
						|
                                      SchedGraphEdge::OutputDep);
 | 
						|
          if (refNodeIsUse)
 | 
						|
            (void) new SchedGraphEdge(refNode, (*I).first, defValue,
 | 
						|
                                      SchedGraphEdge::AntiDep);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
SchedGraph::addEdgesForInstruction(const MachineInstr& MI,
 | 
						|
                                   const ValueToDefVecMap& valueToDefVecMap,
 | 
						|
				   const TargetMachine& target)
 | 
						|
{
 | 
						|
  SchedGraphNode* node = getGraphNodeForInstr(&MI);
 | 
						|
  if (node == NULL)
 | 
						|
    return;
 | 
						|
  
 | 
						|
  // Add edges for all operands of the machine instruction.
 | 
						|
  // 
 | 
						|
  for (unsigned i = 0, numOps = MI.getNumOperands(); i != numOps; ++i)
 | 
						|
    {
 | 
						|
      switch (MI.getOperandType(i))
 | 
						|
	{
 | 
						|
	case MachineOperand::MO_VirtualRegister:
 | 
						|
	case MachineOperand::MO_CCRegister:
 | 
						|
	  if (const Instruction* srcI =
 | 
						|
              dyn_cast_or_null<Instruction>(MI.getOperand(i).getVRegValue()))
 | 
						|
            {
 | 
						|
              ValueToDefVecMap::const_iterator I = valueToDefVecMap.find(srcI);
 | 
						|
              if (I != valueToDefVecMap.end())
 | 
						|
                addEdgesForValue(node, I->second, srcI,
 | 
						|
                                 MI.operandIsDefined(i),
 | 
						|
                                 MI.operandIsDefinedAndUsed(i), target);
 | 
						|
            }
 | 
						|
	  break;
 | 
						|
	  
 | 
						|
	case MachineOperand::MO_MachineRegister:
 | 
						|
	  break; 
 | 
						|
	  
 | 
						|
	case MachineOperand::MO_SignExtendedImmed:
 | 
						|
	case MachineOperand::MO_UnextendedImmed:
 | 
						|
	case MachineOperand::MO_PCRelativeDisp:
 | 
						|
	  break;	// nothing to do for immediate fields
 | 
						|
	  
 | 
						|
	default:
 | 
						|
	  assert(0 && "Unknown machine operand type in SchedGraph builder");
 | 
						|
	  break;
 | 
						|
	}
 | 
						|
    }
 | 
						|
  
 | 
						|
  // Add edges for values implicitly used by the machine instruction.
 | 
						|
  // Examples include function arguments to a Call instructions or the return
 | 
						|
  // value of a Ret instruction.
 | 
						|
  // 
 | 
						|
  for (unsigned i=0, N=MI.getNumImplicitRefs(); i < N; ++i)
 | 
						|
    if (! MI.implicitRefIsDefined(i) ||
 | 
						|
        MI.implicitRefIsDefinedAndUsed(i))
 | 
						|
      if (const Instruction *srcI =
 | 
						|
          dyn_cast_or_null<Instruction>(MI.getImplicitRef(i)))
 | 
						|
        {
 | 
						|
          ValueToDefVecMap::const_iterator I = valueToDefVecMap.find(srcI);
 | 
						|
          if (I != valueToDefVecMap.end())
 | 
						|
            addEdgesForValue(node, I->second, srcI,
 | 
						|
                             MI.implicitRefIsDefined(i),
 | 
						|
                             MI.implicitRefIsDefinedAndUsed(i), target);
 | 
						|
        }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
SchedGraph::findDefUseInfoAtInstr(const TargetMachine& target,
 | 
						|
                                  SchedGraphNode* node,
 | 
						|
                                  vector<SchedGraphNode*>& memNodeVec,
 | 
						|
                                  RegToRefVecMap& regToRefVecMap,
 | 
						|
                                  ValueToDefVecMap& valueToDefVecMap)
 | 
						|
{
 | 
						|
  const MachineInstrInfo& mii = target.getInstrInfo();
 | 
						|
  
 | 
						|
  
 | 
						|
  MachineOpCode opCode = node->getOpCode();
 | 
						|
  if (mii.isLoad(opCode) || mii.isStore(opCode) || mii.isCall(opCode))
 | 
						|
    memNodeVec.push_back(node);
 | 
						|
  
 | 
						|
  // Collect the register references and value defs. for explicit operands
 | 
						|
  // 
 | 
						|
  const MachineInstr& minstr = *node->getMachineInstr();
 | 
						|
  for (int i=0, numOps = (int) minstr.getNumOperands(); i < numOps; i++)
 | 
						|
    {
 | 
						|
      const MachineOperand& mop = minstr.getOperand(i);
 | 
						|
      
 | 
						|
      // if this references a register other than the hardwired
 | 
						|
      // "zero" register, record the reference.
 | 
						|
      if (mop.getType() == MachineOperand::MO_MachineRegister)
 | 
						|
        {
 | 
						|
          int regNum = mop.getMachineRegNum();
 | 
						|
	  if (regNum != target.getRegInfo().getZeroRegNum())
 | 
						|
            regToRefVecMap[mop.getMachineRegNum()].push_back(
 | 
						|
                                                  std::make_pair(node, i));
 | 
						|
          continue;                     // nothing more to do
 | 
						|
	}
 | 
						|
      
 | 
						|
      // ignore all other non-def operands
 | 
						|
      if (! minstr.operandIsDefined(i))
 | 
						|
	continue;
 | 
						|
      
 | 
						|
      // We must be defining a value.
 | 
						|
      assert((mop.getType() == MachineOperand::MO_VirtualRegister ||
 | 
						|
              mop.getType() == MachineOperand::MO_CCRegister)
 | 
						|
             && "Do not expect any other kind of operand to be defined!");
 | 
						|
      
 | 
						|
      const Instruction* defInstr = cast<Instruction>(mop.getVRegValue());
 | 
						|
      valueToDefVecMap[defInstr].push_back(std::make_pair(node, i)); 
 | 
						|
    }
 | 
						|
  
 | 
						|
  // 
 | 
						|
  // Collect value defs. for implicit operands.  The interface to extract
 | 
						|
  // them assumes they must be virtual registers!
 | 
						|
  // 
 | 
						|
  for (unsigned i=0, N = minstr.getNumImplicitRefs(); i != N; ++i)
 | 
						|
    if (minstr.implicitRefIsDefined(i))
 | 
						|
      if (const Instruction* defInstr =
 | 
						|
          dyn_cast_or_null<Instruction>(minstr.getImplicitRef(i)))
 | 
						|
        valueToDefVecMap[defInstr].push_back(std::make_pair(node, -i)); 
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
SchedGraph::buildNodesForBB(const TargetMachine& target,
 | 
						|
                            MachineBasicBlock& MBB,
 | 
						|
                            vector<SchedGraphNode*>& memNodeVec,
 | 
						|
                            RegToRefVecMap& regToRefVecMap,
 | 
						|
                            ValueToDefVecMap& valueToDefVecMap)
 | 
						|
{
 | 
						|
  const MachineInstrInfo& mii = target.getInstrInfo();
 | 
						|
  
 | 
						|
  // Build graph nodes for each VM instruction and gather def/use info.
 | 
						|
  // Do both those together in a single pass over all machine instructions.
 | 
						|
  for (unsigned i=0; i < MBB.size(); i++)
 | 
						|
    if (!mii.isDummyPhiInstr(MBB[i]->getOpCode())) {
 | 
						|
      SchedGraphNode* node = new SchedGraphNode(getNumNodes(), &MBB, i, target);
 | 
						|
      noteGraphNodeForInstr(MBB[i], node);
 | 
						|
      
 | 
						|
      // Remember all register references and value defs
 | 
						|
      findDefUseInfoAtInstr(target, node, memNodeVec, regToRefVecMap,
 | 
						|
                            valueToDefVecMap);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
SchedGraph::buildGraph(const TargetMachine& target)
 | 
						|
{
 | 
						|
  // Use this data structure to note all machine operands that compute
 | 
						|
  // ordinary LLVM values.  These must be computed defs (i.e., instructions). 
 | 
						|
  // Note that there may be multiple machine instructions that define
 | 
						|
  // each Value.
 | 
						|
  ValueToDefVecMap valueToDefVecMap;
 | 
						|
  
 | 
						|
  // Use this data structure to note all memory instructions.
 | 
						|
  // We use this to add memory dependence edges without a second full walk.
 | 
						|
  // 
 | 
						|
  // vector<const Instruction*> memVec;
 | 
						|
  vector<SchedGraphNode*> memNodeVec;
 | 
						|
  
 | 
						|
  // Use this data structure to note any uses or definitions of
 | 
						|
  // machine registers so we can add edges for those later without
 | 
						|
  // extra passes over the nodes.
 | 
						|
  // The vector holds an ordered list of references to the machine reg,
 | 
						|
  // ordered according to control-flow order.  This only works for a
 | 
						|
  // single basic block, hence the assertion.  Each reference is identified
 | 
						|
  // by the pair: <node, operand-number>.
 | 
						|
  // 
 | 
						|
  RegToRefVecMap regToRefVecMap;
 | 
						|
  
 | 
						|
  // Make a dummy root node.  We'll add edges to the real roots later.
 | 
						|
  graphRoot = new SchedGraphNode(0, NULL, -1, target);
 | 
						|
  graphLeaf = new SchedGraphNode(1, NULL, -1, target);
 | 
						|
 | 
						|
  //----------------------------------------------------------------
 | 
						|
  // First add nodes for all the machine instructions in the basic block
 | 
						|
  // because this greatly simplifies identifying which edges to add.
 | 
						|
  // Do this one VM instruction at a time since the SchedGraphNode needs that.
 | 
						|
  // Also, remember the load/store instructions to add memory deps later.
 | 
						|
  //----------------------------------------------------------------
 | 
						|
 | 
						|
  buildNodesForBB(target, MBB, memNodeVec, regToRefVecMap, valueToDefVecMap);
 | 
						|
  
 | 
						|
  //----------------------------------------------------------------
 | 
						|
  // Now add edges for the following (all are incoming edges except (4)):
 | 
						|
  // (1) operands of the machine instruction, including hidden operands
 | 
						|
  // (2) machine register dependences
 | 
						|
  // (3) memory load/store dependences
 | 
						|
  // (3) other resource dependences for the machine instruction, if any
 | 
						|
  // (4) output dependences when multiple machine instructions define the
 | 
						|
  //     same value; all must have been generated from a single VM instrn
 | 
						|
  // (5) control dependences to branch instructions generated for the
 | 
						|
  //     terminator instruction of the BB. Because of delay slots and
 | 
						|
  //     2-way conditional branches, multiple CD edges are needed
 | 
						|
  //     (see addCDEdges for details).
 | 
						|
  // Also, note any uses or defs of machine registers.
 | 
						|
  // 
 | 
						|
  //----------------------------------------------------------------
 | 
						|
      
 | 
						|
  // First, add edges to the terminator instruction of the basic block.
 | 
						|
  this->addCDEdges(MBB.getBasicBlock()->getTerminator(), target);
 | 
						|
      
 | 
						|
  // Then add memory dep edges: store->load, load->store, and store->store.
 | 
						|
  // Call instructions are treated as both load and store.
 | 
						|
  this->addMemEdges(memNodeVec, target);
 | 
						|
 | 
						|
  // Then add edges between call instructions and CC set/use instructions
 | 
						|
  this->addCallCCEdges(memNodeVec, MBB, target);
 | 
						|
  
 | 
						|
  // Then add incoming def-use (SSA) edges for each machine instruction.
 | 
						|
  for (unsigned i=0, N=MBB.size(); i < N; i++)
 | 
						|
    addEdgesForInstruction(*MBB[i], valueToDefVecMap, target);
 | 
						|
  
 | 
						|
#ifdef NEED_SEPARATE_NONSSA_EDGES_CODE
 | 
						|
  // Then add non-SSA edges for all VM instructions in the block.
 | 
						|
  // We assume that all machine instructions that define a value are
 | 
						|
  // generated from the VM instruction corresponding to that value.
 | 
						|
  // TODO: This could probably be done much more efficiently.
 | 
						|
  for (BasicBlock::const_iterator II = bb->begin(); II != bb->end(); ++II)
 | 
						|
    this->addNonSSAEdgesForValue(*II, target);
 | 
						|
#endif //NEED_SEPARATE_NONSSA_EDGES_CODE
 | 
						|
  
 | 
						|
  // Then add edges for dependences on machine registers
 | 
						|
  this->addMachineRegEdges(regToRefVecMap, target);
 | 
						|
  
 | 
						|
  // Finally, add edges from the dummy root and to dummy leaf
 | 
						|
  this->addDummyEdges();		
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// 
 | 
						|
// class SchedGraphSet
 | 
						|
// 
 | 
						|
 | 
						|
/*ctor*/
 | 
						|
SchedGraphSet::SchedGraphSet(const Function* _function,
 | 
						|
			     const TargetMachine& target) :
 | 
						|
  method(_function)
 | 
						|
{
 | 
						|
  buildGraphsForMethod(method, target);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*dtor*/
 | 
						|
SchedGraphSet::~SchedGraphSet()
 | 
						|
{
 | 
						|
  // delete all the graphs
 | 
						|
  for(iterator I = begin(), E = end(); I != E; ++I)
 | 
						|
    delete *I;  // destructor is a friend
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
SchedGraphSet::dump() const
 | 
						|
{
 | 
						|
  cerr << "======== Sched graphs for function `" << method->getName()
 | 
						|
       << "' ========\n\n";
 | 
						|
  
 | 
						|
  for (const_iterator I=begin(); I != end(); ++I)
 | 
						|
    (*I)->dump();
 | 
						|
  
 | 
						|
  cerr << "\n====== End graphs for function `" << method->getName()
 | 
						|
       << "' ========\n\n";
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
SchedGraphSet::buildGraphsForMethod(const Function *F,
 | 
						|
				    const TargetMachine& target)
 | 
						|
{
 | 
						|
  MachineFunction &MF = MachineFunction::get(F);
 | 
						|
  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
 | 
						|
    addGraph(new SchedGraph(*I, target));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
std::ostream &operator<<(std::ostream &os, const SchedGraphEdge& edge)
 | 
						|
{
 | 
						|
  os << "edge [" << edge.src->getNodeId() << "] -> ["
 | 
						|
     << edge.sink->getNodeId() << "] : ";
 | 
						|
  
 | 
						|
  switch(edge.depType) {
 | 
						|
  case SchedGraphEdge::CtrlDep:		os<< "Control Dep"; break;
 | 
						|
  case SchedGraphEdge::ValueDep:        os<< "Reg Value " << edge.val; break;
 | 
						|
  case SchedGraphEdge::MemoryDep:	os<< "Memory Dep"; break;
 | 
						|
  case SchedGraphEdge::MachineRegister: os<< "Reg " <<edge.machineRegNum;break;
 | 
						|
  case SchedGraphEdge::MachineResource: os<<"Resource "<<edge.resourceId;break;
 | 
						|
  default: assert(0); break;
 | 
						|
  }
 | 
						|
  
 | 
						|
  os << " : delay = " << edge.minDelay << "\n";
 | 
						|
  
 | 
						|
  return os;
 | 
						|
}
 | 
						|
 | 
						|
std::ostream &operator<<(std::ostream &os, const SchedGraphNode& node)
 | 
						|
{
 | 
						|
  os << std::string(8, ' ')
 | 
						|
     << "Node " << node.nodeId << " : "
 | 
						|
     << "latency = " << node.latency << "\n" << std::string(12, ' ');
 | 
						|
  
 | 
						|
  if (node.getMachineInstr() == NULL)
 | 
						|
    os << "(Dummy node)\n";
 | 
						|
  else
 | 
						|
    {
 | 
						|
      os << *node.getMachineInstr() << "\n" << std::string(12, ' ');
 | 
						|
      os << node.inEdges.size() << " Incoming Edges:\n";
 | 
						|
      for (unsigned i=0, N=node.inEdges.size(); i < N; i++)
 | 
						|
	  os << std::string(16, ' ') << *node.inEdges[i];
 | 
						|
  
 | 
						|
      os << std::string(12, ' ') << node.outEdges.size()
 | 
						|
         << " Outgoing Edges:\n";
 | 
						|
      for (unsigned i=0, N=node.outEdges.size(); i < N; i++)
 | 
						|
        os << std::string(16, ' ') << *node.outEdges[i];
 | 
						|
    }
 | 
						|
  
 | 
						|
  return os;
 | 
						|
}
 |