mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4510 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			292 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			292 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- SchedPriorities.h - Encapsulate scheduling heuristics -------------===//
 | 
						|
// 
 | 
						|
// Strategy:
 | 
						|
//    Priority ordering rules:
 | 
						|
//    (1) Max delay, which is the order of the heap S.candsAsHeap.
 | 
						|
//    (2) Instruction that frees up a register.
 | 
						|
//    (3) Instruction that has the maximum number of dependent instructions.
 | 
						|
//    Note that rules 2 and 3 are only used if issue conflicts prevent
 | 
						|
//    choosing a higher priority instruction by rule 1.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "SchedPriorities.h"
 | 
						|
#include "llvm/Analysis/LiveVar/FunctionLiveVarInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineBasicBlock.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "Support/PostOrderIterator.h"
 | 
						|
using std::cerr;
 | 
						|
 | 
						|
std::ostream &operator<<(std::ostream &os, const NodeDelayPair* nd) {
 | 
						|
  return os << "Delay for node " << nd->node->getNodeId()
 | 
						|
	    << " = " << (long)nd->delay << "\n";
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
SchedPriorities::SchedPriorities(const Function *, const SchedGraph *G,
 | 
						|
                                 FunctionLiveVarInfo &LVI)
 | 
						|
  : curTime(0), graph(G), methodLiveVarInfo(LVI),
 | 
						|
    nodeDelayVec(G->getNumNodes(), INVALID_LATENCY), // make errors obvious
 | 
						|
    earliestReadyTimeForNode(G->getNumNodes(), 0),
 | 
						|
    earliestReadyTime(0),
 | 
						|
    nextToTry(candsAsHeap.begin())
 | 
						|
{
 | 
						|
  computeDelays(graph);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
SchedPriorities::initialize()
 | 
						|
{
 | 
						|
  initializeReadyHeap(graph);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
SchedPriorities::computeDelays(const SchedGraph* graph)
 | 
						|
{
 | 
						|
  po_iterator<const SchedGraph*> poIter = po_begin(graph), poEnd =po_end(graph);
 | 
						|
  for ( ; poIter != poEnd; ++poIter)
 | 
						|
    {
 | 
						|
      const SchedGraphNode* node = *poIter;
 | 
						|
      cycles_t nodeDelay;
 | 
						|
      if (node->beginOutEdges() == node->endOutEdges())
 | 
						|
        nodeDelay = node->getLatency();
 | 
						|
      else
 | 
						|
	{
 | 
						|
	  // Iterate over the out-edges of the node to compute delay
 | 
						|
	  nodeDelay = 0;
 | 
						|
	  for (SchedGraphNode::const_iterator E=node->beginOutEdges();
 | 
						|
	       E != node->endOutEdges(); ++E)
 | 
						|
	    {
 | 
						|
	      cycles_t sinkDelay = getNodeDelay((*E)->getSink());
 | 
						|
	      nodeDelay = std::max(nodeDelay, sinkDelay + (*E)->getMinDelay());
 | 
						|
	    }
 | 
						|
	}
 | 
						|
      getNodeDelayRef(node) = nodeDelay;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
SchedPriorities::initializeReadyHeap(const SchedGraph* graph)
 | 
						|
{
 | 
						|
  const SchedGraphNode* graphRoot = graph->getRoot();
 | 
						|
  assert(graphRoot->getMachineInstr() == NULL && "Expect dummy root");
 | 
						|
  
 | 
						|
  // Insert immediate successors of dummy root, which are the actual roots
 | 
						|
  sg_succ_const_iterator SEnd = succ_end(graphRoot);
 | 
						|
  for (sg_succ_const_iterator S = succ_begin(graphRoot); S != SEnd; ++S)
 | 
						|
    this->insertReady(*S);
 | 
						|
  
 | 
						|
#undef TEST_HEAP_CONVERSION
 | 
						|
#ifdef TEST_HEAP_CONVERSION
 | 
						|
  cerr << "Before heap conversion:\n";
 | 
						|
  copy(candsAsHeap.begin(), candsAsHeap.end(),
 | 
						|
       ostream_iterator<NodeDelayPair*>(cerr,"\n"));
 | 
						|
#endif
 | 
						|
  
 | 
						|
  candsAsHeap.makeHeap();
 | 
						|
  
 | 
						|
  nextToTry = candsAsHeap.begin();
 | 
						|
  
 | 
						|
#ifdef TEST_HEAP_CONVERSION
 | 
						|
  cerr << "After heap conversion:\n";
 | 
						|
  copy(candsAsHeap.begin(), candsAsHeap.end(),
 | 
						|
       ostream_iterator<NodeDelayPair*>(cerr,"\n"));
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
SchedPriorities::insertReady(const SchedGraphNode* node)
 | 
						|
{
 | 
						|
  candsAsHeap.insert(node, nodeDelayVec[node->getNodeId()]);
 | 
						|
  candsAsSet.insert(node);
 | 
						|
  mcands.clear(); // ensure reset choices is called before any more choices
 | 
						|
  earliestReadyTime = std::min(earliestReadyTime,
 | 
						|
                       getEarliestReadyTimeForNode(node));
 | 
						|
  
 | 
						|
  if (SchedDebugLevel >= Sched_PrintSchedTrace)
 | 
						|
    {
 | 
						|
      cerr << " Node " << node->getNodeId() << " will be ready in Cycle "
 | 
						|
           << getEarliestReadyTimeForNode(node) << "; "
 | 
						|
	   << " Delay = " <<(long)getNodeDelay(node) << "; Instruction: \n";
 | 
						|
      cerr << "        " << *node->getMachineInstr() << "\n";
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
SchedPriorities::issuedReadyNodeAt(cycles_t curTime,
 | 
						|
				   const SchedGraphNode* node)
 | 
						|
{
 | 
						|
  candsAsHeap.removeNode(node);
 | 
						|
  candsAsSet.erase(node);
 | 
						|
  mcands.clear(); // ensure reset choices is called before any more choices
 | 
						|
  
 | 
						|
  if (earliestReadyTime == getEarliestReadyTimeForNode(node))
 | 
						|
    {// earliestReadyTime may have been due to this node, so recompute it
 | 
						|
      earliestReadyTime = HUGE_LATENCY;
 | 
						|
      for (NodeHeap::const_iterator I=candsAsHeap.begin();
 | 
						|
	   I != candsAsHeap.end(); ++I)
 | 
						|
	if (candsAsHeap.getNode(I))
 | 
						|
	  earliestReadyTime = std::min(earliestReadyTime, 
 | 
						|
				getEarliestReadyTimeForNode(candsAsHeap.getNode(I)));
 | 
						|
    }
 | 
						|
  
 | 
						|
  // Now update ready times for successors
 | 
						|
  for (SchedGraphNode::const_iterator E=node->beginOutEdges();
 | 
						|
       E != node->endOutEdges(); ++E)
 | 
						|
    {
 | 
						|
      cycles_t& etime = getEarliestReadyTimeForNodeRef((*E)->getSink());
 | 
						|
      etime = std::max(etime, curTime + (*E)->getMinDelay());
 | 
						|
    }    
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//----------------------------------------------------------------------
 | 
						|
// Priority ordering rules:
 | 
						|
// (1) Max delay, which is the order of the heap S.candsAsHeap.
 | 
						|
// (2) Instruction that frees up a register.
 | 
						|
// (3) Instruction that has the maximum number of dependent instructions.
 | 
						|
// Note that rules 2 and 3 are only used if issue conflicts prevent
 | 
						|
// choosing a higher priority instruction by rule 1.
 | 
						|
//----------------------------------------------------------------------
 | 
						|
 | 
						|
inline int
 | 
						|
SchedPriorities::chooseByRule1(std::vector<candIndex>& mcands)
 | 
						|
{
 | 
						|
  return (mcands.size() == 1)? 0	// only one choice exists so take it
 | 
						|
			     : -1;	// -1 indicates multiple choices
 | 
						|
}
 | 
						|
 | 
						|
inline int
 | 
						|
SchedPriorities::chooseByRule2(std::vector<candIndex>& mcands)
 | 
						|
{
 | 
						|
  assert(mcands.size() >= 1 && "Should have at least one candidate here.");
 | 
						|
  for (unsigned i=0, N = mcands.size(); i < N; i++)
 | 
						|
    if (instructionHasLastUse(methodLiveVarInfo,
 | 
						|
			      candsAsHeap.getNode(mcands[i])))
 | 
						|
      return i;
 | 
						|
  return -1;
 | 
						|
}
 | 
						|
 | 
						|
inline int
 | 
						|
SchedPriorities::chooseByRule3(std::vector<candIndex>& mcands)
 | 
						|
{
 | 
						|
  assert(mcands.size() >= 1 && "Should have at least one candidate here.");
 | 
						|
  int maxUses = candsAsHeap.getNode(mcands[0])->getNumOutEdges();	
 | 
						|
  int indexWithMaxUses = 0;
 | 
						|
  for (unsigned i=1, N = mcands.size(); i < N; i++)
 | 
						|
    {
 | 
						|
      int numUses = candsAsHeap.getNode(mcands[i])->getNumOutEdges();
 | 
						|
      if (numUses > maxUses)
 | 
						|
	{
 | 
						|
	  maxUses = numUses;
 | 
						|
	  indexWithMaxUses = i;
 | 
						|
	}
 | 
						|
    }
 | 
						|
  return indexWithMaxUses; 
 | 
						|
}
 | 
						|
 | 
						|
const SchedGraphNode*
 | 
						|
SchedPriorities::getNextHighest(const SchedulingManager& S,
 | 
						|
				cycles_t curTime)
 | 
						|
{
 | 
						|
  int nextIdx = -1;
 | 
						|
  const SchedGraphNode* nextChoice = NULL;
 | 
						|
  
 | 
						|
  if (mcands.size() == 0)
 | 
						|
    findSetWithMaxDelay(mcands, S);
 | 
						|
  
 | 
						|
  while (nextIdx < 0 && mcands.size() > 0)
 | 
						|
    {
 | 
						|
      nextIdx = chooseByRule1(mcands);	 // rule 1
 | 
						|
      
 | 
						|
      if (nextIdx == -1)
 | 
						|
	nextIdx = chooseByRule2(mcands); // rule 2
 | 
						|
      
 | 
						|
      if (nextIdx == -1)
 | 
						|
	nextIdx = chooseByRule3(mcands); // rule 3
 | 
						|
      
 | 
						|
      if (nextIdx == -1)
 | 
						|
	nextIdx = 0;			 // default to first choice by delays
 | 
						|
      
 | 
						|
      // We have found the next best candidate.  Check if it ready in
 | 
						|
      // the current cycle, and if it is feasible.
 | 
						|
      // If not, remove it from mcands and continue.  Refill mcands if
 | 
						|
      // it becomes empty.
 | 
						|
      nextChoice = candsAsHeap.getNode(mcands[nextIdx]);
 | 
						|
      if (getEarliestReadyTimeForNode(nextChoice) > curTime
 | 
						|
	  || ! instrIsFeasible(S, nextChoice->getMachineInstr()->getOpCode()))
 | 
						|
	{
 | 
						|
	  mcands.erase(mcands.begin() + nextIdx);
 | 
						|
	  nextIdx = -1;
 | 
						|
	  if (mcands.size() == 0)
 | 
						|
	    findSetWithMaxDelay(mcands, S);
 | 
						|
	}
 | 
						|
    }
 | 
						|
  
 | 
						|
  if (nextIdx >= 0)
 | 
						|
    {
 | 
						|
      mcands.erase(mcands.begin() + nextIdx);
 | 
						|
      return nextChoice;
 | 
						|
    }
 | 
						|
  else
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
SchedPriorities::findSetWithMaxDelay(std::vector<candIndex>& mcands,
 | 
						|
				     const SchedulingManager& S)
 | 
						|
{
 | 
						|
  if (mcands.size() == 0 && nextToTry != candsAsHeap.end())
 | 
						|
    { // out of choices at current maximum delay;
 | 
						|
      // put nodes with next highest delay in mcands
 | 
						|
      candIndex next = nextToTry;
 | 
						|
      cycles_t maxDelay = candsAsHeap.getDelay(next);
 | 
						|
      for (; next != candsAsHeap.end()
 | 
						|
	     && candsAsHeap.getDelay(next) == maxDelay; ++next)
 | 
						|
	mcands.push_back(next);
 | 
						|
      
 | 
						|
      nextToTry = next;
 | 
						|
      
 | 
						|
      if (SchedDebugLevel >= Sched_PrintSchedTrace)
 | 
						|
	{
 | 
						|
	  cerr << "    Cycle " << (long)getTime() << ": "
 | 
						|
	       << "Next highest delay = " << (long)maxDelay << " : "
 | 
						|
	       << mcands.size() << " Nodes with this delay: ";
 | 
						|
	  for (unsigned i=0; i < mcands.size(); i++)
 | 
						|
	    cerr << candsAsHeap.getNode(mcands[i])->getNodeId() << ", ";
 | 
						|
	  cerr << "\n";
 | 
						|
	}
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool
 | 
						|
SchedPriorities::instructionHasLastUse(FunctionLiveVarInfo &LVI,
 | 
						|
				       const SchedGraphNode* graphNode) {
 | 
						|
  const MachineInstr *MI = graphNode->getMachineInstr();
 | 
						|
  
 | 
						|
  hash_map<const MachineInstr*, bool>::const_iterator
 | 
						|
    ui = lastUseMap.find(MI);
 | 
						|
  if (ui != lastUseMap.end())
 | 
						|
    return ui->second;
 | 
						|
  
 | 
						|
  // else check if instruction is a last use and save it in the hash_map
 | 
						|
  bool hasLastUse = false;
 | 
						|
  const BasicBlock* bb = graphNode->getMachineBasicBlock().getBasicBlock();
 | 
						|
  const ValueSet &LVs = LVI.getLiveVarSetBeforeMInst(MI, bb);
 | 
						|
  
 | 
						|
  for (MachineInstr::const_val_op_iterator OI = MI->begin(), OE = MI->end();
 | 
						|
       OI != OE; ++OI)
 | 
						|
    if (!LVs.count(*OI)) {
 | 
						|
      hasLastUse = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
  return lastUseMap[MI] = hasLastUse;
 | 
						|
}
 | 
						|
 |