mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	Completely empty subranges are not allowed and must be removed when subreg liveness is enabled. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224804 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			428 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			428 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// The LiveRangeEdit class represents changes done to a virtual register when it
 | 
						|
// is spilled or split.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/CodeGen/LiveRangeEdit.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/CodeGen/CalcSpillWeights.h"
 | 
						|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/VirtRegMap.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "regalloc"
 | 
						|
 | 
						|
STATISTIC(NumDCEDeleted,     "Number of instructions deleted by DCE");
 | 
						|
STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE");
 | 
						|
STATISTIC(NumFracRanges,     "Number of live ranges fractured by DCE");
 | 
						|
 | 
						|
void LiveRangeEdit::Delegate::anchor() { }
 | 
						|
 | 
						|
LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(unsigned OldReg) {
 | 
						|
  unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
 | 
						|
  if (VRM) {
 | 
						|
    VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
 | 
						|
  }
 | 
						|
  LiveInterval &LI = LIS.createEmptyInterval(VReg);
 | 
						|
  return LI;
 | 
						|
}
 | 
						|
 | 
						|
unsigned LiveRangeEdit::createFrom(unsigned OldReg) {
 | 
						|
  unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
 | 
						|
  if (VRM) {
 | 
						|
    VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
 | 
						|
  }
 | 
						|
  return VReg;
 | 
						|
}
 | 
						|
 | 
						|
bool LiveRangeEdit::checkRematerializable(VNInfo *VNI,
 | 
						|
                                          const MachineInstr *DefMI,
 | 
						|
                                          AliasAnalysis *aa) {
 | 
						|
  assert(DefMI && "Missing instruction");
 | 
						|
  ScannedRemattable = true;
 | 
						|
  if (!TII.isTriviallyReMaterializable(DefMI, aa))
 | 
						|
    return false;
 | 
						|
  Remattable.insert(VNI);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void LiveRangeEdit::scanRemattable(AliasAnalysis *aa) {
 | 
						|
  for (VNInfo *VNI : getParent().valnos) {
 | 
						|
    if (VNI->isUnused())
 | 
						|
      continue;
 | 
						|
    MachineInstr *DefMI = LIS.getInstructionFromIndex(VNI->def);
 | 
						|
    if (!DefMI)
 | 
						|
      continue;
 | 
						|
    checkRematerializable(VNI, DefMI, aa);
 | 
						|
  }
 | 
						|
  ScannedRemattable = true;
 | 
						|
}
 | 
						|
 | 
						|
bool LiveRangeEdit::anyRematerializable(AliasAnalysis *aa) {
 | 
						|
  if (!ScannedRemattable)
 | 
						|
    scanRemattable(aa);
 | 
						|
  return !Remattable.empty();
 | 
						|
}
 | 
						|
 | 
						|
/// allUsesAvailableAt - Return true if all registers used by OrigMI at
 | 
						|
/// OrigIdx are also available with the same value at UseIdx.
 | 
						|
bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI,
 | 
						|
                                       SlotIndex OrigIdx,
 | 
						|
                                       SlotIndex UseIdx) const {
 | 
						|
  OrigIdx = OrigIdx.getRegSlot(true);
 | 
						|
  UseIdx = UseIdx.getRegSlot(true);
 | 
						|
  for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) {
 | 
						|
    const MachineOperand &MO = OrigMI->getOperand(i);
 | 
						|
    if (!MO.isReg() || !MO.getReg() || !MO.readsReg())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // We can't remat physreg uses, unless it is a constant.
 | 
						|
    if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
 | 
						|
      if (MRI.isConstantPhysReg(MO.getReg(), *OrigMI->getParent()->getParent()))
 | 
						|
        continue;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    LiveInterval &li = LIS.getInterval(MO.getReg());
 | 
						|
    const VNInfo *OVNI = li.getVNInfoAt(OrigIdx);
 | 
						|
    if (!OVNI)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Don't allow rematerialization immediately after the original def.
 | 
						|
    // It would be incorrect if OrigMI redefines the register.
 | 
						|
    // See PR14098.
 | 
						|
    if (SlotIndex::isSameInstr(OrigIdx, UseIdx))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (OVNI != li.getVNInfoAt(UseIdx))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool LiveRangeEdit::canRematerializeAt(Remat &RM,
 | 
						|
                                       SlotIndex UseIdx,
 | 
						|
                                       bool cheapAsAMove) {
 | 
						|
  assert(ScannedRemattable && "Call anyRematerializable first");
 | 
						|
 | 
						|
  // Use scanRemattable info.
 | 
						|
  if (!Remattable.count(RM.ParentVNI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // No defining instruction provided.
 | 
						|
  SlotIndex DefIdx;
 | 
						|
  if (RM.OrigMI)
 | 
						|
    DefIdx = LIS.getInstructionIndex(RM.OrigMI);
 | 
						|
  else {
 | 
						|
    DefIdx = RM.ParentVNI->def;
 | 
						|
    RM.OrigMI = LIS.getInstructionFromIndex(DefIdx);
 | 
						|
    assert(RM.OrigMI && "No defining instruction for remattable value");
 | 
						|
  }
 | 
						|
 | 
						|
  // If only cheap remats were requested, bail out early.
 | 
						|
  if (cheapAsAMove && !TII.isAsCheapAsAMove(RM.OrigMI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Verify that all used registers are available with the same values.
 | 
						|
  if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB,
 | 
						|
                                         MachineBasicBlock::iterator MI,
 | 
						|
                                         unsigned DestReg,
 | 
						|
                                         const Remat &RM,
 | 
						|
                                         const TargetRegisterInfo &tri,
 | 
						|
                                         bool Late) {
 | 
						|
  assert(RM.OrigMI && "Invalid remat");
 | 
						|
  TII.reMaterialize(MBB, MI, DestReg, 0, RM.OrigMI, tri);
 | 
						|
  Rematted.insert(RM.ParentVNI);
 | 
						|
  return LIS.getSlotIndexes()->insertMachineInstrInMaps(--MI, Late)
 | 
						|
           .getRegSlot();
 | 
						|
}
 | 
						|
 | 
						|
void LiveRangeEdit::eraseVirtReg(unsigned Reg) {
 | 
						|
  if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg))
 | 
						|
    LIS.removeInterval(Reg);
 | 
						|
}
 | 
						|
 | 
						|
bool LiveRangeEdit::foldAsLoad(LiveInterval *LI,
 | 
						|
                               SmallVectorImpl<MachineInstr*> &Dead) {
 | 
						|
  MachineInstr *DefMI = nullptr, *UseMI = nullptr;
 | 
						|
 | 
						|
  // Check that there is a single def and a single use.
 | 
						|
  for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg)) {
 | 
						|
    MachineInstr *MI = MO.getParent();
 | 
						|
    if (MO.isDef()) {
 | 
						|
      if (DefMI && DefMI != MI)
 | 
						|
        return false;
 | 
						|
      if (!MI->canFoldAsLoad())
 | 
						|
        return false;
 | 
						|
      DefMI = MI;
 | 
						|
    } else if (!MO.isUndef()) {
 | 
						|
      if (UseMI && UseMI != MI)
 | 
						|
        return false;
 | 
						|
      // FIXME: Targets don't know how to fold subreg uses.
 | 
						|
      if (MO.getSubReg())
 | 
						|
        return false;
 | 
						|
      UseMI = MI;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!DefMI || !UseMI)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Since we're moving the DefMI load, make sure we're not extending any live
 | 
						|
  // ranges.
 | 
						|
  if (!allUsesAvailableAt(DefMI,
 | 
						|
                          LIS.getInstructionIndex(DefMI),
 | 
						|
                          LIS.getInstructionIndex(UseMI)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We also need to make sure it is safe to move the load.
 | 
						|
  // Assume there are stores between DefMI and UseMI.
 | 
						|
  bool SawStore = true;
 | 
						|
  if (!DefMI->isSafeToMove(&TII, nullptr, SawStore))
 | 
						|
    return false;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Try to fold single def: " << *DefMI
 | 
						|
               << "       into single use: " << *UseMI);
 | 
						|
 | 
						|
  SmallVector<unsigned, 8> Ops;
 | 
						|
  if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second)
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineInstr *FoldMI = TII.foldMemoryOperand(UseMI, Ops, DefMI);
 | 
						|
  if (!FoldMI)
 | 
						|
    return false;
 | 
						|
  DEBUG(dbgs() << "                folded: " << *FoldMI);
 | 
						|
  LIS.ReplaceMachineInstrInMaps(UseMI, FoldMI);
 | 
						|
  UseMI->eraseFromParent();
 | 
						|
  DefMI->addRegisterDead(LI->reg, nullptr);
 | 
						|
  Dead.push_back(DefMI);
 | 
						|
  ++NumDCEFoldedLoads;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Find all live intervals that need to shrink, then remove the instruction.
 | 
						|
void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink) {
 | 
						|
  assert(MI->allDefsAreDead() && "Def isn't really dead");
 | 
						|
  SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
 | 
						|
 | 
						|
  // Never delete a bundled instruction.
 | 
						|
  if (MI->isBundled()) {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // Never delete inline asm.
 | 
						|
  if (MI->isInlineAsm()) {
 | 
						|
    DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Use the same criteria as DeadMachineInstructionElim.
 | 
						|
  bool SawStore = false;
 | 
						|
  if (!MI->isSafeToMove(&TII, nullptr, SawStore)) {
 | 
						|
    DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI);
 | 
						|
 | 
						|
  // Collect virtual registers to be erased after MI is gone.
 | 
						|
  SmallVector<unsigned, 8> RegsToErase;
 | 
						|
  bool ReadsPhysRegs = false;
 | 
						|
 | 
						|
  // Check for live intervals that may shrink
 | 
						|
  for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
 | 
						|
         MOE = MI->operands_end(); MOI != MOE; ++MOI) {
 | 
						|
    if (!MOI->isReg())
 | 
						|
      continue;
 | 
						|
    unsigned Reg = MOI->getReg();
 | 
						|
    if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
 | 
						|
      // Check if MI reads any unreserved physregs.
 | 
						|
      if (Reg && MOI->readsReg() && !MRI.isReserved(Reg))
 | 
						|
        ReadsPhysRegs = true;
 | 
						|
      else if (MOI->isDef()) {
 | 
						|
        for (MCRegUnitIterator Units(Reg, MRI.getTargetRegisterInfo());
 | 
						|
             Units.isValid(); ++Units) {
 | 
						|
          if (LiveRange *LR = LIS.getCachedRegUnit(*Units)) {
 | 
						|
            if (VNInfo *VNI = LR->getVNInfoAt(Idx))
 | 
						|
              LR->removeValNo(VNI);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    LiveInterval &LI = LIS.getInterval(Reg);
 | 
						|
 | 
						|
    // Shrink read registers, unless it is likely to be expensive and
 | 
						|
    // unlikely to change anything. We typically don't want to shrink the
 | 
						|
    // PIC base register that has lots of uses everywhere.
 | 
						|
    // Always shrink COPY uses that probably come from live range splitting.
 | 
						|
    if (MI->readsVirtualRegister(Reg) &&
 | 
						|
        (MI->isCopy() || MOI->isDef() || MRI.hasOneNonDBGUse(Reg) ||
 | 
						|
         LI.Query(Idx).isKill()))
 | 
						|
      ToShrink.insert(&LI);
 | 
						|
 | 
						|
    // Remove defined value.
 | 
						|
    if (MOI->isDef()) {
 | 
						|
      if (VNInfo *VNI = LI.getVNInfoAt(Idx)) {
 | 
						|
        if (TheDelegate)
 | 
						|
          TheDelegate->LRE_WillShrinkVirtReg(LI.reg);
 | 
						|
        LI.removeValNo(VNI);
 | 
						|
        if (LI.empty()) {
 | 
						|
          RegsToErase.push_back(Reg);
 | 
						|
        } else {
 | 
						|
          // Also remove the value in subranges.
 | 
						|
          for (LiveInterval::SubRange &S : LI.subranges()) {
 | 
						|
            if (VNInfo *SVNI = S.getVNInfoAt(Idx))
 | 
						|
              S.removeValNo(SVNI);
 | 
						|
          }
 | 
						|
          LI.removeEmptySubRanges();
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Currently, we don't support DCE of physreg live ranges. If MI reads
 | 
						|
  // any unreserved physregs, don't erase the instruction, but turn it into
 | 
						|
  // a KILL instead. This way, the physreg live ranges don't end up
 | 
						|
  // dangling.
 | 
						|
  // FIXME: It would be better to have something like shrinkToUses() for
 | 
						|
  // physregs. That could potentially enable more DCE and it would free up
 | 
						|
  // the physreg. It would not happen often, though.
 | 
						|
  if (ReadsPhysRegs) {
 | 
						|
    MI->setDesc(TII.get(TargetOpcode::KILL));
 | 
						|
    // Remove all operands that aren't physregs.
 | 
						|
    for (unsigned i = MI->getNumOperands(); i; --i) {
 | 
						|
      const MachineOperand &MO = MI->getOperand(i-1);
 | 
						|
      if (MO.isReg() && TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
 | 
						|
        continue;
 | 
						|
      MI->RemoveOperand(i-1);
 | 
						|
    }
 | 
						|
    DEBUG(dbgs() << "Converted physregs to:\t" << *MI);
 | 
						|
  } else {
 | 
						|
    if (TheDelegate)
 | 
						|
      TheDelegate->LRE_WillEraseInstruction(MI);
 | 
						|
    LIS.RemoveMachineInstrFromMaps(MI);
 | 
						|
    MI->eraseFromParent();
 | 
						|
    ++NumDCEDeleted;
 | 
						|
  }
 | 
						|
 | 
						|
  // Erase any virtregs that are now empty and unused. There may be <undef>
 | 
						|
  // uses around. Keep the empty live range in that case.
 | 
						|
  for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) {
 | 
						|
    unsigned Reg = RegsToErase[i];
 | 
						|
    if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) {
 | 
						|
      ToShrink.remove(&LIS.getInterval(Reg));
 | 
						|
      eraseVirtReg(Reg);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr*> &Dead,
 | 
						|
                                      ArrayRef<unsigned> RegsBeingSpilled) {
 | 
						|
  ToShrinkSet ToShrink;
 | 
						|
 | 
						|
  for (;;) {
 | 
						|
    // Erase all dead defs.
 | 
						|
    while (!Dead.empty())
 | 
						|
      eliminateDeadDef(Dead.pop_back_val(), ToShrink);
 | 
						|
 | 
						|
    if (ToShrink.empty())
 | 
						|
      break;
 | 
						|
 | 
						|
    // Shrink just one live interval. Then delete new dead defs.
 | 
						|
    LiveInterval *LI = ToShrink.back();
 | 
						|
    ToShrink.pop_back();
 | 
						|
    if (foldAsLoad(LI, Dead))
 | 
						|
      continue;
 | 
						|
    if (TheDelegate)
 | 
						|
      TheDelegate->LRE_WillShrinkVirtReg(LI->reg);
 | 
						|
    if (!LIS.shrinkToUses(LI, &Dead))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Don't create new intervals for a register being spilled.
 | 
						|
    // The new intervals would have to be spilled anyway so its not worth it.
 | 
						|
    // Also they currently aren't spilled so creating them and not spilling
 | 
						|
    // them results in incorrect code.
 | 
						|
    bool BeingSpilled = false;
 | 
						|
    for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) {
 | 
						|
      if (LI->reg == RegsBeingSpilled[i]) {
 | 
						|
        BeingSpilled = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (BeingSpilled) continue;
 | 
						|
 | 
						|
    // LI may have been separated, create new intervals.
 | 
						|
    LI->RenumberValues();
 | 
						|
    ConnectedVNInfoEqClasses ConEQ(LIS);
 | 
						|
    unsigned NumComp = ConEQ.Classify(LI);
 | 
						|
    if (NumComp <= 1)
 | 
						|
      continue;
 | 
						|
    ++NumFracRanges;
 | 
						|
    bool IsOriginal = VRM && VRM->getOriginal(LI->reg) == LI->reg;
 | 
						|
    DEBUG(dbgs() << NumComp << " components: " << *LI << '\n');
 | 
						|
    SmallVector<LiveInterval*, 8> Dups(1, LI);
 | 
						|
    for (unsigned i = 1; i != NumComp; ++i) {
 | 
						|
      Dups.push_back(&createEmptyIntervalFrom(LI->reg));
 | 
						|
      // If LI is an original interval that hasn't been split yet, make the new
 | 
						|
      // intervals their own originals instead of referring to LI. The original
 | 
						|
      // interval must contain all the split products, and LI doesn't.
 | 
						|
      if (IsOriginal)
 | 
						|
        VRM->setIsSplitFromReg(Dups.back()->reg, 0);
 | 
						|
      if (TheDelegate)
 | 
						|
        TheDelegate->LRE_DidCloneVirtReg(Dups.back()->reg, LI->reg);
 | 
						|
    }
 | 
						|
    ConEQ.Distribute(&Dups[0], MRI);
 | 
						|
    DEBUG({
 | 
						|
      for (unsigned i = 0; i != NumComp; ++i)
 | 
						|
        dbgs() << '\t' << *Dups[i] << '\n';
 | 
						|
    });
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Keep track of new virtual registers created via
 | 
						|
// MachineRegisterInfo::createVirtualRegister.
 | 
						|
void
 | 
						|
LiveRangeEdit::MRI_NoteNewVirtualRegister(unsigned VReg)
 | 
						|
{
 | 
						|
  if (VRM)
 | 
						|
    VRM->grow();
 | 
						|
 | 
						|
  NewRegs.push_back(VReg);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF,
 | 
						|
                                        const MachineLoopInfo &Loops,
 | 
						|
                                        const MachineBlockFrequencyInfo &MBFI) {
 | 
						|
  VirtRegAuxInfo VRAI(MF, LIS, Loops, MBFI);
 | 
						|
  for (unsigned I = 0, Size = size(); I < Size; ++I) {
 | 
						|
    LiveInterval &LI = LIS.getInterval(get(I));
 | 
						|
    if (MRI.recomputeRegClass(LI.reg, MF.getTarget()))
 | 
						|
      DEBUG({
 | 
						|
        const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
 | 
						|
        dbgs() << "Inflated " << PrintReg(LI.reg) << " to "
 | 
						|
               << TRI->getRegClassName(MRI.getRegClass(LI.reg)) << '\n';
 | 
						|
      });
 | 
						|
    VRAI.calculateSpillWeightAndHint(LI);
 | 
						|
  }
 | 
						|
}
 |