mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	instruction should be marked as potentially reading and/or writing memory. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137863 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1746 lines
		
	
	
		
			67 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1746 lines
		
	
	
		
			67 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// InstructionCombining - Combine instructions to form fewer, simple
 | 
						|
// instructions.  This pass does not modify the CFG.  This pass is where
 | 
						|
// algebraic simplification happens.
 | 
						|
//
 | 
						|
// This pass combines things like:
 | 
						|
//    %Y = add i32 %X, 1
 | 
						|
//    %Z = add i32 %Y, 1
 | 
						|
// into:
 | 
						|
//    %Z = add i32 %X, 2
 | 
						|
//
 | 
						|
// This is a simple worklist driven algorithm.
 | 
						|
//
 | 
						|
// This pass guarantees that the following canonicalizations are performed on
 | 
						|
// the program:
 | 
						|
//    1. If a binary operator has a constant operand, it is moved to the RHS
 | 
						|
//    2. Bitwise operators with constant operands are always grouped so that
 | 
						|
//       shifts are performed first, then or's, then and's, then xor's.
 | 
						|
//    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
 | 
						|
//    4. All cmp instructions on boolean values are replaced with logical ops
 | 
						|
//    5. add X, X is represented as (X*2) => (X << 1)
 | 
						|
//    6. Multiplies with a power-of-two constant argument are transformed into
 | 
						|
//       shifts.
 | 
						|
//   ... etc.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "instcombine"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "InstCombine.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/Analysis/ConstantFolding.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/MemoryBuiltins.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/Support/PatternMatch.h"
 | 
						|
#include "llvm/Support/ValueHandle.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm-c/Initialization.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <climits>
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::PatternMatch;
 | 
						|
 | 
						|
STATISTIC(NumCombined , "Number of insts combined");
 | 
						|
STATISTIC(NumConstProp, "Number of constant folds");
 | 
						|
STATISTIC(NumDeadInst , "Number of dead inst eliminated");
 | 
						|
STATISTIC(NumSunkInst , "Number of instructions sunk");
 | 
						|
STATISTIC(NumExpand,    "Number of expansions");
 | 
						|
STATISTIC(NumFactor   , "Number of factorizations");
 | 
						|
STATISTIC(NumReassoc  , "Number of reassociations");
 | 
						|
 | 
						|
// Initialization Routines
 | 
						|
void llvm::initializeInstCombine(PassRegistry &Registry) {
 | 
						|
  initializeInstCombinerPass(Registry);
 | 
						|
}
 | 
						|
 | 
						|
void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
 | 
						|
  initializeInstCombine(*unwrap(R));
 | 
						|
}
 | 
						|
 | 
						|
char InstCombiner::ID = 0;
 | 
						|
INITIALIZE_PASS(InstCombiner, "instcombine",
 | 
						|
                "Combine redundant instructions", false, false)
 | 
						|
 | 
						|
void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.setPreservesCFG();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// ShouldChangeType - Return true if it is desirable to convert a computation
 | 
						|
/// from 'From' to 'To'.  We don't want to convert from a legal to an illegal
 | 
						|
/// type for example, or from a smaller to a larger illegal type.
 | 
						|
bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
 | 
						|
  assert(From->isIntegerTy() && To->isIntegerTy());
 | 
						|
  
 | 
						|
  // If we don't have TD, we don't know if the source/dest are legal.
 | 
						|
  if (!TD) return false;
 | 
						|
  
 | 
						|
  unsigned FromWidth = From->getPrimitiveSizeInBits();
 | 
						|
  unsigned ToWidth = To->getPrimitiveSizeInBits();
 | 
						|
  bool FromLegal = TD->isLegalInteger(FromWidth);
 | 
						|
  bool ToLegal = TD->isLegalInteger(ToWidth);
 | 
						|
  
 | 
						|
  // If this is a legal integer from type, and the result would be an illegal
 | 
						|
  // type, don't do the transformation.
 | 
						|
  if (FromLegal && !ToLegal)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Otherwise, if both are illegal, do not increase the size of the result. We
 | 
						|
  // do allow things like i160 -> i64, but not i64 -> i160.
 | 
						|
  if (!FromLegal && !ToLegal && ToWidth > FromWidth)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Return true, if No Signed Wrap should be maintained for I.
 | 
						|
// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
 | 
						|
// where both B and C should be ConstantInts, results in a constant that does
 | 
						|
// not overflow. This function only handles the Add and Sub opcodes. For
 | 
						|
// all other opcodes, the function conservatively returns false.
 | 
						|
static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
 | 
						|
  OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
 | 
						|
  if (!OBO || !OBO->hasNoSignedWrap()) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // We reason about Add and Sub Only.
 | 
						|
  Instruction::BinaryOps Opcode = I.getOpcode();
 | 
						|
  if (Opcode != Instruction::Add && 
 | 
						|
      Opcode != Instruction::Sub) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  ConstantInt *CB = dyn_cast<ConstantInt>(B);
 | 
						|
  ConstantInt *CC = dyn_cast<ConstantInt>(C);
 | 
						|
 | 
						|
  if (!CB || !CC) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  const APInt &BVal = CB->getValue();
 | 
						|
  const APInt &CVal = CC->getValue();
 | 
						|
  bool Overflow = false;
 | 
						|
 | 
						|
  if (Opcode == Instruction::Add) {
 | 
						|
    BVal.sadd_ov(CVal, Overflow);
 | 
						|
  } else {
 | 
						|
    BVal.ssub_ov(CVal, Overflow);
 | 
						|
  }
 | 
						|
 | 
						|
  return !Overflow;
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyAssociativeOrCommutative - This performs a few simplifications for
 | 
						|
/// operators which are associative or commutative:
 | 
						|
//
 | 
						|
//  Commutative operators:
 | 
						|
//
 | 
						|
//  1. Order operands such that they are listed from right (least complex) to
 | 
						|
//     left (most complex).  This puts constants before unary operators before
 | 
						|
//     binary operators.
 | 
						|
//
 | 
						|
//  Associative operators:
 | 
						|
//
 | 
						|
//  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
 | 
						|
//  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
 | 
						|
//
 | 
						|
//  Associative and commutative operators:
 | 
						|
//
 | 
						|
//  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
 | 
						|
//  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
 | 
						|
//  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
 | 
						|
//     if C1 and C2 are constants.
 | 
						|
//
 | 
						|
bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
 | 
						|
  Instruction::BinaryOps Opcode = I.getOpcode();
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  do {
 | 
						|
    // Order operands such that they are listed from right (least complex) to
 | 
						|
    // left (most complex).  This puts constants before unary operators before
 | 
						|
    // binary operators.
 | 
						|
    if (I.isCommutative() && getComplexity(I.getOperand(0)) <
 | 
						|
        getComplexity(I.getOperand(1)))
 | 
						|
      Changed = !I.swapOperands();
 | 
						|
 | 
						|
    BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
 | 
						|
    BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
 | 
						|
 | 
						|
    if (I.isAssociative()) {
 | 
						|
      // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
 | 
						|
      if (Op0 && Op0->getOpcode() == Opcode) {
 | 
						|
        Value *A = Op0->getOperand(0);
 | 
						|
        Value *B = Op0->getOperand(1);
 | 
						|
        Value *C = I.getOperand(1);
 | 
						|
 | 
						|
        // Does "B op C" simplify?
 | 
						|
        if (Value *V = SimplifyBinOp(Opcode, B, C, TD)) {
 | 
						|
          // It simplifies to V.  Form "A op V".
 | 
						|
          I.setOperand(0, A);
 | 
						|
          I.setOperand(1, V);
 | 
						|
          // Conservatively clear the optional flags, since they may not be
 | 
						|
          // preserved by the reassociation.
 | 
						|
          if (MaintainNoSignedWrap(I, B, C) &&
 | 
						|
	      (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
 | 
						|
            // Note: this is only valid because SimplifyBinOp doesn't look at
 | 
						|
            // the operands to Op0.
 | 
						|
            I.clearSubclassOptionalData();
 | 
						|
            I.setHasNoSignedWrap(true);
 | 
						|
          } else {
 | 
						|
            I.clearSubclassOptionalData();
 | 
						|
          }
 | 
						|
            
 | 
						|
          Changed = true;
 | 
						|
          ++NumReassoc;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
 | 
						|
      if (Op1 && Op1->getOpcode() == Opcode) {
 | 
						|
        Value *A = I.getOperand(0);
 | 
						|
        Value *B = Op1->getOperand(0);
 | 
						|
        Value *C = Op1->getOperand(1);
 | 
						|
 | 
						|
        // Does "A op B" simplify?
 | 
						|
        if (Value *V = SimplifyBinOp(Opcode, A, B, TD)) {
 | 
						|
          // It simplifies to V.  Form "V op C".
 | 
						|
          I.setOperand(0, V);
 | 
						|
          I.setOperand(1, C);
 | 
						|
          // Conservatively clear the optional flags, since they may not be
 | 
						|
          // preserved by the reassociation.
 | 
						|
          I.clearSubclassOptionalData();
 | 
						|
          Changed = true;
 | 
						|
          ++NumReassoc;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (I.isAssociative() && I.isCommutative()) {
 | 
						|
      // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
 | 
						|
      if (Op0 && Op0->getOpcode() == Opcode) {
 | 
						|
        Value *A = Op0->getOperand(0);
 | 
						|
        Value *B = Op0->getOperand(1);
 | 
						|
        Value *C = I.getOperand(1);
 | 
						|
 | 
						|
        // Does "C op A" simplify?
 | 
						|
        if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
 | 
						|
          // It simplifies to V.  Form "V op B".
 | 
						|
          I.setOperand(0, V);
 | 
						|
          I.setOperand(1, B);
 | 
						|
          // Conservatively clear the optional flags, since they may not be
 | 
						|
          // preserved by the reassociation.
 | 
						|
          I.clearSubclassOptionalData();
 | 
						|
          Changed = true;
 | 
						|
          ++NumReassoc;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
 | 
						|
      if (Op1 && Op1->getOpcode() == Opcode) {
 | 
						|
        Value *A = I.getOperand(0);
 | 
						|
        Value *B = Op1->getOperand(0);
 | 
						|
        Value *C = Op1->getOperand(1);
 | 
						|
 | 
						|
        // Does "C op A" simplify?
 | 
						|
        if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
 | 
						|
          // It simplifies to V.  Form "B op V".
 | 
						|
          I.setOperand(0, B);
 | 
						|
          I.setOperand(1, V);
 | 
						|
          // Conservatively clear the optional flags, since they may not be
 | 
						|
          // preserved by the reassociation.
 | 
						|
          I.clearSubclassOptionalData();
 | 
						|
          Changed = true;
 | 
						|
          ++NumReassoc;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
 | 
						|
      // if C1 and C2 are constants.
 | 
						|
      if (Op0 && Op1 &&
 | 
						|
          Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
 | 
						|
          isa<Constant>(Op0->getOperand(1)) &&
 | 
						|
          isa<Constant>(Op1->getOperand(1)) &&
 | 
						|
          Op0->hasOneUse() && Op1->hasOneUse()) {
 | 
						|
        Value *A = Op0->getOperand(0);
 | 
						|
        Constant *C1 = cast<Constant>(Op0->getOperand(1));
 | 
						|
        Value *B = Op1->getOperand(0);
 | 
						|
        Constant *C2 = cast<Constant>(Op1->getOperand(1));
 | 
						|
 | 
						|
        Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
 | 
						|
        BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
 | 
						|
        InsertNewInstWith(New, I);
 | 
						|
        New->takeName(Op1);
 | 
						|
        I.setOperand(0, New);
 | 
						|
        I.setOperand(1, Folded);
 | 
						|
        // Conservatively clear the optional flags, since they may not be
 | 
						|
        // preserved by the reassociation.
 | 
						|
        I.clearSubclassOptionalData();
 | 
						|
 | 
						|
        Changed = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // No further simplifications.
 | 
						|
    return Changed;
 | 
						|
  } while (1);
 | 
						|
}
 | 
						|
 | 
						|
/// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
 | 
						|
/// "(X LOp Y) ROp (X LOp Z)".
 | 
						|
static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
 | 
						|
                                     Instruction::BinaryOps ROp) {
 | 
						|
  switch (LOp) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
 | 
						|
  case Instruction::And:
 | 
						|
    // And distributes over Or and Xor.
 | 
						|
    switch (ROp) {
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
    case Instruction::Or:
 | 
						|
    case Instruction::Xor:
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
  case Instruction::Mul:
 | 
						|
    // Multiplication distributes over addition and subtraction.
 | 
						|
    switch (ROp) {
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
    case Instruction::Add:
 | 
						|
    case Instruction::Sub:
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
  case Instruction::Or:
 | 
						|
    // Or distributes over And.
 | 
						|
    switch (ROp) {
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
    case Instruction::And:
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
 | 
						|
/// "(X ROp Z) LOp (Y ROp Z)".
 | 
						|
static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
 | 
						|
                                     Instruction::BinaryOps ROp) {
 | 
						|
  if (Instruction::isCommutative(ROp))
 | 
						|
    return LeftDistributesOverRight(ROp, LOp);
 | 
						|
  // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
 | 
						|
  // but this requires knowing that the addition does not overflow and other
 | 
						|
  // such subtleties.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
 | 
						|
/// which some other binary operation distributes over either by factorizing
 | 
						|
/// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
 | 
						|
/// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
 | 
						|
/// a win).  Returns the simplified value, or null if it didn't simplify.
 | 
						|
Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
 | 
						|
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 | 
						|
  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
 | 
						|
  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
 | 
						|
  Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op
 | 
						|
 | 
						|
  // Factorization.
 | 
						|
  if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) {
 | 
						|
    // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
 | 
						|
    // a common term.
 | 
						|
    Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
 | 
						|
    Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
 | 
						|
    Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
 | 
						|
 | 
						|
    // Does "X op' Y" always equal "Y op' X"?
 | 
						|
    bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
 | 
						|
 | 
						|
    // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
 | 
						|
    if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
 | 
						|
      // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
 | 
						|
      // commutative case, "(A op' B) op (C op' A)"?
 | 
						|
      if (A == C || (InnerCommutative && A == D)) {
 | 
						|
        if (A != C)
 | 
						|
          std::swap(C, D);
 | 
						|
        // Consider forming "A op' (B op D)".
 | 
						|
        // If "B op D" simplifies then it can be formed with no cost.
 | 
						|
        Value *V = SimplifyBinOp(TopLevelOpcode, B, D, TD);
 | 
						|
        // If "B op D" doesn't simplify then only go on if both of the existing
 | 
						|
        // operations "A op' B" and "C op' D" will be zapped as no longer used.
 | 
						|
        if (!V && Op0->hasOneUse() && Op1->hasOneUse())
 | 
						|
          V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName());
 | 
						|
        if (V) {
 | 
						|
          ++NumFactor;
 | 
						|
          V = Builder->CreateBinOp(InnerOpcode, A, V);
 | 
						|
          V->takeName(&I);
 | 
						|
          return V;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
    // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
 | 
						|
    if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
 | 
						|
      // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
 | 
						|
      // commutative case, "(A op' B) op (B op' D)"?
 | 
						|
      if (B == D || (InnerCommutative && B == C)) {
 | 
						|
        if (B != D)
 | 
						|
          std::swap(C, D);
 | 
						|
        // Consider forming "(A op C) op' B".
 | 
						|
        // If "A op C" simplifies then it can be formed with no cost.
 | 
						|
        Value *V = SimplifyBinOp(TopLevelOpcode, A, C, TD);
 | 
						|
        // If "A op C" doesn't simplify then only go on if both of the existing
 | 
						|
        // operations "A op' B" and "C op' D" will be zapped as no longer used.
 | 
						|
        if (!V && Op0->hasOneUse() && Op1->hasOneUse())
 | 
						|
          V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName());
 | 
						|
        if (V) {
 | 
						|
          ++NumFactor;
 | 
						|
          V = Builder->CreateBinOp(InnerOpcode, V, B);
 | 
						|
          V->takeName(&I);
 | 
						|
          return V;
 | 
						|
        }
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  // Expansion.
 | 
						|
  if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
 | 
						|
    // The instruction has the form "(A op' B) op C".  See if expanding it out
 | 
						|
    // to "(A op C) op' (B op C)" results in simplifications.
 | 
						|
    Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
 | 
						|
    Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
 | 
						|
 | 
						|
    // Do "A op C" and "B op C" both simplify?
 | 
						|
    if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, TD))
 | 
						|
      if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, TD)) {
 | 
						|
        // They do! Return "L op' R".
 | 
						|
        ++NumExpand;
 | 
						|
        // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
 | 
						|
        if ((L == A && R == B) ||
 | 
						|
            (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
 | 
						|
          return Op0;
 | 
						|
        // Otherwise return "L op' R" if it simplifies.
 | 
						|
        if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
 | 
						|
          return V;
 | 
						|
        // Otherwise, create a new instruction.
 | 
						|
        C = Builder->CreateBinOp(InnerOpcode, L, R);
 | 
						|
        C->takeName(&I);
 | 
						|
        return C;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
 | 
						|
    // The instruction has the form "A op (B op' C)".  See if expanding it out
 | 
						|
    // to "(A op B) op' (A op C)" results in simplifications.
 | 
						|
    Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
 | 
						|
    Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
 | 
						|
 | 
						|
    // Do "A op B" and "A op C" both simplify?
 | 
						|
    if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, TD))
 | 
						|
      if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, TD)) {
 | 
						|
        // They do! Return "L op' R".
 | 
						|
        ++NumExpand;
 | 
						|
        // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
 | 
						|
        if ((L == B && R == C) ||
 | 
						|
            (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
 | 
						|
          return Op1;
 | 
						|
        // Otherwise return "L op' R" if it simplifies.
 | 
						|
        if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
 | 
						|
          return V;
 | 
						|
        // Otherwise, create a new instruction.
 | 
						|
        A = Builder->CreateBinOp(InnerOpcode, L, R);
 | 
						|
        A->takeName(&I);
 | 
						|
        return A;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
 | 
						|
// if the LHS is a constant zero (which is the 'negate' form).
 | 
						|
//
 | 
						|
Value *InstCombiner::dyn_castNegVal(Value *V) const {
 | 
						|
  if (BinaryOperator::isNeg(V))
 | 
						|
    return BinaryOperator::getNegArgument(V);
 | 
						|
 | 
						|
  // Constants can be considered to be negated values if they can be folded.
 | 
						|
  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
 | 
						|
    return ConstantExpr::getNeg(C);
 | 
						|
 | 
						|
  if (ConstantVector *C = dyn_cast<ConstantVector>(V))
 | 
						|
    if (C->getType()->getElementType()->isIntegerTy())
 | 
						|
      return ConstantExpr::getNeg(C);
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
// dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
 | 
						|
// instruction if the LHS is a constant negative zero (which is the 'negate'
 | 
						|
// form).
 | 
						|
//
 | 
						|
Value *InstCombiner::dyn_castFNegVal(Value *V) const {
 | 
						|
  if (BinaryOperator::isFNeg(V))
 | 
						|
    return BinaryOperator::getFNegArgument(V);
 | 
						|
 | 
						|
  // Constants can be considered to be negated values if they can be folded.
 | 
						|
  if (ConstantFP *C = dyn_cast<ConstantFP>(V))
 | 
						|
    return ConstantExpr::getFNeg(C);
 | 
						|
 | 
						|
  if (ConstantVector *C = dyn_cast<ConstantVector>(V))
 | 
						|
    if (C->getType()->getElementType()->isFloatingPointTy())
 | 
						|
      return ConstantExpr::getFNeg(C);
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
 | 
						|
                                             InstCombiner *IC) {
 | 
						|
  if (CastInst *CI = dyn_cast<CastInst>(&I)) {
 | 
						|
    return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
 | 
						|
  }
 | 
						|
 | 
						|
  // Figure out if the constant is the left or the right argument.
 | 
						|
  bool ConstIsRHS = isa<Constant>(I.getOperand(1));
 | 
						|
  Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
 | 
						|
 | 
						|
  if (Constant *SOC = dyn_cast<Constant>(SO)) {
 | 
						|
    if (ConstIsRHS)
 | 
						|
      return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
 | 
						|
    return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
 | 
						|
  }
 | 
						|
 | 
						|
  Value *Op0 = SO, *Op1 = ConstOperand;
 | 
						|
  if (!ConstIsRHS)
 | 
						|
    std::swap(Op0, Op1);
 | 
						|
  
 | 
						|
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
 | 
						|
    return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
 | 
						|
                                    SO->getName()+".op");
 | 
						|
  if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
 | 
						|
    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
 | 
						|
                                   SO->getName()+".cmp");
 | 
						|
  if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
 | 
						|
    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
 | 
						|
                                   SO->getName()+".cmp");
 | 
						|
  llvm_unreachable("Unknown binary instruction type!");
 | 
						|
}
 | 
						|
 | 
						|
// FoldOpIntoSelect - Given an instruction with a select as one operand and a
 | 
						|
// constant as the other operand, try to fold the binary operator into the
 | 
						|
// select arguments.  This also works for Cast instructions, which obviously do
 | 
						|
// not have a second operand.
 | 
						|
Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
 | 
						|
  // Don't modify shared select instructions
 | 
						|
  if (!SI->hasOneUse()) return 0;
 | 
						|
  Value *TV = SI->getOperand(1);
 | 
						|
  Value *FV = SI->getOperand(2);
 | 
						|
 | 
						|
  if (isa<Constant>(TV) || isa<Constant>(FV)) {
 | 
						|
    // Bool selects with constant operands can be folded to logical ops.
 | 
						|
    if (SI->getType()->isIntegerTy(1)) return 0;
 | 
						|
 | 
						|
    // If it's a bitcast involving vectors, make sure it has the same number of
 | 
						|
    // elements on both sides.
 | 
						|
    if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
 | 
						|
      VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
 | 
						|
      VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
 | 
						|
 | 
						|
      // Verify that either both or neither are vectors.
 | 
						|
      if ((SrcTy == NULL) != (DestTy == NULL)) return 0;
 | 
						|
      // If vectors, verify that they have the same number of elements.
 | 
						|
      if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    
 | 
						|
    Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
 | 
						|
    Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
 | 
						|
 | 
						|
    return SelectInst::Create(SI->getCondition(),
 | 
						|
                              SelectTrueVal, SelectFalseVal);
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
 | 
						|
/// has a PHI node as operand #0, see if we can fold the instruction into the
 | 
						|
/// PHI (which is only possible if all operands to the PHI are constants).
 | 
						|
///
 | 
						|
Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
 | 
						|
  PHINode *PN = cast<PHINode>(I.getOperand(0));
 | 
						|
  unsigned NumPHIValues = PN->getNumIncomingValues();
 | 
						|
  if (NumPHIValues == 0)
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  // We normally only transform phis with a single use.  However, if a PHI has
 | 
						|
  // multiple uses and they are all the same operation, we can fold *all* of the
 | 
						|
  // uses into the PHI.
 | 
						|
  if (!PN->hasOneUse()) {
 | 
						|
    // Walk the use list for the instruction, comparing them to I.
 | 
						|
    for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
 | 
						|
         UI != E; ++UI) {
 | 
						|
      Instruction *User = cast<Instruction>(*UI);
 | 
						|
      if (User != &I && !I.isIdenticalTo(User))
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    // Otherwise, we can replace *all* users with the new PHI we form.
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Check to see if all of the operands of the PHI are simple constants
 | 
						|
  // (constantint/constantfp/undef).  If there is one non-constant value,
 | 
						|
  // remember the BB it is in.  If there is more than one or if *it* is a PHI,
 | 
						|
  // bail out.  We don't do arbitrary constant expressions here because moving
 | 
						|
  // their computation can be expensive without a cost model.
 | 
						|
  BasicBlock *NonConstBB = 0;
 | 
						|
  for (unsigned i = 0; i != NumPHIValues; ++i) {
 | 
						|
    Value *InVal = PN->getIncomingValue(i);
 | 
						|
    if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (isa<PHINode>(InVal)) return 0;  // Itself a phi.
 | 
						|
    if (NonConstBB) return 0;  // More than one non-const value.
 | 
						|
    
 | 
						|
    NonConstBB = PN->getIncomingBlock(i);
 | 
						|
 | 
						|
    // If the InVal is an invoke at the end of the pred block, then we can't
 | 
						|
    // insert a computation after it without breaking the edge.
 | 
						|
    if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
 | 
						|
      if (II->getParent() == NonConstBB)
 | 
						|
        return 0;
 | 
						|
    
 | 
						|
    // If the incoming non-constant value is in I's block, we will remove one
 | 
						|
    // instruction, but insert another equivalent one, leading to infinite
 | 
						|
    // instcombine.
 | 
						|
    if (NonConstBB == I.getParent())
 | 
						|
      return 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If there is exactly one non-constant value, we can insert a copy of the
 | 
						|
  // operation in that block.  However, if this is a critical edge, we would be
 | 
						|
  // inserting the computation one some other paths (e.g. inside a loop).  Only
 | 
						|
  // do this if the pred block is unconditionally branching into the phi block.
 | 
						|
  if (NonConstBB != 0) {
 | 
						|
    BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
 | 
						|
    if (!BI || !BI->isUnconditional()) return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we can do the transformation: create the new PHI node.
 | 
						|
  PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
 | 
						|
  InsertNewInstBefore(NewPN, *PN);
 | 
						|
  NewPN->takeName(PN);
 | 
						|
  
 | 
						|
  // If we are going to have to insert a new computation, do so right before the
 | 
						|
  // predecessors terminator.
 | 
						|
  if (NonConstBB)
 | 
						|
    Builder->SetInsertPoint(NonConstBB->getTerminator());
 | 
						|
  
 | 
						|
  // Next, add all of the operands to the PHI.
 | 
						|
  if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
 | 
						|
    // We only currently try to fold the condition of a select when it is a phi,
 | 
						|
    // not the true/false values.
 | 
						|
    Value *TrueV = SI->getTrueValue();
 | 
						|
    Value *FalseV = SI->getFalseValue();
 | 
						|
    BasicBlock *PhiTransBB = PN->getParent();
 | 
						|
    for (unsigned i = 0; i != NumPHIValues; ++i) {
 | 
						|
      BasicBlock *ThisBB = PN->getIncomingBlock(i);
 | 
						|
      Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
 | 
						|
      Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
 | 
						|
      Value *InV = 0;
 | 
						|
      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
 | 
						|
        InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
 | 
						|
      else
 | 
						|
        InV = Builder->CreateSelect(PN->getIncomingValue(i),
 | 
						|
                                    TrueVInPred, FalseVInPred, "phitmp");
 | 
						|
      NewPN->addIncoming(InV, ThisBB);
 | 
						|
    }
 | 
						|
  } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
 | 
						|
    Constant *C = cast<Constant>(I.getOperand(1));
 | 
						|
    for (unsigned i = 0; i != NumPHIValues; ++i) {
 | 
						|
      Value *InV = 0;
 | 
						|
      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
 | 
						|
        InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
 | 
						|
      else if (isa<ICmpInst>(CI))
 | 
						|
        InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
 | 
						|
                                  C, "phitmp");
 | 
						|
      else
 | 
						|
        InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
 | 
						|
                                  C, "phitmp");
 | 
						|
      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
 | 
						|
    }
 | 
						|
  } else if (I.getNumOperands() == 2) {
 | 
						|
    Constant *C = cast<Constant>(I.getOperand(1));
 | 
						|
    for (unsigned i = 0; i != NumPHIValues; ++i) {
 | 
						|
      Value *InV = 0;
 | 
						|
      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
 | 
						|
        InV = ConstantExpr::get(I.getOpcode(), InC, C);
 | 
						|
      else
 | 
						|
        InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
 | 
						|
                                   PN->getIncomingValue(i), C, "phitmp");
 | 
						|
      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
 | 
						|
    }
 | 
						|
  } else { 
 | 
						|
    CastInst *CI = cast<CastInst>(&I);
 | 
						|
    Type *RetTy = CI->getType();
 | 
						|
    for (unsigned i = 0; i != NumPHIValues; ++i) {
 | 
						|
      Value *InV;
 | 
						|
      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
 | 
						|
        InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
 | 
						|
      else 
 | 
						|
        InV = Builder->CreateCast(CI->getOpcode(),
 | 
						|
                                PN->getIncomingValue(i), I.getType(), "phitmp");
 | 
						|
      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
 | 
						|
       UI != E; ) {
 | 
						|
    Instruction *User = cast<Instruction>(*UI++);
 | 
						|
    if (User == &I) continue;
 | 
						|
    ReplaceInstUsesWith(*User, NewPN);
 | 
						|
    EraseInstFromFunction(*User);
 | 
						|
  }
 | 
						|
  return ReplaceInstUsesWith(I, NewPN);
 | 
						|
}
 | 
						|
 | 
						|
/// FindElementAtOffset - Given a type and a constant offset, determine whether
 | 
						|
/// or not there is a sequence of GEP indices into the type that will land us at
 | 
						|
/// the specified offset.  If so, fill them into NewIndices and return the
 | 
						|
/// resultant element type, otherwise return null.
 | 
						|
Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset, 
 | 
						|
                                          SmallVectorImpl<Value*> &NewIndices) {
 | 
						|
  if (!TD) return 0;
 | 
						|
  if (!Ty->isSized()) return 0;
 | 
						|
  
 | 
						|
  // Start with the index over the outer type.  Note that the type size
 | 
						|
  // might be zero (even if the offset isn't zero) if the indexed type
 | 
						|
  // is something like [0 x {int, int}]
 | 
						|
  Type *IntPtrTy = TD->getIntPtrType(Ty->getContext());
 | 
						|
  int64_t FirstIdx = 0;
 | 
						|
  if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
 | 
						|
    FirstIdx = Offset/TySize;
 | 
						|
    Offset -= FirstIdx*TySize;
 | 
						|
    
 | 
						|
    // Handle hosts where % returns negative instead of values [0..TySize).
 | 
						|
    if (Offset < 0) {
 | 
						|
      --FirstIdx;
 | 
						|
      Offset += TySize;
 | 
						|
      assert(Offset >= 0);
 | 
						|
    }
 | 
						|
    assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
 | 
						|
  }
 | 
						|
  
 | 
						|
  NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
 | 
						|
    
 | 
						|
  // Index into the types.  If we fail, set OrigBase to null.
 | 
						|
  while (Offset) {
 | 
						|
    // Indexing into tail padding between struct/array elements.
 | 
						|
    if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
 | 
						|
      return 0;
 | 
						|
    
 | 
						|
    if (StructType *STy = dyn_cast<StructType>(Ty)) {
 | 
						|
      const StructLayout *SL = TD->getStructLayout(STy);
 | 
						|
      assert(Offset < (int64_t)SL->getSizeInBytes() &&
 | 
						|
             "Offset must stay within the indexed type");
 | 
						|
      
 | 
						|
      unsigned Elt = SL->getElementContainingOffset(Offset);
 | 
						|
      NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
 | 
						|
                                            Elt));
 | 
						|
      
 | 
						|
      Offset -= SL->getElementOffset(Elt);
 | 
						|
      Ty = STy->getElementType(Elt);
 | 
						|
    } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
 | 
						|
      uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
 | 
						|
      assert(EltSize && "Cannot index into a zero-sized array");
 | 
						|
      NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
 | 
						|
      Offset %= EltSize;
 | 
						|
      Ty = AT->getElementType();
 | 
						|
    } else {
 | 
						|
      // Otherwise, we can't index into the middle of this atomic type, bail.
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return Ty;
 | 
						|
}
 | 
						|
 | 
						|
static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
 | 
						|
  // If this GEP has only 0 indices, it is the same pointer as
 | 
						|
  // Src. If Src is not a trivial GEP too, don't combine
 | 
						|
  // the indices.
 | 
						|
  if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
 | 
						|
      !Src.hasOneUse())
 | 
						|
    return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
 | 
						|
  SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
 | 
						|
 | 
						|
  if (Value *V = SimplifyGEPInst(Ops, TD))
 | 
						|
    return ReplaceInstUsesWith(GEP, V);
 | 
						|
 | 
						|
  Value *PtrOp = GEP.getOperand(0);
 | 
						|
 | 
						|
  // Eliminate unneeded casts for indices, and replace indices which displace
 | 
						|
  // by multiples of a zero size type with zero.
 | 
						|
  if (TD) {
 | 
						|
    bool MadeChange = false;
 | 
						|
    Type *IntPtrTy = TD->getIntPtrType(GEP.getContext());
 | 
						|
 | 
						|
    gep_type_iterator GTI = gep_type_begin(GEP);
 | 
						|
    for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
 | 
						|
         I != E; ++I, ++GTI) {
 | 
						|
      // Skip indices into struct types.
 | 
						|
      SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
 | 
						|
      if (!SeqTy) continue;
 | 
						|
 | 
						|
      // If the element type has zero size then any index over it is equivalent
 | 
						|
      // to an index of zero, so replace it with zero if it is not zero already.
 | 
						|
      if (SeqTy->getElementType()->isSized() &&
 | 
						|
          TD->getTypeAllocSize(SeqTy->getElementType()) == 0)
 | 
						|
        if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
 | 
						|
          *I = Constant::getNullValue(IntPtrTy);
 | 
						|
          MadeChange = true;
 | 
						|
        }
 | 
						|
 | 
						|
      if ((*I)->getType() != IntPtrTy) {
 | 
						|
        // If we are using a wider index than needed for this platform, shrink
 | 
						|
        // it to what we need.  If narrower, sign-extend it to what we need.
 | 
						|
        // This explicit cast can make subsequent optimizations more obvious.
 | 
						|
        *I = Builder->CreateIntCast(*I, IntPtrTy, true);
 | 
						|
        MadeChange = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (MadeChange) return &GEP;
 | 
						|
  }
 | 
						|
 | 
						|
  // Combine Indices - If the source pointer to this getelementptr instruction
 | 
						|
  // is a getelementptr instruction, combine the indices of the two
 | 
						|
  // getelementptr instructions into a single instruction.
 | 
						|
  //
 | 
						|
  if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
 | 
						|
    if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
 | 
						|
      return 0;
 | 
						|
 | 
						|
    // Note that if our source is a gep chain itself that we wait for that
 | 
						|
    // chain to be resolved before we perform this transformation.  This
 | 
						|
    // avoids us creating a TON of code in some cases.
 | 
						|
    if (GEPOperator *SrcGEP =
 | 
						|
          dyn_cast<GEPOperator>(Src->getOperand(0)))
 | 
						|
      if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
 | 
						|
        return 0;   // Wait until our source is folded to completion.
 | 
						|
 | 
						|
    SmallVector<Value*, 8> Indices;
 | 
						|
 | 
						|
    // Find out whether the last index in the source GEP is a sequential idx.
 | 
						|
    bool EndsWithSequential = false;
 | 
						|
    for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
 | 
						|
         I != E; ++I)
 | 
						|
      EndsWithSequential = !(*I)->isStructTy();
 | 
						|
 | 
						|
    // Can we combine the two pointer arithmetics offsets?
 | 
						|
    if (EndsWithSequential) {
 | 
						|
      // Replace: gep (gep %P, long B), long A, ...
 | 
						|
      // With:    T = long A+B; gep %P, T, ...
 | 
						|
      //
 | 
						|
      Value *Sum;
 | 
						|
      Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
 | 
						|
      Value *GO1 = GEP.getOperand(1);
 | 
						|
      if (SO1 == Constant::getNullValue(SO1->getType())) {
 | 
						|
        Sum = GO1;
 | 
						|
      } else if (GO1 == Constant::getNullValue(GO1->getType())) {
 | 
						|
        Sum = SO1;
 | 
						|
      } else {
 | 
						|
        // If they aren't the same type, then the input hasn't been processed
 | 
						|
        // by the loop above yet (which canonicalizes sequential index types to
 | 
						|
        // intptr_t).  Just avoid transforming this until the input has been
 | 
						|
        // normalized.
 | 
						|
        if (SO1->getType() != GO1->getType())
 | 
						|
          return 0;
 | 
						|
        Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
 | 
						|
      }
 | 
						|
 | 
						|
      // Update the GEP in place if possible.
 | 
						|
      if (Src->getNumOperands() == 2) {
 | 
						|
        GEP.setOperand(0, Src->getOperand(0));
 | 
						|
        GEP.setOperand(1, Sum);
 | 
						|
        return &GEP;
 | 
						|
      }
 | 
						|
      Indices.append(Src->op_begin()+1, Src->op_end()-1);
 | 
						|
      Indices.push_back(Sum);
 | 
						|
      Indices.append(GEP.op_begin()+2, GEP.op_end());
 | 
						|
    } else if (isa<Constant>(*GEP.idx_begin()) &&
 | 
						|
               cast<Constant>(*GEP.idx_begin())->isNullValue() &&
 | 
						|
               Src->getNumOperands() != 1) {
 | 
						|
      // Otherwise we can do the fold if the first index of the GEP is a zero
 | 
						|
      Indices.append(Src->op_begin()+1, Src->op_end());
 | 
						|
      Indices.append(GEP.idx_begin()+1, GEP.idx_end());
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Indices.empty())
 | 
						|
      return (GEP.isInBounds() && Src->isInBounds()) ?
 | 
						|
        GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices,
 | 
						|
                                          GEP.getName()) :
 | 
						|
        GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName());
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
 | 
						|
  Value *StrippedPtr = PtrOp->stripPointerCasts();
 | 
						|
  PointerType *StrippedPtrTy =cast<PointerType>(StrippedPtr->getType());
 | 
						|
  if (StrippedPtr != PtrOp &&
 | 
						|
    StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
 | 
						|
 | 
						|
    bool HasZeroPointerIndex = false;
 | 
						|
    if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
 | 
						|
      HasZeroPointerIndex = C->isZero();
 | 
						|
 | 
						|
    // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
 | 
						|
    // into     : GEP [10 x i8]* X, i32 0, ...
 | 
						|
    //
 | 
						|
    // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
 | 
						|
    //           into     : GEP i8* X, ...
 | 
						|
    //
 | 
						|
    // This occurs when the program declares an array extern like "int X[];"
 | 
						|
    if (HasZeroPointerIndex) {
 | 
						|
      PointerType *CPTy = cast<PointerType>(PtrOp->getType());
 | 
						|
      if (ArrayType *CATy =
 | 
						|
          dyn_cast<ArrayType>(CPTy->getElementType())) {
 | 
						|
        // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
 | 
						|
        if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
 | 
						|
          // -> GEP i8* X, ...
 | 
						|
          SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
 | 
						|
          GetElementPtrInst *Res =
 | 
						|
            GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName());
 | 
						|
          Res->setIsInBounds(GEP.isInBounds());
 | 
						|
          return Res;
 | 
						|
        }
 | 
						|
        
 | 
						|
        if (ArrayType *XATy =
 | 
						|
              dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
 | 
						|
          // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
 | 
						|
          if (CATy->getElementType() == XATy->getElementType()) {
 | 
						|
            // -> GEP [10 x i8]* X, i32 0, ...
 | 
						|
            // At this point, we know that the cast source type is a pointer
 | 
						|
            // to an array of the same type as the destination pointer
 | 
						|
            // array.  Because the array type is never stepped over (there
 | 
						|
            // is a leading zero) we can fold the cast into this GEP.
 | 
						|
            GEP.setOperand(0, StrippedPtr);
 | 
						|
            return &GEP;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (GEP.getNumOperands() == 2) {
 | 
						|
      // Transform things like:
 | 
						|
      // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
 | 
						|
      // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
 | 
						|
      Type *SrcElTy = StrippedPtrTy->getElementType();
 | 
						|
      Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
 | 
						|
      if (TD && SrcElTy->isArrayTy() &&
 | 
						|
          TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
 | 
						|
          TD->getTypeAllocSize(ResElTy)) {
 | 
						|
        Value *Idx[2];
 | 
						|
        Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
 | 
						|
        Idx[1] = GEP.getOperand(1);
 | 
						|
        Value *NewGEP = GEP.isInBounds() ?
 | 
						|
          Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
 | 
						|
          Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
 | 
						|
        // V and GEP are both pointer types --> BitCast
 | 
						|
        return new BitCastInst(NewGEP, GEP.getType());
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Transform things like:
 | 
						|
      // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
 | 
						|
      //   (where tmp = 8*tmp2) into:
 | 
						|
      // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
 | 
						|
      
 | 
						|
      if (TD && SrcElTy->isArrayTy() && ResElTy->isIntegerTy(8)) {
 | 
						|
        uint64_t ArrayEltSize =
 | 
						|
            TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
 | 
						|
        
 | 
						|
        // Check to see if "tmp" is a scale by a multiple of ArrayEltSize.  We
 | 
						|
        // allow either a mul, shift, or constant here.
 | 
						|
        Value *NewIdx = 0;
 | 
						|
        ConstantInt *Scale = 0;
 | 
						|
        if (ArrayEltSize == 1) {
 | 
						|
          NewIdx = GEP.getOperand(1);
 | 
						|
          Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1);
 | 
						|
        } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
 | 
						|
          NewIdx = ConstantInt::get(CI->getType(), 1);
 | 
						|
          Scale = CI;
 | 
						|
        } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
 | 
						|
          if (Inst->getOpcode() == Instruction::Shl &&
 | 
						|
              isa<ConstantInt>(Inst->getOperand(1))) {
 | 
						|
            ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
 | 
						|
            uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
 | 
						|
            Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()),
 | 
						|
                                     1ULL << ShAmtVal);
 | 
						|
            NewIdx = Inst->getOperand(0);
 | 
						|
          } else if (Inst->getOpcode() == Instruction::Mul &&
 | 
						|
                     isa<ConstantInt>(Inst->getOperand(1))) {
 | 
						|
            Scale = cast<ConstantInt>(Inst->getOperand(1));
 | 
						|
            NewIdx = Inst->getOperand(0);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        
 | 
						|
        // If the index will be to exactly the right offset with the scale taken
 | 
						|
        // out, perform the transformation. Note, we don't know whether Scale is
 | 
						|
        // signed or not. We'll use unsigned version of division/modulo
 | 
						|
        // operation after making sure Scale doesn't have the sign bit set.
 | 
						|
        if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL &&
 | 
						|
            Scale->getZExtValue() % ArrayEltSize == 0) {
 | 
						|
          Scale = ConstantInt::get(Scale->getType(),
 | 
						|
                                   Scale->getZExtValue() / ArrayEltSize);
 | 
						|
          if (Scale->getZExtValue() != 1) {
 | 
						|
            Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
 | 
						|
                                                       false /*ZExt*/);
 | 
						|
            NewIdx = Builder->CreateMul(NewIdx, C, "idxscale");
 | 
						|
          }
 | 
						|
 | 
						|
          // Insert the new GEP instruction.
 | 
						|
          Value *Idx[2];
 | 
						|
          Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
 | 
						|
          Idx[1] = NewIdx;
 | 
						|
          Value *NewGEP = GEP.isInBounds() ?
 | 
						|
            Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()):
 | 
						|
            Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
 | 
						|
          // The NewGEP must be pointer typed, so must the old one -> BitCast
 | 
						|
          return new BitCastInst(NewGEP, GEP.getType());
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// See if we can simplify:
 | 
						|
  ///   X = bitcast A* to B*
 | 
						|
  ///   Y = gep X, <...constant indices...>
 | 
						|
  /// into a gep of the original struct.  This is important for SROA and alias
 | 
						|
  /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged.
 | 
						|
  if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
 | 
						|
    if (TD &&
 | 
						|
        !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices() &&
 | 
						|
        StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
 | 
						|
 | 
						|
      // Determine how much the GEP moves the pointer.  We are guaranteed to get
 | 
						|
      // a constant back from EmitGEPOffset.
 | 
						|
      ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(&GEP));
 | 
						|
      int64_t Offset = OffsetV->getSExtValue();
 | 
						|
 | 
						|
      // If this GEP instruction doesn't move the pointer, just replace the GEP
 | 
						|
      // with a bitcast of the real input to the dest type.
 | 
						|
      if (Offset == 0) {
 | 
						|
        // If the bitcast is of an allocation, and the allocation will be
 | 
						|
        // converted to match the type of the cast, don't touch this.
 | 
						|
        if (isa<AllocaInst>(BCI->getOperand(0)) ||
 | 
						|
            isMalloc(BCI->getOperand(0))) {
 | 
						|
          // See if the bitcast simplifies, if so, don't nuke this GEP yet.
 | 
						|
          if (Instruction *I = visitBitCast(*BCI)) {
 | 
						|
            if (I != BCI) {
 | 
						|
              I->takeName(BCI);
 | 
						|
              BCI->getParent()->getInstList().insert(BCI, I);
 | 
						|
              ReplaceInstUsesWith(*BCI, I);
 | 
						|
            }
 | 
						|
            return &GEP;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        return new BitCastInst(BCI->getOperand(0), GEP.getType());
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Otherwise, if the offset is non-zero, we need to find out if there is a
 | 
						|
      // field at Offset in 'A's type.  If so, we can pull the cast through the
 | 
						|
      // GEP.
 | 
						|
      SmallVector<Value*, 8> NewIndices;
 | 
						|
      Type *InTy =
 | 
						|
        cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
 | 
						|
      if (FindElementAtOffset(InTy, Offset, NewIndices)) {
 | 
						|
        Value *NGEP = GEP.isInBounds() ?
 | 
						|
          Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices) :
 | 
						|
          Builder->CreateGEP(BCI->getOperand(0), NewIndices);
 | 
						|
        
 | 
						|
        if (NGEP->getType() == GEP.getType())
 | 
						|
          return ReplaceInstUsesWith(GEP, NGEP);
 | 
						|
        NGEP->takeName(&GEP);
 | 
						|
        return new BitCastInst(NGEP, GEP.getType());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }    
 | 
						|
    
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
static bool IsOnlyNullComparedAndFreed(Value *V, SmallVectorImpl<WeakVH> &Users,
 | 
						|
                                       int Depth = 0) {
 | 
						|
  if (Depth == 8)
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
 | 
						|
       UI != UE; ++UI) {
 | 
						|
    User *U = *UI;
 | 
						|
    if (isFreeCall(U)) {
 | 
						|
      Users.push_back(U);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U)) {
 | 
						|
      if (ICI->isEquality() && isa<ConstantPointerNull>(ICI->getOperand(1))) {
 | 
						|
        Users.push_back(ICI);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
 | 
						|
      if (IsOnlyNullComparedAndFreed(BCI, Users, Depth+1)) {
 | 
						|
        Users.push_back(BCI);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
 | 
						|
      if (IsOnlyNullComparedAndFreed(GEPI, Users, Depth+1)) {
 | 
						|
        Users.push_back(GEPI);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
 | 
						|
      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
 | 
						|
          II->getIntrinsicID() == Intrinsic::lifetime_end) {
 | 
						|
        Users.push_back(II);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitMalloc(Instruction &MI) {
 | 
						|
  // If we have a malloc call which is only used in any amount of comparisons
 | 
						|
  // to null and free calls, delete the calls and replace the comparisons with
 | 
						|
  // true or false as appropriate.
 | 
						|
  SmallVector<WeakVH, 64> Users;
 | 
						|
  if (IsOnlyNullComparedAndFreed(&MI, Users)) {
 | 
						|
    for (unsigned i = 0, e = Users.size(); i != e; ++i) {
 | 
						|
      Instruction *I = cast_or_null<Instruction>(&*Users[i]);
 | 
						|
      if (!I) continue;
 | 
						|
 | 
						|
      if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
 | 
						|
        ReplaceInstUsesWith(*C,
 | 
						|
                            ConstantInt::get(Type::getInt1Ty(C->getContext()),
 | 
						|
                                             C->isFalseWhenEqual()));
 | 
						|
      } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
 | 
						|
        ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
 | 
						|
      }
 | 
						|
      EraseInstFromFunction(*I);
 | 
						|
    }
 | 
						|
    return EraseInstFromFunction(MI);
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
Instruction *InstCombiner::visitFree(CallInst &FI) {
 | 
						|
  Value *Op = FI.getArgOperand(0);
 | 
						|
 | 
						|
  // free undef -> unreachable.
 | 
						|
  if (isa<UndefValue>(Op)) {
 | 
						|
    // Insert a new store to null because we cannot modify the CFG here.
 | 
						|
    Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
 | 
						|
                         UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
 | 
						|
    return EraseInstFromFunction(FI);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If we have 'free null' delete the instruction.  This can happen in stl code
 | 
						|
  // when lots of inlining happens.
 | 
						|
  if (isa<ConstantPointerNull>(Op))
 | 
						|
    return EraseInstFromFunction(FI);
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
 | 
						|
  // Change br (not X), label True, label False to: br X, label False, True
 | 
						|
  Value *X = 0;
 | 
						|
  BasicBlock *TrueDest;
 | 
						|
  BasicBlock *FalseDest;
 | 
						|
  if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
 | 
						|
      !isa<Constant>(X)) {
 | 
						|
    // Swap Destinations and condition...
 | 
						|
    BI.setCondition(X);
 | 
						|
    BI.setSuccessor(0, FalseDest);
 | 
						|
    BI.setSuccessor(1, TrueDest);
 | 
						|
    return &BI;
 | 
						|
  }
 | 
						|
 | 
						|
  // Cannonicalize fcmp_one -> fcmp_oeq
 | 
						|
  FCmpInst::Predicate FPred; Value *Y;
 | 
						|
  if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)), 
 | 
						|
                             TrueDest, FalseDest)) &&
 | 
						|
      BI.getCondition()->hasOneUse())
 | 
						|
    if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
 | 
						|
        FPred == FCmpInst::FCMP_OGE) {
 | 
						|
      FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
 | 
						|
      Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
 | 
						|
      
 | 
						|
      // Swap Destinations and condition.
 | 
						|
      BI.setSuccessor(0, FalseDest);
 | 
						|
      BI.setSuccessor(1, TrueDest);
 | 
						|
      Worklist.Add(Cond);
 | 
						|
      return &BI;
 | 
						|
    }
 | 
						|
 | 
						|
  // Cannonicalize icmp_ne -> icmp_eq
 | 
						|
  ICmpInst::Predicate IPred;
 | 
						|
  if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
 | 
						|
                      TrueDest, FalseDest)) &&
 | 
						|
      BI.getCondition()->hasOneUse())
 | 
						|
    if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
 | 
						|
        IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
 | 
						|
        IPred == ICmpInst::ICMP_SGE) {
 | 
						|
      ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
 | 
						|
      Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
 | 
						|
      // Swap Destinations and condition.
 | 
						|
      BI.setSuccessor(0, FalseDest);
 | 
						|
      BI.setSuccessor(1, TrueDest);
 | 
						|
      Worklist.Add(Cond);
 | 
						|
      return &BI;
 | 
						|
    }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
 | 
						|
  Value *Cond = SI.getCondition();
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(Cond)) {
 | 
						|
    if (I->getOpcode() == Instruction::Add)
 | 
						|
      if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | 
						|
        // change 'switch (X+4) case 1:' into 'switch (X) case -3'
 | 
						|
        for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
 | 
						|
          SI.setOperand(i,
 | 
						|
                   ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
 | 
						|
                                                AddRHS));
 | 
						|
        SI.setOperand(0, I->getOperand(0));
 | 
						|
        Worklist.Add(I);
 | 
						|
        return &SI;
 | 
						|
      }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
 | 
						|
  Value *Agg = EV.getAggregateOperand();
 | 
						|
 | 
						|
  if (!EV.hasIndices())
 | 
						|
    return ReplaceInstUsesWith(EV, Agg);
 | 
						|
 | 
						|
  if (Constant *C = dyn_cast<Constant>(Agg)) {
 | 
						|
    if (isa<UndefValue>(C))
 | 
						|
      return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
 | 
						|
      
 | 
						|
    if (isa<ConstantAggregateZero>(C))
 | 
						|
      return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
 | 
						|
 | 
						|
    if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
 | 
						|
      // Extract the element indexed by the first index out of the constant
 | 
						|
      Value *V = C->getOperand(*EV.idx_begin());
 | 
						|
      if (EV.getNumIndices() > 1)
 | 
						|
        // Extract the remaining indices out of the constant indexed by the
 | 
						|
        // first index
 | 
						|
        return ExtractValueInst::Create(V, EV.getIndices().slice(1));
 | 
						|
      else
 | 
						|
        return ReplaceInstUsesWith(EV, V);
 | 
						|
    }
 | 
						|
    return 0; // Can't handle other constants
 | 
						|
  } 
 | 
						|
  if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
 | 
						|
    // We're extracting from an insertvalue instruction, compare the indices
 | 
						|
    const unsigned *exti, *exte, *insi, *inse;
 | 
						|
    for (exti = EV.idx_begin(), insi = IV->idx_begin(),
 | 
						|
         exte = EV.idx_end(), inse = IV->idx_end();
 | 
						|
         exti != exte && insi != inse;
 | 
						|
         ++exti, ++insi) {
 | 
						|
      if (*insi != *exti)
 | 
						|
        // The insert and extract both reference distinctly different elements.
 | 
						|
        // This means the extract is not influenced by the insert, and we can
 | 
						|
        // replace the aggregate operand of the extract with the aggregate
 | 
						|
        // operand of the insert. i.e., replace
 | 
						|
        // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
 | 
						|
        // %E = extractvalue { i32, { i32 } } %I, 0
 | 
						|
        // with
 | 
						|
        // %E = extractvalue { i32, { i32 } } %A, 0
 | 
						|
        return ExtractValueInst::Create(IV->getAggregateOperand(),
 | 
						|
                                        EV.getIndices());
 | 
						|
    }
 | 
						|
    if (exti == exte && insi == inse)
 | 
						|
      // Both iterators are at the end: Index lists are identical. Replace
 | 
						|
      // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
 | 
						|
      // %C = extractvalue { i32, { i32 } } %B, 1, 0
 | 
						|
      // with "i32 42"
 | 
						|
      return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
 | 
						|
    if (exti == exte) {
 | 
						|
      // The extract list is a prefix of the insert list. i.e. replace
 | 
						|
      // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
 | 
						|
      // %E = extractvalue { i32, { i32 } } %I, 1
 | 
						|
      // with
 | 
						|
      // %X = extractvalue { i32, { i32 } } %A, 1
 | 
						|
      // %E = insertvalue { i32 } %X, i32 42, 0
 | 
						|
      // by switching the order of the insert and extract (though the
 | 
						|
      // insertvalue should be left in, since it may have other uses).
 | 
						|
      Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
 | 
						|
                                                 EV.getIndices());
 | 
						|
      return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
 | 
						|
                                     makeArrayRef(insi, inse));
 | 
						|
    }
 | 
						|
    if (insi == inse)
 | 
						|
      // The insert list is a prefix of the extract list
 | 
						|
      // We can simply remove the common indices from the extract and make it
 | 
						|
      // operate on the inserted value instead of the insertvalue result.
 | 
						|
      // i.e., replace
 | 
						|
      // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
 | 
						|
      // %E = extractvalue { i32, { i32 } } %I, 1, 0
 | 
						|
      // with
 | 
						|
      // %E extractvalue { i32 } { i32 42 }, 0
 | 
						|
      return ExtractValueInst::Create(IV->getInsertedValueOperand(), 
 | 
						|
                                      makeArrayRef(exti, exte));
 | 
						|
  }
 | 
						|
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
 | 
						|
    // We're extracting from an intrinsic, see if we're the only user, which
 | 
						|
    // allows us to simplify multiple result intrinsics to simpler things that
 | 
						|
    // just get one value.
 | 
						|
    if (II->hasOneUse()) {
 | 
						|
      // Check if we're grabbing the overflow bit or the result of a 'with
 | 
						|
      // overflow' intrinsic.  If it's the latter we can remove the intrinsic
 | 
						|
      // and replace it with a traditional binary instruction.
 | 
						|
      switch (II->getIntrinsicID()) {
 | 
						|
      case Intrinsic::uadd_with_overflow:
 | 
						|
      case Intrinsic::sadd_with_overflow:
 | 
						|
        if (*EV.idx_begin() == 0) {  // Normal result.
 | 
						|
          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
 | 
						|
          ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
 | 
						|
          EraseInstFromFunction(*II);
 | 
						|
          return BinaryOperator::CreateAdd(LHS, RHS);
 | 
						|
        }
 | 
						|
          
 | 
						|
        // If the normal result of the add is dead, and the RHS is a constant,
 | 
						|
        // we can transform this into a range comparison.
 | 
						|
        // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
 | 
						|
        if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
 | 
						|
          if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
 | 
						|
            return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
 | 
						|
                                ConstantExpr::getNot(CI));
 | 
						|
        break;
 | 
						|
      case Intrinsic::usub_with_overflow:
 | 
						|
      case Intrinsic::ssub_with_overflow:
 | 
						|
        if (*EV.idx_begin() == 0) {  // Normal result.
 | 
						|
          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
 | 
						|
          ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
 | 
						|
          EraseInstFromFunction(*II);
 | 
						|
          return BinaryOperator::CreateSub(LHS, RHS);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case Intrinsic::umul_with_overflow:
 | 
						|
      case Intrinsic::smul_with_overflow:
 | 
						|
        if (*EV.idx_begin() == 0) {  // Normal result.
 | 
						|
          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
 | 
						|
          ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
 | 
						|
          EraseInstFromFunction(*II);
 | 
						|
          return BinaryOperator::CreateMul(LHS, RHS);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (LoadInst *L = dyn_cast<LoadInst>(Agg))
 | 
						|
    // If the (non-volatile) load only has one use, we can rewrite this to a
 | 
						|
    // load from a GEP. This reduces the size of the load.
 | 
						|
    // FIXME: If a load is used only by extractvalue instructions then this
 | 
						|
    //        could be done regardless of having multiple uses.
 | 
						|
    if (L->isSimple() && L->hasOneUse()) {
 | 
						|
      // extractvalue has integer indices, getelementptr has Value*s. Convert.
 | 
						|
      SmallVector<Value*, 4> Indices;
 | 
						|
      // Prefix an i32 0 since we need the first element.
 | 
						|
      Indices.push_back(Builder->getInt32(0));
 | 
						|
      for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
 | 
						|
            I != E; ++I)
 | 
						|
        Indices.push_back(Builder->getInt32(*I));
 | 
						|
 | 
						|
      // We need to insert these at the location of the old load, not at that of
 | 
						|
      // the extractvalue.
 | 
						|
      Builder->SetInsertPoint(L->getParent(), L);
 | 
						|
      Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices);
 | 
						|
      // Returning the load directly will cause the main loop to insert it in
 | 
						|
      // the wrong spot, so use ReplaceInstUsesWith().
 | 
						|
      return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
 | 
						|
    }
 | 
						|
  // We could simplify extracts from other values. Note that nested extracts may
 | 
						|
  // already be simplified implicitly by the above: extract (extract (insert) )
 | 
						|
  // will be translated into extract ( insert ( extract ) ) first and then just
 | 
						|
  // the value inserted, if appropriate. Similarly for extracts from single-use
 | 
						|
  // loads: extract (extract (load)) will be translated to extract (load (gep))
 | 
						|
  // and if again single-use then via load (gep (gep)) to load (gep).
 | 
						|
  // However, double extracts from e.g. function arguments or return values
 | 
						|
  // aren't handled yet.
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/// TryToSinkInstruction - Try to move the specified instruction from its
 | 
						|
/// current block into the beginning of DestBlock, which can only happen if it's
 | 
						|
/// safe to move the instruction past all of the instructions between it and the
 | 
						|
/// end of its block.
 | 
						|
static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
 | 
						|
  assert(I->hasOneUse() && "Invariants didn't hold!");
 | 
						|
 | 
						|
  // Cannot move control-flow-involving, volatile loads, vaarg, etc.
 | 
						|
  if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() ||
 | 
						|
      isa<TerminatorInst>(I))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Do not sink alloca instructions out of the entry block.
 | 
						|
  if (isa<AllocaInst>(I) && I->getParent() ==
 | 
						|
        &DestBlock->getParent()->getEntryBlock())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We can only sink load instructions if there is nothing between the load and
 | 
						|
  // the end of block that could change the value.
 | 
						|
  if (I->mayReadFromMemory()) {
 | 
						|
    for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
 | 
						|
         Scan != E; ++Scan)
 | 
						|
      if (Scan->mayWriteToMemory())
 | 
						|
        return false;
 | 
						|
  }
 | 
						|
 | 
						|
  BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
 | 
						|
  I->moveBefore(InsertPos);
 | 
						|
  ++NumSunkInst;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
 | 
						|
/// all reachable code to the worklist.
 | 
						|
///
 | 
						|
/// This has a couple of tricks to make the code faster and more powerful.  In
 | 
						|
/// particular, we constant fold and DCE instructions as we go, to avoid adding
 | 
						|
/// them to the worklist (this significantly speeds up instcombine on code where
 | 
						|
/// many instructions are dead or constant).  Additionally, if we find a branch
 | 
						|
/// whose condition is a known constant, we only visit the reachable successors.
 | 
						|
///
 | 
						|
static bool AddReachableCodeToWorklist(BasicBlock *BB, 
 | 
						|
                                       SmallPtrSet<BasicBlock*, 64> &Visited,
 | 
						|
                                       InstCombiner &IC,
 | 
						|
                                       const TargetData *TD) {
 | 
						|
  bool MadeIRChange = false;
 | 
						|
  SmallVector<BasicBlock*, 256> Worklist;
 | 
						|
  Worklist.push_back(BB);
 | 
						|
 | 
						|
  SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
 | 
						|
  DenseMap<ConstantExpr*, Constant*> FoldedConstants;
 | 
						|
 | 
						|
  do {
 | 
						|
    BB = Worklist.pop_back_val();
 | 
						|
    
 | 
						|
    // We have now visited this block!  If we've already been here, ignore it.
 | 
						|
    if (!Visited.insert(BB)) continue;
 | 
						|
 | 
						|
    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
 | 
						|
      Instruction *Inst = BBI++;
 | 
						|
      
 | 
						|
      // DCE instruction if trivially dead.
 | 
						|
      if (isInstructionTriviallyDead(Inst)) {
 | 
						|
        ++NumDeadInst;
 | 
						|
        DEBUG(errs() << "IC: DCE: " << *Inst << '\n');
 | 
						|
        Inst->eraseFromParent();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // ConstantProp instruction if trivially constant.
 | 
						|
      if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
 | 
						|
        if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
 | 
						|
          DEBUG(errs() << "IC: ConstFold to: " << *C << " from: "
 | 
						|
                       << *Inst << '\n');
 | 
						|
          Inst->replaceAllUsesWith(C);
 | 
						|
          ++NumConstProp;
 | 
						|
          Inst->eraseFromParent();
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      
 | 
						|
      if (TD) {
 | 
						|
        // See if we can constant fold its operands.
 | 
						|
        for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
 | 
						|
             i != e; ++i) {
 | 
						|
          ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
 | 
						|
          if (CE == 0) continue;
 | 
						|
 | 
						|
          Constant*& FoldRes = FoldedConstants[CE];
 | 
						|
          if (!FoldRes)
 | 
						|
            FoldRes = ConstantFoldConstantExpression(CE, TD);
 | 
						|
          if (!FoldRes)
 | 
						|
            FoldRes = CE;
 | 
						|
 | 
						|
          if (FoldRes != CE) {
 | 
						|
            *i = FoldRes;
 | 
						|
            MadeIRChange = true;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      InstrsForInstCombineWorklist.push_back(Inst);
 | 
						|
    }
 | 
						|
 | 
						|
    // Recursively visit successors.  If this is a branch or switch on a
 | 
						|
    // constant, only visit the reachable successor.
 | 
						|
    TerminatorInst *TI = BB->getTerminator();
 | 
						|
    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | 
						|
      if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
 | 
						|
        bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
 | 
						|
        BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
 | 
						|
        Worklist.push_back(ReachableBB);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | 
						|
      if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
 | 
						|
        // See if this is an explicit destination.
 | 
						|
        for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
 | 
						|
          if (SI->getCaseValue(i) == Cond) {
 | 
						|
            BasicBlock *ReachableBB = SI->getSuccessor(i);
 | 
						|
            Worklist.push_back(ReachableBB);
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
        
 | 
						|
        // Otherwise it is the default destination.
 | 
						|
        Worklist.push_back(SI->getSuccessor(0));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
 | 
						|
      Worklist.push_back(TI->getSuccessor(i));
 | 
						|
  } while (!Worklist.empty());
 | 
						|
  
 | 
						|
  // Once we've found all of the instructions to add to instcombine's worklist,
 | 
						|
  // add them in reverse order.  This way instcombine will visit from the top
 | 
						|
  // of the function down.  This jives well with the way that it adds all uses
 | 
						|
  // of instructions to the worklist after doing a transformation, thus avoiding
 | 
						|
  // some N^2 behavior in pathological cases.
 | 
						|
  IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
 | 
						|
                              InstrsForInstCombineWorklist.size());
 | 
						|
  
 | 
						|
  return MadeIRChange;
 | 
						|
}
 | 
						|
 | 
						|
bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
 | 
						|
  MadeIRChange = false;
 | 
						|
  
 | 
						|
  DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
 | 
						|
        << F.getNameStr() << "\n");
 | 
						|
 | 
						|
  {
 | 
						|
    // Do a depth-first traversal of the function, populate the worklist with
 | 
						|
    // the reachable instructions.  Ignore blocks that are not reachable.  Keep
 | 
						|
    // track of which blocks we visit.
 | 
						|
    SmallPtrSet<BasicBlock*, 64> Visited;
 | 
						|
    MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
 | 
						|
 | 
						|
    // Do a quick scan over the function.  If we find any blocks that are
 | 
						|
    // unreachable, remove any instructions inside of them.  This prevents
 | 
						|
    // the instcombine code from having to deal with some bad special cases.
 | 
						|
    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
 | 
						|
      if (!Visited.count(BB)) {
 | 
						|
        Instruction *Term = BB->getTerminator();
 | 
						|
        while (Term != BB->begin()) {   // Remove instrs bottom-up
 | 
						|
          BasicBlock::iterator I = Term; --I;
 | 
						|
 | 
						|
          DEBUG(errs() << "IC: DCE: " << *I << '\n');
 | 
						|
          // A debug intrinsic shouldn't force another iteration if we weren't
 | 
						|
          // going to do one without it.
 | 
						|
          if (!isa<DbgInfoIntrinsic>(I)) {
 | 
						|
            ++NumDeadInst;
 | 
						|
            MadeIRChange = true;
 | 
						|
          }
 | 
						|
 | 
						|
          // If I is not void type then replaceAllUsesWith undef.
 | 
						|
          // This allows ValueHandlers and custom metadata to adjust itself.
 | 
						|
          if (!I->getType()->isVoidTy())
 | 
						|
            I->replaceAllUsesWith(UndefValue::get(I->getType()));
 | 
						|
          I->eraseFromParent();
 | 
						|
        }
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  while (!Worklist.isEmpty()) {
 | 
						|
    Instruction *I = Worklist.RemoveOne();
 | 
						|
    if (I == 0) continue;  // skip null values.
 | 
						|
 | 
						|
    // Check to see if we can DCE the instruction.
 | 
						|
    if (isInstructionTriviallyDead(I)) {
 | 
						|
      DEBUG(errs() << "IC: DCE: " << *I << '\n');
 | 
						|
      EraseInstFromFunction(*I);
 | 
						|
      ++NumDeadInst;
 | 
						|
      MadeIRChange = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Instruction isn't dead, see if we can constant propagate it.
 | 
						|
    if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
 | 
						|
      if (Constant *C = ConstantFoldInstruction(I, TD)) {
 | 
						|
        DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
 | 
						|
 | 
						|
        // Add operands to the worklist.
 | 
						|
        ReplaceInstUsesWith(*I, C);
 | 
						|
        ++NumConstProp;
 | 
						|
        EraseInstFromFunction(*I);
 | 
						|
        MadeIRChange = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
    // See if we can trivially sink this instruction to a successor basic block.
 | 
						|
    if (I->hasOneUse()) {
 | 
						|
      BasicBlock *BB = I->getParent();
 | 
						|
      Instruction *UserInst = cast<Instruction>(I->use_back());
 | 
						|
      BasicBlock *UserParent;
 | 
						|
      
 | 
						|
      // Get the block the use occurs in.
 | 
						|
      if (PHINode *PN = dyn_cast<PHINode>(UserInst))
 | 
						|
        UserParent = PN->getIncomingBlock(I->use_begin().getUse());
 | 
						|
      else
 | 
						|
        UserParent = UserInst->getParent();
 | 
						|
      
 | 
						|
      if (UserParent != BB) {
 | 
						|
        bool UserIsSuccessor = false;
 | 
						|
        // See if the user is one of our successors.
 | 
						|
        for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
 | 
						|
          if (*SI == UserParent) {
 | 
						|
            UserIsSuccessor = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
 | 
						|
        // If the user is one of our immediate successors, and if that successor
 | 
						|
        // only has us as a predecessors (we'd have to split the critical edge
 | 
						|
        // otherwise), we can keep going.
 | 
						|
        if (UserIsSuccessor && UserParent->getSinglePredecessor())
 | 
						|
          // Okay, the CFG is simple enough, try to sink this instruction.
 | 
						|
          MadeIRChange |= TryToSinkInstruction(I, UserParent);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Now that we have an instruction, try combining it to simplify it.
 | 
						|
    Builder->SetInsertPoint(I->getParent(), I);
 | 
						|
    Builder->SetCurrentDebugLocation(I->getDebugLoc());
 | 
						|
    
 | 
						|
#ifndef NDEBUG
 | 
						|
    std::string OrigI;
 | 
						|
#endif
 | 
						|
    DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
 | 
						|
    DEBUG(errs() << "IC: Visiting: " << OrigI << '\n');
 | 
						|
 | 
						|
    if (Instruction *Result = visit(*I)) {
 | 
						|
      ++NumCombined;
 | 
						|
      // Should we replace the old instruction with a new one?
 | 
						|
      if (Result != I) {
 | 
						|
        DEBUG(errs() << "IC: Old = " << *I << '\n'
 | 
						|
                     << "    New = " << *Result << '\n');
 | 
						|
 | 
						|
        if (!I->getDebugLoc().isUnknown())
 | 
						|
          Result->setDebugLoc(I->getDebugLoc());
 | 
						|
        // Everything uses the new instruction now.
 | 
						|
        I->replaceAllUsesWith(Result);
 | 
						|
 | 
						|
        // Push the new instruction and any users onto the worklist.
 | 
						|
        Worklist.Add(Result);
 | 
						|
        Worklist.AddUsersToWorkList(*Result);
 | 
						|
 | 
						|
        // Move the name to the new instruction first.
 | 
						|
        Result->takeName(I);
 | 
						|
 | 
						|
        // Insert the new instruction into the basic block...
 | 
						|
        BasicBlock *InstParent = I->getParent();
 | 
						|
        BasicBlock::iterator InsertPos = I;
 | 
						|
 | 
						|
        if (!isa<PHINode>(Result))        // If combining a PHI, don't insert
 | 
						|
          while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
 | 
						|
            ++InsertPos;
 | 
						|
 | 
						|
        InstParent->getInstList().insert(InsertPos, Result);
 | 
						|
 | 
						|
        EraseInstFromFunction(*I);
 | 
						|
      } else {
 | 
						|
#ifndef NDEBUG
 | 
						|
        DEBUG(errs() << "IC: Mod = " << OrigI << '\n'
 | 
						|
                     << "    New = " << *I << '\n');
 | 
						|
#endif
 | 
						|
 | 
						|
        // If the instruction was modified, it's possible that it is now dead.
 | 
						|
        // if so, remove it.
 | 
						|
        if (isInstructionTriviallyDead(I)) {
 | 
						|
          EraseInstFromFunction(*I);
 | 
						|
        } else {
 | 
						|
          Worklist.Add(I);
 | 
						|
          Worklist.AddUsersToWorkList(*I);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      MadeIRChange = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Worklist.Zap();
 | 
						|
  return MadeIRChange;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool InstCombiner::runOnFunction(Function &F) {
 | 
						|
  TD = getAnalysisIfAvailable<TargetData>();
 | 
						|
 | 
						|
  
 | 
						|
  /// Builder - This is an IRBuilder that automatically inserts new
 | 
						|
  /// instructions into the worklist when they are created.
 | 
						|
  IRBuilder<true, TargetFolder, InstCombineIRInserter> 
 | 
						|
    TheBuilder(F.getContext(), TargetFolder(TD),
 | 
						|
               InstCombineIRInserter(Worklist));
 | 
						|
  Builder = &TheBuilder;
 | 
						|
  
 | 
						|
  bool EverMadeChange = false;
 | 
						|
 | 
						|
  // Lower dbg.declare intrinsics otherwise their value may be clobbered
 | 
						|
  // by instcombiner.
 | 
						|
  EverMadeChange = LowerDbgDeclare(F);
 | 
						|
 | 
						|
  // Iterate while there is work to do.
 | 
						|
  unsigned Iteration = 0;
 | 
						|
  while (DoOneIteration(F, Iteration++))
 | 
						|
    EverMadeChange = true;
 | 
						|
  
 | 
						|
  Builder = 0;
 | 
						|
  return EverMadeChange;
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass *llvm::createInstructionCombiningPass() {
 | 
						|
  return new InstCombiner();
 | 
						|
}
 |