mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21152 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			5188 lines
		
	
	
		
			212 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			5188 lines
		
	
	
		
			212 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
 | 
						|
// 
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// InstructionCombining - Combine instructions to form fewer, simple
 | 
						|
// instructions.  This pass does not modify the CFG This pass is where algebraic
 | 
						|
// simplification happens.
 | 
						|
//
 | 
						|
// This pass combines things like:
 | 
						|
//    %Y = add int %X, 1
 | 
						|
//    %Z = add int %Y, 1
 | 
						|
// into:
 | 
						|
//    %Z = add int %X, 2
 | 
						|
//
 | 
						|
// This is a simple worklist driven algorithm.
 | 
						|
//
 | 
						|
// This pass guarantees that the following canonicalizations are performed on
 | 
						|
// the program:
 | 
						|
//    1. If a binary operator has a constant operand, it is moved to the RHS
 | 
						|
//    2. Bitwise operators with constant operands are always grouped so that
 | 
						|
//       shifts are performed first, then or's, then and's, then xor's.
 | 
						|
//    3. SetCC instructions are converted from <,>,<=,>= to ==,!= if possible
 | 
						|
//    4. All SetCC instructions on boolean values are replaced with logical ops
 | 
						|
//    5. add X, X is represented as (X*2) => (X << 1)
 | 
						|
//    6. Multiplies with a power-of-two constant argument are transformed into
 | 
						|
//       shifts.
 | 
						|
//   ... etc.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "instcombine"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/GlobalVariable.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Support/CallSite.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/Support/InstIterator.h"
 | 
						|
#include "llvm/Support/InstVisitor.h"
 | 
						|
#include "llvm/Support/PatternMatch.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::PatternMatch;
 | 
						|
 | 
						|
namespace {
 | 
						|
  Statistic<> NumCombined ("instcombine", "Number of insts combined");
 | 
						|
  Statistic<> NumConstProp("instcombine", "Number of constant folds");
 | 
						|
  Statistic<> NumDeadInst ("instcombine", "Number of dead inst eliminated");
 | 
						|
  Statistic<> NumSunkInst ("instcombine", "Number of instructions sunk");
 | 
						|
 | 
						|
  class InstCombiner : public FunctionPass,
 | 
						|
                       public InstVisitor<InstCombiner, Instruction*> {
 | 
						|
    // Worklist of all of the instructions that need to be simplified.
 | 
						|
    std::vector<Instruction*> WorkList;
 | 
						|
    TargetData *TD;
 | 
						|
 | 
						|
    /// AddUsersToWorkList - When an instruction is simplified, add all users of
 | 
						|
    /// the instruction to the work lists because they might get more simplified
 | 
						|
    /// now.
 | 
						|
    ///
 | 
						|
    void AddUsersToWorkList(Instruction &I) {
 | 
						|
      for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
 | 
						|
           UI != UE; ++UI)
 | 
						|
        WorkList.push_back(cast<Instruction>(*UI));
 | 
						|
    }
 | 
						|
 | 
						|
    /// AddUsesToWorkList - When an instruction is simplified, add operands to
 | 
						|
    /// the work lists because they might get more simplified now.
 | 
						|
    ///
 | 
						|
    void AddUsesToWorkList(Instruction &I) {
 | 
						|
      for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
 | 
						|
        if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i)))
 | 
						|
          WorkList.push_back(Op);
 | 
						|
    }
 | 
						|
 | 
						|
    // removeFromWorkList - remove all instances of I from the worklist.
 | 
						|
    void removeFromWorkList(Instruction *I);
 | 
						|
  public:
 | 
						|
    virtual bool runOnFunction(Function &F);
 | 
						|
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addRequired<TargetData>();
 | 
						|
      AU.setPreservesCFG();
 | 
						|
    }
 | 
						|
 | 
						|
    TargetData &getTargetData() const { return *TD; }
 | 
						|
 | 
						|
    // Visitation implementation - Implement instruction combining for different
 | 
						|
    // instruction types.  The semantics are as follows:
 | 
						|
    // Return Value:
 | 
						|
    //    null        - No change was made
 | 
						|
    //     I          - Change was made, I is still valid, I may be dead though
 | 
						|
    //   otherwise    - Change was made, replace I with returned instruction
 | 
						|
    //   
 | 
						|
    Instruction *visitAdd(BinaryOperator &I);
 | 
						|
    Instruction *visitSub(BinaryOperator &I);
 | 
						|
    Instruction *visitMul(BinaryOperator &I);
 | 
						|
    Instruction *visitDiv(BinaryOperator &I);
 | 
						|
    Instruction *visitRem(BinaryOperator &I);
 | 
						|
    Instruction *visitAnd(BinaryOperator &I);
 | 
						|
    Instruction *visitOr (BinaryOperator &I);
 | 
						|
    Instruction *visitXor(BinaryOperator &I);
 | 
						|
    Instruction *visitSetCondInst(BinaryOperator &I);
 | 
						|
    Instruction *visitSetCondInstWithCastAndConstant(BinaryOperator&I,
 | 
						|
                                                     CastInst*LHSI,
 | 
						|
                                                     ConstantInt* CI);
 | 
						|
    Instruction *FoldGEPSetCC(User *GEPLHS, Value *RHS,
 | 
						|
                              Instruction::BinaryOps Cond, Instruction &I);
 | 
						|
    Instruction *visitShiftInst(ShiftInst &I);
 | 
						|
    Instruction *visitCastInst(CastInst &CI);
 | 
						|
    Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
 | 
						|
                                Instruction *FI);
 | 
						|
    Instruction *visitSelectInst(SelectInst &CI);
 | 
						|
    Instruction *visitCallInst(CallInst &CI);
 | 
						|
    Instruction *visitInvokeInst(InvokeInst &II);
 | 
						|
    Instruction *visitPHINode(PHINode &PN);
 | 
						|
    Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
 | 
						|
    Instruction *visitAllocationInst(AllocationInst &AI);
 | 
						|
    Instruction *visitFreeInst(FreeInst &FI);
 | 
						|
    Instruction *visitLoadInst(LoadInst &LI);
 | 
						|
    Instruction *visitStoreInst(StoreInst &SI);
 | 
						|
    Instruction *visitBranchInst(BranchInst &BI);
 | 
						|
    Instruction *visitSwitchInst(SwitchInst &SI);
 | 
						|
 | 
						|
    // visitInstruction - Specify what to return for unhandled instructions...
 | 
						|
    Instruction *visitInstruction(Instruction &I) { return 0; }
 | 
						|
 | 
						|
  private:
 | 
						|
    Instruction *visitCallSite(CallSite CS);
 | 
						|
    bool transformConstExprCastCall(CallSite CS);
 | 
						|
 | 
						|
  public:
 | 
						|
    // InsertNewInstBefore - insert an instruction New before instruction Old
 | 
						|
    // in the program.  Add the new instruction to the worklist.
 | 
						|
    //
 | 
						|
    Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
 | 
						|
      assert(New && New->getParent() == 0 &&
 | 
						|
             "New instruction already inserted into a basic block!");
 | 
						|
      BasicBlock *BB = Old.getParent();
 | 
						|
      BB->getInstList().insert(&Old, New);  // Insert inst
 | 
						|
      WorkList.push_back(New);              // Add to worklist
 | 
						|
      return New;
 | 
						|
    }
 | 
						|
 | 
						|
    /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
 | 
						|
    /// This also adds the cast to the worklist.  Finally, this returns the
 | 
						|
    /// cast.
 | 
						|
    Value *InsertCastBefore(Value *V, const Type *Ty, Instruction &Pos) {
 | 
						|
      if (V->getType() == Ty) return V;
 | 
						|
      
 | 
						|
      Instruction *C = new CastInst(V, Ty, V->getName(), &Pos);
 | 
						|
      WorkList.push_back(C);
 | 
						|
      return C;
 | 
						|
    }
 | 
						|
 | 
						|
    // ReplaceInstUsesWith - This method is to be used when an instruction is
 | 
						|
    // found to be dead, replacable with another preexisting expression.  Here
 | 
						|
    // we add all uses of I to the worklist, replace all uses of I with the new
 | 
						|
    // value, then return I, so that the inst combiner will know that I was
 | 
						|
    // modified.
 | 
						|
    //
 | 
						|
    Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
 | 
						|
      AddUsersToWorkList(I);         // Add all modified instrs to worklist
 | 
						|
      if (&I != V) {
 | 
						|
        I.replaceAllUsesWith(V);
 | 
						|
        return &I;
 | 
						|
      } else {
 | 
						|
        // If we are replacing the instruction with itself, this must be in a
 | 
						|
        // segment of unreachable code, so just clobber the instruction.
 | 
						|
        I.replaceAllUsesWith(UndefValue::get(I.getType()));
 | 
						|
        return &I;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // EraseInstFromFunction - When dealing with an instruction that has side
 | 
						|
    // effects or produces a void value, we can't rely on DCE to delete the
 | 
						|
    // instruction.  Instead, visit methods should return the value returned by
 | 
						|
    // this function.
 | 
						|
    Instruction *EraseInstFromFunction(Instruction &I) {
 | 
						|
      assert(I.use_empty() && "Cannot erase instruction that is used!");
 | 
						|
      AddUsesToWorkList(I);
 | 
						|
      removeFromWorkList(&I);
 | 
						|
      I.eraseFromParent();
 | 
						|
      return 0;  // Don't do anything with FI
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
  private:
 | 
						|
    /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
 | 
						|
    /// InsertBefore instruction.  This is specialized a bit to avoid inserting
 | 
						|
    /// casts that are known to not do anything...
 | 
						|
    ///
 | 
						|
    Value *InsertOperandCastBefore(Value *V, const Type *DestTy,
 | 
						|
                                   Instruction *InsertBefore);
 | 
						|
 | 
						|
    // SimplifyCommutative - This performs a few simplifications for commutative
 | 
						|
    // operators.
 | 
						|
    bool SimplifyCommutative(BinaryOperator &I);
 | 
						|
 | 
						|
 | 
						|
    // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
 | 
						|
    // PHI node as operand #0, see if we can fold the instruction into the PHI
 | 
						|
    // (which is only possible if all operands to the PHI are constants).
 | 
						|
    Instruction *FoldOpIntoPhi(Instruction &I);
 | 
						|
 | 
						|
    // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
 | 
						|
    // operator and they all are only used by the PHI, PHI together their
 | 
						|
    // inputs, and do the operation once, to the result of the PHI.
 | 
						|
    Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
 | 
						|
 | 
						|
    Instruction *OptAndOp(Instruction *Op, ConstantIntegral *OpRHS,
 | 
						|
                          ConstantIntegral *AndRHS, BinaryOperator &TheAnd);
 | 
						|
 | 
						|
    Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
 | 
						|
                                 bool Inside, Instruction &IB);
 | 
						|
  };
 | 
						|
 | 
						|
  RegisterOpt<InstCombiner> X("instcombine", "Combine redundant instructions");
 | 
						|
}
 | 
						|
 | 
						|
// getComplexity:  Assign a complexity or rank value to LLVM Values...
 | 
						|
//   0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
 | 
						|
static unsigned getComplexity(Value *V) {
 | 
						|
  if (isa<Instruction>(V)) {
 | 
						|
    if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
 | 
						|
      return 3;
 | 
						|
    return 4;
 | 
						|
  }
 | 
						|
  if (isa<Argument>(V)) return 3;
 | 
						|
  return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
 | 
						|
}
 | 
						|
 | 
						|
// isOnlyUse - Return true if this instruction will be deleted if we stop using
 | 
						|
// it.
 | 
						|
static bool isOnlyUse(Value *V) {
 | 
						|
  return V->hasOneUse() || isa<Constant>(V);
 | 
						|
}
 | 
						|
 | 
						|
// getPromotedType - Return the specified type promoted as it would be to pass
 | 
						|
// though a va_arg area...
 | 
						|
static const Type *getPromotedType(const Type *Ty) {
 | 
						|
  switch (Ty->getTypeID()) {
 | 
						|
  case Type::SByteTyID:
 | 
						|
  case Type::ShortTyID:  return Type::IntTy;
 | 
						|
  case Type::UByteTyID:
 | 
						|
  case Type::UShortTyID: return Type::UIntTy;
 | 
						|
  case Type::FloatTyID:  return Type::DoubleTy;
 | 
						|
  default:               return Ty;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// SimplifyCommutative - This performs a few simplifications for commutative
 | 
						|
// operators:
 | 
						|
//
 | 
						|
//  1. Order operands such that they are listed from right (least complex) to
 | 
						|
//     left (most complex).  This puts constants before unary operators before
 | 
						|
//     binary operators.
 | 
						|
//
 | 
						|
//  2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
 | 
						|
//  3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
 | 
						|
//
 | 
						|
bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
 | 
						|
  bool Changed = false;
 | 
						|
  if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
 | 
						|
    Changed = !I.swapOperands();
 | 
						|
  
 | 
						|
  if (!I.isAssociative()) return Changed;
 | 
						|
  Instruction::BinaryOps Opcode = I.getOpcode();
 | 
						|
  if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
 | 
						|
    if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
 | 
						|
      if (isa<Constant>(I.getOperand(1))) {
 | 
						|
        Constant *Folded = ConstantExpr::get(I.getOpcode(),
 | 
						|
                                             cast<Constant>(I.getOperand(1)),
 | 
						|
                                             cast<Constant>(Op->getOperand(1)));
 | 
						|
        I.setOperand(0, Op->getOperand(0));
 | 
						|
        I.setOperand(1, Folded);
 | 
						|
        return true;
 | 
						|
      } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
 | 
						|
        if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
 | 
						|
            isOnlyUse(Op) && isOnlyUse(Op1)) {
 | 
						|
          Constant *C1 = cast<Constant>(Op->getOperand(1));
 | 
						|
          Constant *C2 = cast<Constant>(Op1->getOperand(1));
 | 
						|
 | 
						|
          // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
 | 
						|
          Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
 | 
						|
          Instruction *New = BinaryOperator::create(Opcode, Op->getOperand(0),
 | 
						|
                                                    Op1->getOperand(0),
 | 
						|
                                                    Op1->getName(), &I);
 | 
						|
          WorkList.push_back(New);
 | 
						|
          I.setOperand(0, New);
 | 
						|
          I.setOperand(1, Folded);
 | 
						|
          return true;
 | 
						|
        }      
 | 
						|
    }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
 | 
						|
// if the LHS is a constant zero (which is the 'negate' form).
 | 
						|
//
 | 
						|
static inline Value *dyn_castNegVal(Value *V) {
 | 
						|
  if (BinaryOperator::isNeg(V))
 | 
						|
    return BinaryOperator::getNegArgument(cast<BinaryOperator>(V));
 | 
						|
 | 
						|
  // Constants can be considered to be negated values if they can be folded.
 | 
						|
  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
 | 
						|
    return ConstantExpr::getNeg(C);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline Value *dyn_castNotVal(Value *V) {
 | 
						|
  if (BinaryOperator::isNot(V))
 | 
						|
    return BinaryOperator::getNotArgument(cast<BinaryOperator>(V));
 | 
						|
 | 
						|
  // Constants can be considered to be not'ed values...
 | 
						|
  if (ConstantIntegral *C = dyn_cast<ConstantIntegral>(V))
 | 
						|
    return ConstantExpr::getNot(C);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
// dyn_castFoldableMul - If this value is a multiply that can be folded into
 | 
						|
// other computations (because it has a constant operand), return the
 | 
						|
// non-constant operand of the multiply, and set CST to point to the multiplier.
 | 
						|
// Otherwise, return null.
 | 
						|
//
 | 
						|
static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
 | 
						|
  if (V->hasOneUse() && V->getType()->isInteger())
 | 
						|
    if (Instruction *I = dyn_cast<Instruction>(V)) {
 | 
						|
      if (I->getOpcode() == Instruction::Mul)
 | 
						|
        if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
 | 
						|
          return I->getOperand(0);
 | 
						|
      if (I->getOpcode() == Instruction::Shl)
 | 
						|
        if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
 | 
						|
          // The multiplier is really 1 << CST.
 | 
						|
          Constant *One = ConstantInt::get(V->getType(), 1);
 | 
						|
          CST = cast<ConstantInt>(ConstantExpr::getShl(One, CST));
 | 
						|
          return I->getOperand(0);
 | 
						|
        }
 | 
						|
    }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
 | 
						|
/// expression, return it.
 | 
						|
static User *dyn_castGetElementPtr(Value *V) {
 | 
						|
  if (isa<GetElementPtrInst>(V)) return cast<User>(V);
 | 
						|
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
 | 
						|
    if (CE->getOpcode() == Instruction::GetElementPtr)
 | 
						|
      return cast<User>(V);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Log2 - Calculate the log base 2 for the specified value if it is exactly a
 | 
						|
// power of 2.
 | 
						|
static unsigned Log2(uint64_t Val) {
 | 
						|
  assert(Val > 1 && "Values 0 and 1 should be handled elsewhere!");
 | 
						|
  unsigned Count = 0;
 | 
						|
  while (Val != 1) {
 | 
						|
    if (Val & 1) return 0;    // Multiple bits set?
 | 
						|
    Val >>= 1;
 | 
						|
    ++Count;
 | 
						|
  }
 | 
						|
  return Count;
 | 
						|
}
 | 
						|
 | 
						|
// AddOne, SubOne - Add or subtract a constant one from an integer constant...
 | 
						|
static ConstantInt *AddOne(ConstantInt *C) {
 | 
						|
  return cast<ConstantInt>(ConstantExpr::getAdd(C,
 | 
						|
                                         ConstantInt::get(C->getType(), 1)));
 | 
						|
}
 | 
						|
static ConstantInt *SubOne(ConstantInt *C) {
 | 
						|
  return cast<ConstantInt>(ConstantExpr::getSub(C,
 | 
						|
                                         ConstantInt::get(C->getType(), 1)));
 | 
						|
}
 | 
						|
 | 
						|
// isTrueWhenEqual - Return true if the specified setcondinst instruction is
 | 
						|
// true when both operands are equal...
 | 
						|
//
 | 
						|
static bool isTrueWhenEqual(Instruction &I) {
 | 
						|
  return I.getOpcode() == Instruction::SetEQ ||
 | 
						|
         I.getOpcode() == Instruction::SetGE ||
 | 
						|
         I.getOpcode() == Instruction::SetLE;
 | 
						|
}
 | 
						|
 | 
						|
/// AssociativeOpt - Perform an optimization on an associative operator.  This
 | 
						|
/// function is designed to check a chain of associative operators for a
 | 
						|
/// potential to apply a certain optimization.  Since the optimization may be
 | 
						|
/// applicable if the expression was reassociated, this checks the chain, then
 | 
						|
/// reassociates the expression as necessary to expose the optimization
 | 
						|
/// opportunity.  This makes use of a special Functor, which must define
 | 
						|
/// 'shouldApply' and 'apply' methods.
 | 
						|
///
 | 
						|
template<typename Functor>
 | 
						|
Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
 | 
						|
  unsigned Opcode = Root.getOpcode();
 | 
						|
  Value *LHS = Root.getOperand(0);
 | 
						|
 | 
						|
  // Quick check, see if the immediate LHS matches...
 | 
						|
  if (F.shouldApply(LHS))
 | 
						|
    return F.apply(Root);
 | 
						|
 | 
						|
  // Otherwise, if the LHS is not of the same opcode as the root, return.
 | 
						|
  Instruction *LHSI = dyn_cast<Instruction>(LHS);
 | 
						|
  while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
 | 
						|
    // Should we apply this transform to the RHS?
 | 
						|
    bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
 | 
						|
 | 
						|
    // If not to the RHS, check to see if we should apply to the LHS...
 | 
						|
    if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
 | 
						|
      cast<BinaryOperator>(LHSI)->swapOperands();   // Make the LHS the RHS
 | 
						|
      ShouldApply = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the functor wants to apply the optimization to the RHS of LHSI,
 | 
						|
    // reassociate the expression from ((? op A) op B) to (? op (A op B))
 | 
						|
    if (ShouldApply) {
 | 
						|
      BasicBlock *BB = Root.getParent();
 | 
						|
      
 | 
						|
      // Now all of the instructions are in the current basic block, go ahead
 | 
						|
      // and perform the reassociation.
 | 
						|
      Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
 | 
						|
 | 
						|
      // First move the selected RHS to the LHS of the root...
 | 
						|
      Root.setOperand(0, LHSI->getOperand(1));
 | 
						|
 | 
						|
      // Make what used to be the LHS of the root be the user of the root...
 | 
						|
      Value *ExtraOperand = TmpLHSI->getOperand(1);
 | 
						|
      if (&Root == TmpLHSI) {
 | 
						|
        Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
 | 
						|
        return 0;
 | 
						|
      }
 | 
						|
      Root.replaceAllUsesWith(TmpLHSI);          // Users now use TmpLHSI
 | 
						|
      TmpLHSI->setOperand(1, &Root);             // TmpLHSI now uses the root
 | 
						|
      TmpLHSI->getParent()->getInstList().remove(TmpLHSI);
 | 
						|
      BasicBlock::iterator ARI = &Root; ++ARI;
 | 
						|
      BB->getInstList().insert(ARI, TmpLHSI);    // Move TmpLHSI to after Root
 | 
						|
      ARI = Root;
 | 
						|
 | 
						|
      // Now propagate the ExtraOperand down the chain of instructions until we
 | 
						|
      // get to LHSI.
 | 
						|
      while (TmpLHSI != LHSI) {
 | 
						|
        Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
 | 
						|
        // Move the instruction to immediately before the chain we are
 | 
						|
        // constructing to avoid breaking dominance properties.
 | 
						|
        NextLHSI->getParent()->getInstList().remove(NextLHSI);
 | 
						|
        BB->getInstList().insert(ARI, NextLHSI);
 | 
						|
        ARI = NextLHSI;
 | 
						|
 | 
						|
        Value *NextOp = NextLHSI->getOperand(1);
 | 
						|
        NextLHSI->setOperand(1, ExtraOperand);
 | 
						|
        TmpLHSI = NextLHSI;
 | 
						|
        ExtraOperand = NextOp;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Now that the instructions are reassociated, have the functor perform
 | 
						|
      // the transformation...
 | 
						|
      return F.apply(Root);
 | 
						|
    }
 | 
						|
    
 | 
						|
    LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// AddRHS - Implements: X + X --> X << 1
 | 
						|
struct AddRHS {
 | 
						|
  Value *RHS;
 | 
						|
  AddRHS(Value *rhs) : RHS(rhs) {}
 | 
						|
  bool shouldApply(Value *LHS) const { return LHS == RHS; }
 | 
						|
  Instruction *apply(BinaryOperator &Add) const {
 | 
						|
    return new ShiftInst(Instruction::Shl, Add.getOperand(0),
 | 
						|
                         ConstantInt::get(Type::UByteTy, 1));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
 | 
						|
//                 iff C1&C2 == 0
 | 
						|
struct AddMaskingAnd {
 | 
						|
  Constant *C2;
 | 
						|
  AddMaskingAnd(Constant *c) : C2(c) {}
 | 
						|
  bool shouldApply(Value *LHS) const {
 | 
						|
    ConstantInt *C1;
 | 
						|
    return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) && 
 | 
						|
           ConstantExpr::getAnd(C1, C2)->isNullValue();
 | 
						|
  }
 | 
						|
  Instruction *apply(BinaryOperator &Add) const {
 | 
						|
    return BinaryOperator::createOr(Add.getOperand(0), Add.getOperand(1));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
 | 
						|
                                             InstCombiner *IC) {
 | 
						|
  if (isa<CastInst>(I)) {
 | 
						|
    if (Constant *SOC = dyn_cast<Constant>(SO))
 | 
						|
      return ConstantExpr::getCast(SOC, I.getType());
 | 
						|
    
 | 
						|
    return IC->InsertNewInstBefore(new CastInst(SO, I.getType(),
 | 
						|
                                                SO->getName() + ".cast"), I);
 | 
						|
  }
 | 
						|
 | 
						|
  // Figure out if the constant is the left or the right argument.
 | 
						|
  bool ConstIsRHS = isa<Constant>(I.getOperand(1));
 | 
						|
  Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
 | 
						|
 | 
						|
  if (Constant *SOC = dyn_cast<Constant>(SO)) {
 | 
						|
    if (ConstIsRHS)
 | 
						|
      return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
 | 
						|
    return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
 | 
						|
  }
 | 
						|
 | 
						|
  Value *Op0 = SO, *Op1 = ConstOperand;
 | 
						|
  if (!ConstIsRHS)
 | 
						|
    std::swap(Op0, Op1);
 | 
						|
  Instruction *New;
 | 
						|
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
 | 
						|
    New = BinaryOperator::create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
 | 
						|
  else if (ShiftInst *SI = dyn_cast<ShiftInst>(&I))
 | 
						|
    New = new ShiftInst(SI->getOpcode(), Op0, Op1, SO->getName()+".sh");
 | 
						|
  else {
 | 
						|
    assert(0 && "Unknown binary instruction type!");
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
  return IC->InsertNewInstBefore(New, I);
 | 
						|
}
 | 
						|
 | 
						|
// FoldOpIntoSelect - Given an instruction with a select as one operand and a
 | 
						|
// constant as the other operand, try to fold the binary operator into the
 | 
						|
// select arguments.  This also works for Cast instructions, which obviously do
 | 
						|
// not have a second operand.
 | 
						|
static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
 | 
						|
                                     InstCombiner *IC) {
 | 
						|
  // Don't modify shared select instructions
 | 
						|
  if (!SI->hasOneUse()) return 0;
 | 
						|
  Value *TV = SI->getOperand(1);
 | 
						|
  Value *FV = SI->getOperand(2);
 | 
						|
 | 
						|
  if (isa<Constant>(TV) || isa<Constant>(FV)) {
 | 
						|
    Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
 | 
						|
    Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
 | 
						|
 | 
						|
    return new SelectInst(SI->getCondition(), SelectTrueVal,
 | 
						|
                          SelectFalseVal);
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
 | 
						|
/// node as operand #0, see if we can fold the instruction into the PHI (which
 | 
						|
/// is only possible if all operands to the PHI are constants).
 | 
						|
Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
 | 
						|
  PHINode *PN = cast<PHINode>(I.getOperand(0));
 | 
						|
  unsigned NumPHIValues = PN->getNumIncomingValues();
 | 
						|
  if (!PN->hasOneUse() || NumPHIValues == 0 ||
 | 
						|
      !isa<Constant>(PN->getIncomingValue(0))) return 0;
 | 
						|
 | 
						|
  // Check to see if all of the operands of the PHI are constants.  If not, we
 | 
						|
  // cannot do the transformation.
 | 
						|
  for (unsigned i = 1; i != NumPHIValues; ++i)
 | 
						|
    if (!isa<Constant>(PN->getIncomingValue(i)))
 | 
						|
      return 0;
 | 
						|
 | 
						|
  // Okay, we can do the transformation: create the new PHI node.
 | 
						|
  PHINode *NewPN = new PHINode(I.getType(), I.getName());
 | 
						|
  I.setName("");
 | 
						|
  NewPN->reserveOperandSpace(PN->getNumOperands()/2);
 | 
						|
  InsertNewInstBefore(NewPN, *PN);
 | 
						|
 | 
						|
  // Next, add all of the operands to the PHI.
 | 
						|
  if (I.getNumOperands() == 2) {
 | 
						|
    Constant *C = cast<Constant>(I.getOperand(1));
 | 
						|
    for (unsigned i = 0; i != NumPHIValues; ++i) {
 | 
						|
      Constant *InV = cast<Constant>(PN->getIncomingValue(i));
 | 
						|
      NewPN->addIncoming(ConstantExpr::get(I.getOpcode(), InV, C),
 | 
						|
                         PN->getIncomingBlock(i));
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    assert(isa<CastInst>(I) && "Unary op should be a cast!");
 | 
						|
    const Type *RetTy = I.getType();
 | 
						|
    for (unsigned i = 0; i != NumPHIValues; ++i) {
 | 
						|
      Constant *InV = cast<Constant>(PN->getIncomingValue(i));
 | 
						|
      NewPN->addIncoming(ConstantExpr::getCast(InV, RetTy),
 | 
						|
                         PN->getIncomingBlock(i));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return ReplaceInstUsesWith(I, NewPN);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
 | 
						|
  bool Changed = SimplifyCommutative(I);
 | 
						|
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 | 
						|
 | 
						|
  if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
 | 
						|
    // X + undef -> undef
 | 
						|
    if (isa<UndefValue>(RHS))
 | 
						|
      return ReplaceInstUsesWith(I, RHS);
 | 
						|
 | 
						|
    // X + 0 --> X
 | 
						|
    if (!I.getType()->isFloatingPoint() && // -0 + +0 = +0, so it's not a noop
 | 
						|
        RHSC->isNullValue())
 | 
						|
      return ReplaceInstUsesWith(I, LHS);
 | 
						|
    
 | 
						|
    // X + (signbit) --> X ^ signbit
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
 | 
						|
      unsigned NumBits = CI->getType()->getPrimitiveSize()*8;
 | 
						|
      uint64_t Val = CI->getRawValue() & (1ULL << NumBits)-1;
 | 
						|
      if (Val == (1ULL << (NumBits-1)))
 | 
						|
        return BinaryOperator::createXor(LHS, RHS);
 | 
						|
    }
 | 
						|
 | 
						|
    if (isa<PHINode>(LHS))
 | 
						|
      if (Instruction *NV = FoldOpIntoPhi(I))
 | 
						|
        return NV;
 | 
						|
  }
 | 
						|
 | 
						|
  // X + X --> X << 1
 | 
						|
  if (I.getType()->isInteger()) {
 | 
						|
    if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
 | 
						|
 | 
						|
    if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
 | 
						|
      if (RHSI->getOpcode() == Instruction::Sub)
 | 
						|
        if (LHS == RHSI->getOperand(1))                   // A + (B - A) --> B
 | 
						|
          return ReplaceInstUsesWith(I, RHSI->getOperand(0));
 | 
						|
    }
 | 
						|
    if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
 | 
						|
      if (LHSI->getOpcode() == Instruction::Sub)
 | 
						|
        if (RHS == LHSI->getOperand(1))                   // (B - A) + A --> B
 | 
						|
          return ReplaceInstUsesWith(I, LHSI->getOperand(0));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // -A + B  -->  B - A
 | 
						|
  if (Value *V = dyn_castNegVal(LHS))
 | 
						|
    return BinaryOperator::createSub(RHS, V);
 | 
						|
 | 
						|
  // A + -B  -->  A - B
 | 
						|
  if (!isa<Constant>(RHS))
 | 
						|
    if (Value *V = dyn_castNegVal(RHS))
 | 
						|
      return BinaryOperator::createSub(LHS, V);
 | 
						|
 | 
						|
  
 | 
						|
  ConstantInt *C2;
 | 
						|
  if (Value *X = dyn_castFoldableMul(LHS, C2)) {
 | 
						|
    if (X == RHS)   // X*C + X --> X * (C+1)
 | 
						|
      return BinaryOperator::createMul(RHS, AddOne(C2));
 | 
						|
 | 
						|
    // X*C1 + X*C2 --> X * (C1+C2)
 | 
						|
    ConstantInt *C1;
 | 
						|
    if (X == dyn_castFoldableMul(RHS, C1))
 | 
						|
      return BinaryOperator::createMul(X, ConstantExpr::getAdd(C1, C2));
 | 
						|
  }
 | 
						|
 | 
						|
  // X + X*C --> X * (C+1)
 | 
						|
  if (dyn_castFoldableMul(RHS, C2) == LHS)
 | 
						|
    return BinaryOperator::createMul(LHS, AddOne(C2));
 | 
						|
 | 
						|
 | 
						|
  // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
 | 
						|
  if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
 | 
						|
    if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2))) return R;
 | 
						|
 | 
						|
  if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
 | 
						|
    Value *X;
 | 
						|
    if (match(LHS, m_Not(m_Value(X)))) {   // ~X + C --> (C-1) - X
 | 
						|
      Constant *C= ConstantExpr::getSub(CRHS, ConstantInt::get(I.getType(), 1));
 | 
						|
      return BinaryOperator::createSub(C, X);
 | 
						|
    }
 | 
						|
 | 
						|
    // (X & FF00) + xx00  -> (X+xx00) & FF00
 | 
						|
    if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
 | 
						|
      Constant *Anded = ConstantExpr::getAnd(CRHS, C2);
 | 
						|
      if (Anded == CRHS) {
 | 
						|
        // See if all bits from the first bit set in the Add RHS up are included
 | 
						|
        // in the mask.  First, get the rightmost bit.
 | 
						|
        uint64_t AddRHSV = CRHS->getRawValue();
 | 
						|
 | 
						|
        // Form a mask of all bits from the lowest bit added through the top.
 | 
						|
        uint64_t AddRHSHighBits = ~((AddRHSV & -AddRHSV)-1);
 | 
						|
        AddRHSHighBits &= (1ULL << C2->getType()->getPrimitiveSize()*8)-1;
 | 
						|
 | 
						|
        // See if the and mask includes all of these bits.
 | 
						|
        uint64_t AddRHSHighBitsAnd = AddRHSHighBits & C2->getRawValue();
 | 
						|
        
 | 
						|
        if (AddRHSHighBits == AddRHSHighBitsAnd) {
 | 
						|
          // Okay, the xform is safe.  Insert the new add pronto.
 | 
						|
          Value *NewAdd = InsertNewInstBefore(BinaryOperator::createAdd(X, CRHS,
 | 
						|
                                                            LHS->getName()), I);
 | 
						|
          return BinaryOperator::createAnd(NewAdd, C2);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Try to fold constant add into select arguments.
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
 | 
						|
      if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | 
						|
        return R;
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed ? &I : 0;
 | 
						|
}
 | 
						|
 | 
						|
// isSignBit - Return true if the value represented by the constant only has the
 | 
						|
// highest order bit set.
 | 
						|
static bool isSignBit(ConstantInt *CI) {
 | 
						|
  unsigned NumBits = CI->getType()->getPrimitiveSize()*8;
 | 
						|
  return (CI->getRawValue() & ~(-1LL << NumBits)) == (1ULL << (NumBits-1));
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getTypeSizeInBits(const Type *Ty) {
 | 
						|
  return Ty == Type::BoolTy ? 1 : Ty->getPrimitiveSize()*8;
 | 
						|
}
 | 
						|
 | 
						|
/// RemoveNoopCast - Strip off nonconverting casts from the value.
 | 
						|
///
 | 
						|
static Value *RemoveNoopCast(Value *V) {
 | 
						|
  if (CastInst *CI = dyn_cast<CastInst>(V)) {
 | 
						|
    const Type *CTy = CI->getType();
 | 
						|
    const Type *OpTy = CI->getOperand(0)->getType();
 | 
						|
    if (CTy->isInteger() && OpTy->isInteger()) {
 | 
						|
      if (CTy->getPrimitiveSize() == OpTy->getPrimitiveSize())
 | 
						|
        return RemoveNoopCast(CI->getOperand(0));
 | 
						|
    } else if (isa<PointerType>(CTy) && isa<PointerType>(OpTy))
 | 
						|
      return RemoveNoopCast(CI->getOperand(0));
 | 
						|
  }
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitSub(BinaryOperator &I) {
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
 | 
						|
  if (Op0 == Op1)         // sub X, X  -> 0
 | 
						|
    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
 | 
						|
  // If this is a 'B = x-(-A)', change to B = x+A...
 | 
						|
  if (Value *V = dyn_castNegVal(Op1))
 | 
						|
    return BinaryOperator::createAdd(Op0, V);
 | 
						|
 | 
						|
  if (isa<UndefValue>(Op0))
 | 
						|
    return ReplaceInstUsesWith(I, Op0);    // undef - X -> undef
 | 
						|
  if (isa<UndefValue>(Op1))
 | 
						|
    return ReplaceInstUsesWith(I, Op1);    // X - undef -> undef
 | 
						|
 | 
						|
  if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
 | 
						|
    // Replace (-1 - A) with (~A)...
 | 
						|
    if (C->isAllOnesValue())
 | 
						|
      return BinaryOperator::createNot(Op1);
 | 
						|
 | 
						|
    // C - ~X == X + (1+C)
 | 
						|
    Value *X;
 | 
						|
    if (match(Op1, m_Not(m_Value(X))))
 | 
						|
      return BinaryOperator::createAdd(X,
 | 
						|
                    ConstantExpr::getAdd(C, ConstantInt::get(I.getType(), 1)));
 | 
						|
    // -((uint)X >> 31) -> ((int)X >> 31)
 | 
						|
    // -((int)X >> 31) -> ((uint)X >> 31)
 | 
						|
    if (C->isNullValue()) {
 | 
						|
      Value *NoopCastedRHS = RemoveNoopCast(Op1);
 | 
						|
      if (ShiftInst *SI = dyn_cast<ShiftInst>(NoopCastedRHS))
 | 
						|
        if (SI->getOpcode() == Instruction::Shr)
 | 
						|
          if (ConstantUInt *CU = dyn_cast<ConstantUInt>(SI->getOperand(1))) {
 | 
						|
            const Type *NewTy;
 | 
						|
            if (SI->getType()->isSigned())
 | 
						|
              NewTy = SI->getType()->getUnsignedVersion();
 | 
						|
            else
 | 
						|
              NewTy = SI->getType()->getSignedVersion();
 | 
						|
            // Check to see if we are shifting out everything but the sign bit.
 | 
						|
            if (CU->getValue() == SI->getType()->getPrimitiveSize()*8-1) {
 | 
						|
              // Ok, the transformation is safe.  Insert a cast of the incoming
 | 
						|
              // value, then the new shift, then the new cast.
 | 
						|
              Instruction *FirstCast = new CastInst(SI->getOperand(0), NewTy,
 | 
						|
                                                 SI->getOperand(0)->getName());
 | 
						|
              Value *InV = InsertNewInstBefore(FirstCast, I);
 | 
						|
              Instruction *NewShift = new ShiftInst(Instruction::Shr, FirstCast,
 | 
						|
                                                    CU, SI->getName());
 | 
						|
              if (NewShift->getType() == I.getType())
 | 
						|
                return NewShift;
 | 
						|
              else {
 | 
						|
                InV = InsertNewInstBefore(NewShift, I);
 | 
						|
                return new CastInst(NewShift, I.getType());
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
    }
 | 
						|
 | 
						|
    // Try to fold constant sub into select arguments.
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
 | 
						|
      if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | 
						|
        return R;
 | 
						|
 | 
						|
    if (isa<PHINode>(Op0))
 | 
						|
      if (Instruction *NV = FoldOpIntoPhi(I))
 | 
						|
        return NV;
 | 
						|
  }
 | 
						|
 | 
						|
  if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
 | 
						|
    if (Op1I->getOpcode() == Instruction::Add &&
 | 
						|
        !Op0->getType()->isFloatingPoint()) {
 | 
						|
      if (Op1I->getOperand(0) == Op0)              // X-(X+Y) == -Y
 | 
						|
        return BinaryOperator::createNeg(Op1I->getOperand(1), I.getName());
 | 
						|
      else if (Op1I->getOperand(1) == Op0)         // X-(Y+X) == -Y
 | 
						|
        return BinaryOperator::createNeg(Op1I->getOperand(0), I.getName());
 | 
						|
      else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
 | 
						|
        if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
 | 
						|
          // C1-(X+C2) --> (C1-C2)-X
 | 
						|
          return BinaryOperator::createSub(ConstantExpr::getSub(CI1, CI2),
 | 
						|
                                           Op1I->getOperand(0));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (Op1I->hasOneUse()) {
 | 
						|
      // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
 | 
						|
      // is not used by anyone else...
 | 
						|
      //
 | 
						|
      if (Op1I->getOpcode() == Instruction::Sub &&
 | 
						|
          !Op1I->getType()->isFloatingPoint()) {
 | 
						|
        // Swap the two operands of the subexpr...
 | 
						|
        Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
 | 
						|
        Op1I->setOperand(0, IIOp1);
 | 
						|
        Op1I->setOperand(1, IIOp0);
 | 
						|
        
 | 
						|
        // Create the new top level add instruction...
 | 
						|
        return BinaryOperator::createAdd(Op0, Op1);
 | 
						|
      }
 | 
						|
 | 
						|
      // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
 | 
						|
      //
 | 
						|
      if (Op1I->getOpcode() == Instruction::And &&
 | 
						|
          (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
 | 
						|
        Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
 | 
						|
 | 
						|
        Value *NewNot =
 | 
						|
          InsertNewInstBefore(BinaryOperator::createNot(OtherOp, "B.not"), I);
 | 
						|
        return BinaryOperator::createAnd(Op0, NewNot);
 | 
						|
      }
 | 
						|
 | 
						|
      // -(X sdiv C)  -> (X sdiv -C)
 | 
						|
      if (Op1I->getOpcode() == Instruction::Div)
 | 
						|
        if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(Op0))
 | 
						|
          if (CSI->isNullValue())
 | 
						|
            if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
 | 
						|
              return BinaryOperator::createDiv(Op1I->getOperand(0), 
 | 
						|
                                               ConstantExpr::getNeg(DivRHS));
 | 
						|
 | 
						|
      // X - X*C --> X * (1-C)
 | 
						|
      ConstantInt *C2;
 | 
						|
      if (dyn_castFoldableMul(Op1I, C2) == Op0) {
 | 
						|
        Constant *CP1 = 
 | 
						|
          ConstantExpr::getSub(ConstantInt::get(I.getType(), 1), C2);
 | 
						|
        return BinaryOperator::createMul(Op0, CP1);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Op0->getType()->isFloatingPoint())
 | 
						|
    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
 | 
						|
      if (Op0I->getOpcode() == Instruction::Add) {
 | 
						|
        if (Op0I->getOperand(0) == Op1)             // (Y+X)-Y == X
 | 
						|
          return ReplaceInstUsesWith(I, Op0I->getOperand(1));
 | 
						|
        else if (Op0I->getOperand(1) == Op1)        // (X+Y)-Y == X
 | 
						|
          return ReplaceInstUsesWith(I, Op0I->getOperand(0));
 | 
						|
      } else if (Op0I->getOpcode() == Instruction::Sub) {
 | 
						|
        if (Op0I->getOperand(0) == Op1)             // (X-Y)-X == -Y
 | 
						|
          return BinaryOperator::createNeg(Op0I->getOperand(1), I.getName());
 | 
						|
      }
 | 
						|
  
 | 
						|
  ConstantInt *C1;
 | 
						|
  if (Value *X = dyn_castFoldableMul(Op0, C1)) {
 | 
						|
    if (X == Op1) { // X*C - X --> X * (C-1)
 | 
						|
      Constant *CP1 = ConstantExpr::getSub(C1, ConstantInt::get(I.getType(),1));
 | 
						|
      return BinaryOperator::createMul(Op1, CP1);
 | 
						|
    }
 | 
						|
 | 
						|
    ConstantInt *C2;   // X*C1 - X*C2 -> X * (C1-C2)
 | 
						|
    if (X == dyn_castFoldableMul(Op1, C2))
 | 
						|
      return BinaryOperator::createMul(Op1, ConstantExpr::getSub(C1, C2));
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// isSignBitCheck - Given an exploded setcc instruction, return true if it is
 | 
						|
/// really just returns true if the most significant (sign) bit is set.
 | 
						|
static bool isSignBitCheck(unsigned Opcode, Value *LHS, ConstantInt *RHS) {
 | 
						|
  if (RHS->getType()->isSigned()) {
 | 
						|
    // True if source is LHS < 0 or LHS <= -1
 | 
						|
    return Opcode == Instruction::SetLT && RHS->isNullValue() ||
 | 
						|
           Opcode == Instruction::SetLE && RHS->isAllOnesValue();
 | 
						|
  } else {
 | 
						|
    ConstantUInt *RHSC = cast<ConstantUInt>(RHS);
 | 
						|
    // True if source is LHS > 127 or LHS >= 128, where the constants depend on
 | 
						|
    // the size of the integer type.
 | 
						|
    if (Opcode == Instruction::SetGE)
 | 
						|
      return RHSC->getValue() == 1ULL<<(RHS->getType()->getPrimitiveSize()*8-1);
 | 
						|
    if (Opcode == Instruction::SetGT)
 | 
						|
      return RHSC->getValue() ==
 | 
						|
        (1ULL << (RHS->getType()->getPrimitiveSize()*8-1))-1;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitMul(BinaryOperator &I) {
 | 
						|
  bool Changed = SimplifyCommutative(I);
 | 
						|
  Value *Op0 = I.getOperand(0);
 | 
						|
 | 
						|
  if (isa<UndefValue>(I.getOperand(1)))              // undef * X -> 0
 | 
						|
    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
 | 
						|
  // Simplify mul instructions with a constant RHS...
 | 
						|
  if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | 
						|
 | 
						|
      // ((X << C1)*C2) == (X * (C2 << C1))
 | 
						|
      if (ShiftInst *SI = dyn_cast<ShiftInst>(Op0))
 | 
						|
        if (SI->getOpcode() == Instruction::Shl)
 | 
						|
          if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
 | 
						|
            return BinaryOperator::createMul(SI->getOperand(0),
 | 
						|
                                             ConstantExpr::getShl(CI, ShOp));
 | 
						|
      
 | 
						|
      if (CI->isNullValue())
 | 
						|
        return ReplaceInstUsesWith(I, Op1);  // X * 0  == 0
 | 
						|
      if (CI->equalsInt(1))                  // X * 1  == X
 | 
						|
        return ReplaceInstUsesWith(I, Op0);
 | 
						|
      if (CI->isAllOnesValue())              // X * -1 == 0 - X
 | 
						|
        return BinaryOperator::createNeg(Op0, I.getName());
 | 
						|
 | 
						|
      int64_t Val = (int64_t)cast<ConstantInt>(CI)->getRawValue();
 | 
						|
      if (uint64_t C = Log2(Val))            // Replace X*(2^C) with X << C
 | 
						|
        return new ShiftInst(Instruction::Shl, Op0,
 | 
						|
                             ConstantUInt::get(Type::UByteTy, C));
 | 
						|
    } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
 | 
						|
      if (Op1F->isNullValue())
 | 
						|
        return ReplaceInstUsesWith(I, Op1);
 | 
						|
 | 
						|
      // "In IEEE floating point, x*1 is not equivalent to x for nans.  However,
 | 
						|
      // ANSI says we can drop signals, so we can do this anyway." (from GCC)
 | 
						|
      if (Op1F->getValue() == 1.0)
 | 
						|
        return ReplaceInstUsesWith(I, Op0);  // Eliminate 'mul double %X, 1.0'
 | 
						|
    }
 | 
						|
 | 
						|
    // Try to fold constant mul into select arguments.
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | 
						|
      if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | 
						|
        return R;
 | 
						|
 | 
						|
    if (isa<PHINode>(Op0))
 | 
						|
      if (Instruction *NV = FoldOpIntoPhi(I))
 | 
						|
        return NV;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Value *Op0v = dyn_castNegVal(Op0))     // -X * -Y = X*Y
 | 
						|
    if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
 | 
						|
      return BinaryOperator::createMul(Op0v, Op1v);
 | 
						|
 | 
						|
  // If one of the operands of the multiply is a cast from a boolean value, then
 | 
						|
  // we know the bool is either zero or one, so this is a 'masking' multiply.
 | 
						|
  // See if we can simplify things based on how the boolean was originally
 | 
						|
  // formed.
 | 
						|
  CastInst *BoolCast = 0;
 | 
						|
  if (CastInst *CI = dyn_cast<CastInst>(I.getOperand(0)))
 | 
						|
    if (CI->getOperand(0)->getType() == Type::BoolTy)
 | 
						|
      BoolCast = CI;
 | 
						|
  if (!BoolCast)
 | 
						|
    if (CastInst *CI = dyn_cast<CastInst>(I.getOperand(1)))
 | 
						|
      if (CI->getOperand(0)->getType() == Type::BoolTy)
 | 
						|
        BoolCast = CI;
 | 
						|
  if (BoolCast) {
 | 
						|
    if (SetCondInst *SCI = dyn_cast<SetCondInst>(BoolCast->getOperand(0))) {
 | 
						|
      Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
 | 
						|
      const Type *SCOpTy = SCIOp0->getType();
 | 
						|
 | 
						|
      // If the setcc is true iff the sign bit of X is set, then convert this
 | 
						|
      // multiply into a shift/and combination.
 | 
						|
      if (isa<ConstantInt>(SCIOp1) &&
 | 
						|
          isSignBitCheck(SCI->getOpcode(), SCIOp0, cast<ConstantInt>(SCIOp1))) {
 | 
						|
        // Shift the X value right to turn it into "all signbits".
 | 
						|
        Constant *Amt = ConstantUInt::get(Type::UByteTy,
 | 
						|
                                          SCOpTy->getPrimitiveSize()*8-1);
 | 
						|
        if (SCIOp0->getType()->isUnsigned()) {
 | 
						|
          const Type *NewTy = SCIOp0->getType()->getSignedVersion();
 | 
						|
          SCIOp0 = InsertNewInstBefore(new CastInst(SCIOp0, NewTy,
 | 
						|
                                                    SCIOp0->getName()), I);
 | 
						|
        }
 | 
						|
 | 
						|
        Value *V =
 | 
						|
          InsertNewInstBefore(new ShiftInst(Instruction::Shr, SCIOp0, Amt,
 | 
						|
                                            BoolCast->getOperand(0)->getName()+
 | 
						|
                                            ".mask"), I);
 | 
						|
 | 
						|
        // If the multiply type is not the same as the source type, sign extend
 | 
						|
        // or truncate to the multiply type.
 | 
						|
        if (I.getType() != V->getType())
 | 
						|
          V = InsertNewInstBefore(new CastInst(V, I.getType(), V->getName()),I);
 | 
						|
        
 | 
						|
        Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
 | 
						|
        return BinaryOperator::createAnd(V, OtherOp);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed ? &I : 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitDiv(BinaryOperator &I) {
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
 | 
						|
  if (isa<UndefValue>(Op0))              // undef / X -> 0
 | 
						|
    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
  if (isa<UndefValue>(Op1))
 | 
						|
    return ReplaceInstUsesWith(I, Op1);  // X / undef -> undef
 | 
						|
 | 
						|
  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
 | 
						|
    // div X, 1 == X
 | 
						|
    if (RHS->equalsInt(1))
 | 
						|
      return ReplaceInstUsesWith(I, Op0);
 | 
						|
 | 
						|
    // div X, -1 == -X
 | 
						|
    if (RHS->isAllOnesValue())
 | 
						|
      return BinaryOperator::createNeg(Op0);
 | 
						|
 | 
						|
    if (Instruction *LHS = dyn_cast<Instruction>(Op0))
 | 
						|
      if (LHS->getOpcode() == Instruction::Div)
 | 
						|
        if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
 | 
						|
          // (X / C1) / C2  -> X / (C1*C2)
 | 
						|
          return BinaryOperator::createDiv(LHS->getOperand(0),
 | 
						|
                                           ConstantExpr::getMul(RHS, LHSRHS));
 | 
						|
        }
 | 
						|
 | 
						|
    // Check to see if this is an unsigned division with an exact power of 2,
 | 
						|
    // if so, convert to a right shift.
 | 
						|
    if (ConstantUInt *C = dyn_cast<ConstantUInt>(RHS))
 | 
						|
      if (uint64_t Val = C->getValue())    // Don't break X / 0
 | 
						|
        if (uint64_t C = Log2(Val))
 | 
						|
          return new ShiftInst(Instruction::Shr, Op0,
 | 
						|
                               ConstantUInt::get(Type::UByteTy, C));
 | 
						|
 | 
						|
    // -X/C -> X/-C
 | 
						|
    if (RHS->getType()->isSigned())
 | 
						|
      if (Value *LHSNeg = dyn_castNegVal(Op0))
 | 
						|
        return BinaryOperator::createDiv(LHSNeg, ConstantExpr::getNeg(RHS));
 | 
						|
 | 
						|
    if (!RHS->isNullValue()) {
 | 
						|
      if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | 
						|
        if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | 
						|
          return R;
 | 
						|
      if (isa<PHINode>(Op0))
 | 
						|
        if (Instruction *NV = FoldOpIntoPhi(I))
 | 
						|
          return NV;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is 'udiv X, (Cond ? C1, C2)' where C1&C2 are powers of two,
 | 
						|
  // transform this into: '(Cond ? (udiv X, C1) : (udiv X, C2))'.
 | 
						|
  if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
 | 
						|
    if (ConstantUInt *STO = dyn_cast<ConstantUInt>(SI->getOperand(1)))
 | 
						|
      if (ConstantUInt *SFO = dyn_cast<ConstantUInt>(SI->getOperand(2))) {
 | 
						|
        if (STO->getValue() == 0) { // Couldn't be this argument.
 | 
						|
          I.setOperand(1, SFO);
 | 
						|
          return &I;          
 | 
						|
        } else if (SFO->getValue() == 0) {
 | 
						|
          I.setOperand(2, STO);
 | 
						|
          return &I;          
 | 
						|
        }
 | 
						|
 | 
						|
        uint64_t TVA = STO->getValue(), FVA = SFO->getValue();
 | 
						|
        unsigned TSA = 0, FSA = 0;
 | 
						|
        if ((TVA == 1 || (TSA = Log2(TVA))) &&    // Log2 fails for 0 & 1.
 | 
						|
            (FVA == 1 || (FSA = Log2(FVA)))) {
 | 
						|
          Constant *TC = ConstantUInt::get(Type::UByteTy, TSA);
 | 
						|
          Instruction *TSI = new ShiftInst(Instruction::Shr, Op0,
 | 
						|
                                           TC, SI->getName()+".t");
 | 
						|
          TSI = InsertNewInstBefore(TSI, I);
 | 
						|
          
 | 
						|
          Constant *FC = ConstantUInt::get(Type::UByteTy, FSA);
 | 
						|
          Instruction *FSI = new ShiftInst(Instruction::Shr, Op0,
 | 
						|
                                           FC, SI->getName()+".f");
 | 
						|
          FSI = InsertNewInstBefore(FSI, I);
 | 
						|
          return new SelectInst(SI->getOperand(0), TSI, FSI);
 | 
						|
        }
 | 
						|
      }
 | 
						|
  
 | 
						|
  // 0 / X == 0, we don't need to preserve faults!
 | 
						|
  if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
 | 
						|
    if (LHS->equalsInt(0))
 | 
						|
      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Instruction *InstCombiner::visitRem(BinaryOperator &I) {
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
  if (I.getType()->isSigned())
 | 
						|
    if (Value *RHSNeg = dyn_castNegVal(Op1))
 | 
						|
      if (!isa<ConstantSInt>(RHSNeg) ||
 | 
						|
          cast<ConstantSInt>(RHSNeg)->getValue() > 0) {
 | 
						|
        // X % -Y -> X % Y
 | 
						|
        AddUsesToWorkList(I);
 | 
						|
        I.setOperand(1, RHSNeg);
 | 
						|
        return &I;
 | 
						|
      }
 | 
						|
 | 
						|
  if (isa<UndefValue>(Op0))              // undef % X -> 0
 | 
						|
    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
  if (isa<UndefValue>(Op1))
 | 
						|
    return ReplaceInstUsesWith(I, Op1);  // X % undef -> undef
 | 
						|
 | 
						|
  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
 | 
						|
    if (RHS->equalsInt(1))  // X % 1 == 0
 | 
						|
      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
 | 
						|
    // Check to see if this is an unsigned remainder with an exact power of 2,
 | 
						|
    // if so, convert to a bitwise and.
 | 
						|
    if (ConstantUInt *C = dyn_cast<ConstantUInt>(RHS))
 | 
						|
      if (uint64_t Val = C->getValue())    // Don't break X % 0 (divide by zero)
 | 
						|
        if (!(Val & (Val-1)))              // Power of 2
 | 
						|
          return BinaryOperator::createAnd(Op0,
 | 
						|
                                         ConstantUInt::get(I.getType(), Val-1));
 | 
						|
 | 
						|
    if (!RHS->isNullValue()) {
 | 
						|
      if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | 
						|
        if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | 
						|
          return R;
 | 
						|
      if (isa<PHINode>(Op0))
 | 
						|
        if (Instruction *NV = FoldOpIntoPhi(I))
 | 
						|
          return NV;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is 'urem X, (Cond ? C1, C2)' where C1&C2 are powers of two,
 | 
						|
  // transform this into: '(Cond ? (urem X, C1) : (urem X, C2))'.
 | 
						|
  if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
 | 
						|
    if (ConstantUInt *STO = dyn_cast<ConstantUInt>(SI->getOperand(1)))
 | 
						|
      if (ConstantUInt *SFO = dyn_cast<ConstantUInt>(SI->getOperand(2))) {
 | 
						|
        if (STO->getValue() == 0) { // Couldn't be this argument.
 | 
						|
          I.setOperand(1, SFO);
 | 
						|
          return &I;          
 | 
						|
        } else if (SFO->getValue() == 0) {
 | 
						|
          I.setOperand(1, STO);
 | 
						|
          return &I;          
 | 
						|
        }
 | 
						|
 | 
						|
        if (!(STO->getValue() & (STO->getValue()-1)) &&
 | 
						|
            !(SFO->getValue() & (SFO->getValue()-1))) {
 | 
						|
          Value *TrueAnd = InsertNewInstBefore(BinaryOperator::createAnd(Op0,
 | 
						|
                                         SubOne(STO), SI->getName()+".t"), I);
 | 
						|
          Value *FalseAnd = InsertNewInstBefore(BinaryOperator::createAnd(Op0,
 | 
						|
                                         SubOne(SFO), SI->getName()+".f"), I);
 | 
						|
          return new SelectInst(SI->getOperand(0), TrueAnd, FalseAnd);
 | 
						|
        }
 | 
						|
      }
 | 
						|
  
 | 
						|
  // 0 % X == 0, we don't need to preserve faults!
 | 
						|
  if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
 | 
						|
    if (LHS->equalsInt(0))
 | 
						|
      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
// isMaxValueMinusOne - return true if this is Max-1
 | 
						|
static bool isMaxValueMinusOne(const ConstantInt *C) {
 | 
						|
  if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(C)) {
 | 
						|
    // Calculate -1 casted to the right type...
 | 
						|
    unsigned TypeBits = C->getType()->getPrimitiveSize()*8;
 | 
						|
    uint64_t Val = ~0ULL;                // All ones
 | 
						|
    Val >>= 64-TypeBits;                 // Shift out unwanted 1 bits...
 | 
						|
    return CU->getValue() == Val-1;
 | 
						|
  }
 | 
						|
 | 
						|
  const ConstantSInt *CS = cast<ConstantSInt>(C);
 | 
						|
  
 | 
						|
  // Calculate 0111111111..11111
 | 
						|
  unsigned TypeBits = C->getType()->getPrimitiveSize()*8;
 | 
						|
  int64_t Val = INT64_MAX;             // All ones
 | 
						|
  Val >>= 64-TypeBits;                 // Shift out unwanted 1 bits...
 | 
						|
  return CS->getValue() == Val-1;
 | 
						|
}
 | 
						|
 | 
						|
// isMinValuePlusOne - return true if this is Min+1
 | 
						|
static bool isMinValuePlusOne(const ConstantInt *C) {
 | 
						|
  if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
 | 
						|
    return CU->getValue() == 1;
 | 
						|
 | 
						|
  const ConstantSInt *CS = cast<ConstantSInt>(C);
 | 
						|
  
 | 
						|
  // Calculate 1111111111000000000000 
 | 
						|
  unsigned TypeBits = C->getType()->getPrimitiveSize()*8;
 | 
						|
  int64_t Val = -1;                    // All ones
 | 
						|
  Val <<= TypeBits-1;                  // Shift over to the right spot
 | 
						|
  return CS->getValue() == Val+1;
 | 
						|
}
 | 
						|
 | 
						|
// isOneBitSet - Return true if there is exactly one bit set in the specified
 | 
						|
// constant.
 | 
						|
static bool isOneBitSet(const ConstantInt *CI) {
 | 
						|
  uint64_t V = CI->getRawValue();
 | 
						|
  return V && (V & (V-1)) == 0;
 | 
						|
}
 | 
						|
 | 
						|
#if 0   // Currently unused
 | 
						|
// isLowOnes - Return true if the constant is of the form 0+1+.
 | 
						|
static bool isLowOnes(const ConstantInt *CI) {
 | 
						|
  uint64_t V = CI->getRawValue();
 | 
						|
 | 
						|
  // There won't be bits set in parts that the type doesn't contain.
 | 
						|
  V &= ConstantInt::getAllOnesValue(CI->getType())->getRawValue();
 | 
						|
 | 
						|
  uint64_t U = V+1;  // If it is low ones, this should be a power of two.
 | 
						|
  return U && V && (U & V) == 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
// isHighOnes - Return true if the constant is of the form 1+0+.
 | 
						|
// This is the same as lowones(~X).
 | 
						|
static bool isHighOnes(const ConstantInt *CI) {
 | 
						|
  uint64_t V = ~CI->getRawValue();
 | 
						|
 | 
						|
  // There won't be bits set in parts that the type doesn't contain.
 | 
						|
  V &= ConstantInt::getAllOnesValue(CI->getType())->getRawValue();
 | 
						|
 | 
						|
  uint64_t U = V+1;  // If it is low ones, this should be a power of two.
 | 
						|
  return U && V && (U & V) == 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getSetCondCode - Encode a setcc opcode into a three bit mask.  These bits
 | 
						|
/// are carefully arranged to allow folding of expressions such as:
 | 
						|
///
 | 
						|
///      (A < B) | (A > B) --> (A != B)
 | 
						|
///
 | 
						|
/// Bit value '4' represents that the comparison is true if A > B, bit value '2'
 | 
						|
/// represents that the comparison is true if A == B, and bit value '1' is true
 | 
						|
/// if A < B.
 | 
						|
///
 | 
						|
static unsigned getSetCondCode(const SetCondInst *SCI) {
 | 
						|
  switch (SCI->getOpcode()) {
 | 
						|
    // False -> 0
 | 
						|
  case Instruction::SetGT: return 1;
 | 
						|
  case Instruction::SetEQ: return 2;
 | 
						|
  case Instruction::SetGE: return 3;
 | 
						|
  case Instruction::SetLT: return 4;
 | 
						|
  case Instruction::SetNE: return 5;
 | 
						|
  case Instruction::SetLE: return 6;
 | 
						|
    // True -> 7
 | 
						|
  default:
 | 
						|
    assert(0 && "Invalid SetCC opcode!");
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getSetCCValue - This is the complement of getSetCondCode, which turns an
 | 
						|
/// opcode and two operands into either a constant true or false, or a brand new
 | 
						|
/// SetCC instruction.
 | 
						|
static Value *getSetCCValue(unsigned Opcode, Value *LHS, Value *RHS) {
 | 
						|
  switch (Opcode) {
 | 
						|
  case 0: return ConstantBool::False;
 | 
						|
  case 1: return new SetCondInst(Instruction::SetGT, LHS, RHS);
 | 
						|
  case 2: return new SetCondInst(Instruction::SetEQ, LHS, RHS);
 | 
						|
  case 3: return new SetCondInst(Instruction::SetGE, LHS, RHS);
 | 
						|
  case 4: return new SetCondInst(Instruction::SetLT, LHS, RHS);
 | 
						|
  case 5: return new SetCondInst(Instruction::SetNE, LHS, RHS);
 | 
						|
  case 6: return new SetCondInst(Instruction::SetLE, LHS, RHS);
 | 
						|
  case 7: return ConstantBool::True;
 | 
						|
  default: assert(0 && "Illegal SetCCCode!"); return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// FoldSetCCLogical - Implements (setcc1 A, B) & (setcc2 A, B) --> (setcc3 A, B)
 | 
						|
struct FoldSetCCLogical {
 | 
						|
  InstCombiner &IC;
 | 
						|
  Value *LHS, *RHS;
 | 
						|
  FoldSetCCLogical(InstCombiner &ic, SetCondInst *SCI)
 | 
						|
    : IC(ic), LHS(SCI->getOperand(0)), RHS(SCI->getOperand(1)) {}
 | 
						|
  bool shouldApply(Value *V) const {
 | 
						|
    if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
 | 
						|
      return (SCI->getOperand(0) == LHS && SCI->getOperand(1) == RHS ||
 | 
						|
              SCI->getOperand(0) == RHS && SCI->getOperand(1) == LHS);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  Instruction *apply(BinaryOperator &Log) const {
 | 
						|
    SetCondInst *SCI = cast<SetCondInst>(Log.getOperand(0));
 | 
						|
    if (SCI->getOperand(0) != LHS) {
 | 
						|
      assert(SCI->getOperand(1) == LHS);
 | 
						|
      SCI->swapOperands();  // Swap the LHS and RHS of the SetCC
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned LHSCode = getSetCondCode(SCI);
 | 
						|
    unsigned RHSCode = getSetCondCode(cast<SetCondInst>(Log.getOperand(1)));
 | 
						|
    unsigned Code;
 | 
						|
    switch (Log.getOpcode()) {
 | 
						|
    case Instruction::And: Code = LHSCode & RHSCode; break;
 | 
						|
    case Instruction::Or:  Code = LHSCode | RHSCode; break;
 | 
						|
    case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
 | 
						|
    default: assert(0 && "Illegal logical opcode!"); return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    Value *RV = getSetCCValue(Code, LHS, RHS);
 | 
						|
    if (Instruction *I = dyn_cast<Instruction>(RV))
 | 
						|
      return I;
 | 
						|
    // Otherwise, it's a constant boolean value...
 | 
						|
    return IC.ReplaceInstUsesWith(Log, RV);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
 | 
						|
/// this predicate to simplify operations downstream.  V and Mask are known to
 | 
						|
/// be the same type.
 | 
						|
static bool MaskedValueIsZero(Value *V, ConstantIntegral *Mask) {
 | 
						|
  if (isa<UndefValue>(V) || Mask->isNullValue())
 | 
						|
    return true;
 | 
						|
  if (ConstantIntegral *CI = dyn_cast<ConstantIntegral>(V))
 | 
						|
    return ConstantExpr::getAnd(CI, Mask)->isNullValue();
 | 
						|
  
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(V)) {
 | 
						|
    switch (I->getOpcode()) {
 | 
						|
    case Instruction::And:
 | 
						|
      // (X & C1) & C2 == 0   iff   C1 & C2 == 0.
 | 
						|
      if (ConstantIntegral *CI = dyn_cast<ConstantIntegral>(I->getOperand(1)))
 | 
						|
        if (ConstantExpr::getAnd(CI, Mask)->isNullValue())
 | 
						|
          return true;
 | 
						|
      break;
 | 
						|
    case Instruction::Or:
 | 
						|
      // If the LHS and the RHS are MaskedValueIsZero, the result is also zero.
 | 
						|
      return MaskedValueIsZero(I->getOperand(1), Mask) && 
 | 
						|
             MaskedValueIsZero(I->getOperand(0), Mask);
 | 
						|
    case Instruction::Select:
 | 
						|
      // If the T and F values are MaskedValueIsZero, the result is also zero.
 | 
						|
      return MaskedValueIsZero(I->getOperand(2), Mask) && 
 | 
						|
             MaskedValueIsZero(I->getOperand(1), Mask);
 | 
						|
    case Instruction::Cast: {
 | 
						|
      const Type *SrcTy = I->getOperand(0)->getType();
 | 
						|
      if (SrcTy->isIntegral()) {
 | 
						|
        // (cast <ty> X to int) & C2 == 0  iff <ty> could not have contained C2.
 | 
						|
        if (SrcTy->isUnsigned() &&                      // Only handle zero ext.
 | 
						|
            ConstantExpr::getCast(Mask, SrcTy)->isNullValue())
 | 
						|
          return true;
 | 
						|
 | 
						|
        // If this is a noop cast, recurse.
 | 
						|
        if (SrcTy != Type::BoolTy)
 | 
						|
          if ((SrcTy->isSigned() && SrcTy->getUnsignedVersion() ==I->getType()) ||
 | 
						|
              SrcTy->getSignedVersion() == I->getType()) {
 | 
						|
            Constant *NewMask =
 | 
						|
              ConstantExpr::getCast(Mask, I->getOperand(0)->getType());
 | 
						|
            return MaskedValueIsZero(I->getOperand(0),
 | 
						|
                                     cast<ConstantIntegral>(NewMask));
 | 
						|
          }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Instruction::Shl:
 | 
						|
      // (shl X, C1) & C2 == 0   iff  (-1 << C1) & C2 == 0
 | 
						|
      if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1))) {
 | 
						|
        Constant *C1 = ConstantIntegral::getAllOnesValue(I->getType());
 | 
						|
        C1 = ConstantExpr::getShl(C1, SA);
 | 
						|
        C1 = ConstantExpr::getAnd(C1, Mask);
 | 
						|
        if (C1->isNullValue())
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case Instruction::Shr:
 | 
						|
      // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
 | 
						|
      if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1)))
 | 
						|
        if (I->getType()->isUnsigned()) {
 | 
						|
          Constant *C1 = ConstantIntegral::getAllOnesValue(I->getType());
 | 
						|
          C1 = ConstantExpr::getShr(C1, SA);
 | 
						|
          C1 = ConstantExpr::getAnd(C1, Mask);
 | 
						|
          if (C1->isNullValue())
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// OptAndOp - This handles expressions of the form ((val OP C1) & C2).  Where
 | 
						|
// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.  Op is
 | 
						|
// guaranteed to be either a shift instruction or a binary operator.
 | 
						|
Instruction *InstCombiner::OptAndOp(Instruction *Op,
 | 
						|
                                    ConstantIntegral *OpRHS,
 | 
						|
                                    ConstantIntegral *AndRHS,
 | 
						|
                                    BinaryOperator &TheAnd) {
 | 
						|
  Value *X = Op->getOperand(0);
 | 
						|
  Constant *Together = 0;
 | 
						|
  if (!isa<ShiftInst>(Op))
 | 
						|
    Together = ConstantExpr::getAnd(AndRHS, OpRHS);
 | 
						|
 | 
						|
  switch (Op->getOpcode()) {
 | 
						|
  case Instruction::Xor:
 | 
						|
    if (Op->hasOneUse()) {
 | 
						|
      // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
 | 
						|
      std::string OpName = Op->getName(); Op->setName("");
 | 
						|
      Instruction *And = BinaryOperator::createAnd(X, AndRHS, OpName);
 | 
						|
      InsertNewInstBefore(And, TheAnd);
 | 
						|
      return BinaryOperator::createXor(And, Together);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::Or:
 | 
						|
    if (Together == AndRHS) // (X | C) & C --> C
 | 
						|
      return ReplaceInstUsesWith(TheAnd, AndRHS);
 | 
						|
      
 | 
						|
    if (Op->hasOneUse() && Together != OpRHS) {
 | 
						|
      // (X | C1) & C2 --> (X | (C1&C2)) & C2
 | 
						|
      std::string Op0Name = Op->getName(); Op->setName("");
 | 
						|
      Instruction *Or = BinaryOperator::createOr(X, Together, Op0Name);
 | 
						|
      InsertNewInstBefore(Or, TheAnd);
 | 
						|
      return BinaryOperator::createAnd(Or, AndRHS);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::Add:
 | 
						|
    if (Op->hasOneUse()) {
 | 
						|
      // Adding a one to a single bit bit-field should be turned into an XOR
 | 
						|
      // of the bit.  First thing to check is to see if this AND is with a
 | 
						|
      // single bit constant.
 | 
						|
      uint64_t AndRHSV = cast<ConstantInt>(AndRHS)->getRawValue();
 | 
						|
 | 
						|
      // Clear bits that are not part of the constant.
 | 
						|
      AndRHSV &= (1ULL << AndRHS->getType()->getPrimitiveSize()*8)-1;
 | 
						|
 | 
						|
      // If there is only one bit set...
 | 
						|
      if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
 | 
						|
        // Ok, at this point, we know that we are masking the result of the
 | 
						|
        // ADD down to exactly one bit.  If the constant we are adding has
 | 
						|
        // no bits set below this bit, then we can eliminate the ADD.
 | 
						|
        uint64_t AddRHS = cast<ConstantInt>(OpRHS)->getRawValue();
 | 
						|
            
 | 
						|
        // Check to see if any bits below the one bit set in AndRHSV are set.
 | 
						|
        if ((AddRHS & (AndRHSV-1)) == 0) {
 | 
						|
          // If not, the only thing that can effect the output of the AND is
 | 
						|
          // the bit specified by AndRHSV.  If that bit is set, the effect of
 | 
						|
          // the XOR is to toggle the bit.  If it is clear, then the ADD has
 | 
						|
          // no effect.
 | 
						|
          if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
 | 
						|
            TheAnd.setOperand(0, X);
 | 
						|
            return &TheAnd;
 | 
						|
          } else {
 | 
						|
            std::string Name = Op->getName(); Op->setName("");
 | 
						|
            // Pull the XOR out of the AND.
 | 
						|
            Instruction *NewAnd = BinaryOperator::createAnd(X, AndRHS, Name);
 | 
						|
            InsertNewInstBefore(NewAnd, TheAnd);
 | 
						|
            return BinaryOperator::createXor(NewAnd, AndRHS);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::Shl: {
 | 
						|
    // We know that the AND will not produce any of the bits shifted in, so if
 | 
						|
    // the anded constant includes them, clear them now!
 | 
						|
    //
 | 
						|
    Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType());
 | 
						|
    Constant *ShlMask = ConstantExpr::getShl(AllOne, OpRHS);
 | 
						|
    Constant *CI = ConstantExpr::getAnd(AndRHS, ShlMask);
 | 
						|
                                        
 | 
						|
    if (CI == ShlMask) {   // Masking out bits that the shift already masks
 | 
						|
      return ReplaceInstUsesWith(TheAnd, Op);   // No need for the and.
 | 
						|
    } else if (CI != AndRHS) {                  // Reducing bits set in and.
 | 
						|
      TheAnd.setOperand(1, CI);
 | 
						|
      return &TheAnd;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  } 
 | 
						|
  case Instruction::Shr:
 | 
						|
    // We know that the AND will not produce any of the bits shifted in, so if
 | 
						|
    // the anded constant includes them, clear them now!  This only applies to
 | 
						|
    // unsigned shifts, because a signed shr may bring in set bits!
 | 
						|
    //
 | 
						|
    if (AndRHS->getType()->isUnsigned()) {
 | 
						|
      Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType());
 | 
						|
      Constant *ShrMask = ConstantExpr::getShr(AllOne, OpRHS);
 | 
						|
      Constant *CI = ConstantExpr::getAnd(AndRHS, ShrMask);
 | 
						|
 | 
						|
      if (CI == ShrMask) {   // Masking out bits that the shift already masks.
 | 
						|
        return ReplaceInstUsesWith(TheAnd, Op);
 | 
						|
      } else if (CI != AndRHS) {
 | 
						|
        TheAnd.setOperand(1, CI);  // Reduce bits set in and cst.
 | 
						|
        return &TheAnd;
 | 
						|
      }
 | 
						|
    } else {   // Signed shr.
 | 
						|
      // See if this is shifting in some sign extension, then masking it out
 | 
						|
      // with an and.
 | 
						|
      if (Op->hasOneUse()) {
 | 
						|
        Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType());
 | 
						|
        Constant *ShrMask = ConstantExpr::getUShr(AllOne, OpRHS);
 | 
						|
        Constant *CI = ConstantExpr::getAnd(AndRHS, ShrMask);
 | 
						|
        if (CI == AndRHS) {          // Masking out bits shifted in.
 | 
						|
          // Make the argument unsigned.
 | 
						|
          Value *ShVal = Op->getOperand(0);
 | 
						|
          ShVal = InsertCastBefore(ShVal,
 | 
						|
                                   ShVal->getType()->getUnsignedVersion(),
 | 
						|
                                   TheAnd);
 | 
						|
          ShVal = InsertNewInstBefore(new ShiftInst(Instruction::Shr, ShVal,
 | 
						|
                                                    OpRHS, Op->getName()),
 | 
						|
                                      TheAnd);
 | 
						|
          Value *AndRHS2 = ConstantExpr::getCast(AndRHS, ShVal->getType());
 | 
						|
          ShVal = InsertNewInstBefore(BinaryOperator::createAnd(ShVal, AndRHS2,
 | 
						|
                                                             TheAnd.getName()),
 | 
						|
                                      TheAnd);
 | 
						|
          return new CastInst(ShVal, Op->getType());
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
 | 
						|
/// true, otherwise (V < Lo || V >= Hi).  In pratice, we emit the more efficient
 | 
						|
/// (V-Lo) <u Hi-Lo.  This method expects that Lo <= Hi.  IB is the location to
 | 
						|
/// insert new instructions.
 | 
						|
Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
 | 
						|
                                           bool Inside, Instruction &IB) {
 | 
						|
  assert(cast<ConstantBool>(ConstantExpr::getSetLE(Lo, Hi))->getValue() &&
 | 
						|
         "Lo is not <= Hi in range emission code!");
 | 
						|
  if (Inside) {
 | 
						|
    if (Lo == Hi)  // Trivially false.
 | 
						|
      return new SetCondInst(Instruction::SetNE, V, V);
 | 
						|
    if (cast<ConstantIntegral>(Lo)->isMinValue())
 | 
						|
      return new SetCondInst(Instruction::SetLT, V, Hi);
 | 
						|
    
 | 
						|
    Constant *AddCST = ConstantExpr::getNeg(Lo);
 | 
						|
    Instruction *Add = BinaryOperator::createAdd(V, AddCST,V->getName()+".off");
 | 
						|
    InsertNewInstBefore(Add, IB);
 | 
						|
    // Convert to unsigned for the comparison.
 | 
						|
    const Type *UnsType = Add->getType()->getUnsignedVersion();
 | 
						|
    Value *OffsetVal = InsertCastBefore(Add, UnsType, IB);
 | 
						|
    AddCST = ConstantExpr::getAdd(AddCST, Hi);
 | 
						|
    AddCST = ConstantExpr::getCast(AddCST, UnsType);
 | 
						|
    return new SetCondInst(Instruction::SetLT, OffsetVal, AddCST);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Lo == Hi)  // Trivially true.
 | 
						|
    return new SetCondInst(Instruction::SetEQ, V, V);
 | 
						|
 | 
						|
  Hi = SubOne(cast<ConstantInt>(Hi));
 | 
						|
  if (cast<ConstantIntegral>(Lo)->isMinValue()) // V < 0 || V >= Hi ->'V > Hi-1'
 | 
						|
    return new SetCondInst(Instruction::SetGT, V, Hi);
 | 
						|
 | 
						|
  // Emit X-Lo > Hi-Lo-1
 | 
						|
  Constant *AddCST = ConstantExpr::getNeg(Lo);
 | 
						|
  Instruction *Add = BinaryOperator::createAdd(V, AddCST, V->getName()+".off");
 | 
						|
  InsertNewInstBefore(Add, IB);
 | 
						|
  // Convert to unsigned for the comparison.
 | 
						|
  const Type *UnsType = Add->getType()->getUnsignedVersion();
 | 
						|
  Value *OffsetVal = InsertCastBefore(Add, UnsType, IB);
 | 
						|
  AddCST = ConstantExpr::getAdd(AddCST, Hi);
 | 
						|
  AddCST = ConstantExpr::getCast(AddCST, UnsType);
 | 
						|
  return new SetCondInst(Instruction::SetGT, OffsetVal, AddCST);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
 | 
						|
  bool Changed = SimplifyCommutative(I);
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
 | 
						|
  if (isa<UndefValue>(Op1))                         // X & undef -> 0
 | 
						|
    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
 | 
						|
  // and X, X = X
 | 
						|
  if (Op0 == Op1)
 | 
						|
    return ReplaceInstUsesWith(I, Op1);
 | 
						|
 | 
						|
  if (ConstantIntegral *AndRHS = dyn_cast<ConstantIntegral>(Op1)) {
 | 
						|
    // and X, -1 == X
 | 
						|
    if (AndRHS->isAllOnesValue())
 | 
						|
      return ReplaceInstUsesWith(I, Op0);
 | 
						|
 | 
						|
    if (MaskedValueIsZero(Op0, AndRHS))        // LHS & RHS == 0
 | 
						|
      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
 | 
						|
    // If the mask is not masking out any bits, there is no reason to do the
 | 
						|
    // and in the first place.
 | 
						|
    ConstantIntegral *NotAndRHS = 
 | 
						|
      cast<ConstantIntegral>(ConstantExpr::getNot(AndRHS));
 | 
						|
    if (MaskedValueIsZero(Op0, NotAndRHS))                          
 | 
						|
      return ReplaceInstUsesWith(I, Op0);
 | 
						|
 | 
						|
    // Optimize a variety of ((val OP C1) & C2) combinations...
 | 
						|
    if (isa<BinaryOperator>(Op0) || isa<ShiftInst>(Op0)) {
 | 
						|
      Instruction *Op0I = cast<Instruction>(Op0);
 | 
						|
      Value *Op0LHS = Op0I->getOperand(0);
 | 
						|
      Value *Op0RHS = Op0I->getOperand(1);
 | 
						|
      switch (Op0I->getOpcode()) {
 | 
						|
      case Instruction::Xor:
 | 
						|
      case Instruction::Or:
 | 
						|
        // (X ^ V) & C2 --> (X & C2) iff (V & C2) == 0
 | 
						|
        // (X | V) & C2 --> (X & C2) iff (V & C2) == 0
 | 
						|
        if (MaskedValueIsZero(Op0LHS, AndRHS))
 | 
						|
          return BinaryOperator::createAnd(Op0RHS, AndRHS);      
 | 
						|
        if (MaskedValueIsZero(Op0RHS, AndRHS))
 | 
						|
          return BinaryOperator::createAnd(Op0LHS, AndRHS);      
 | 
						|
 | 
						|
        // If the mask is only needed on one incoming arm, push it up.
 | 
						|
        if (Op0I->hasOneUse()) {
 | 
						|
          if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
 | 
						|
            // Not masking anything out for the LHS, move to RHS.
 | 
						|
            Instruction *NewRHS = BinaryOperator::createAnd(Op0RHS, AndRHS,
 | 
						|
                                                   Op0RHS->getName()+".masked");
 | 
						|
            InsertNewInstBefore(NewRHS, I);
 | 
						|
            return BinaryOperator::create(
 | 
						|
                       cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
 | 
						|
          }  
 | 
						|
          if (!isa<Constant>(NotAndRHS) &&
 | 
						|
              MaskedValueIsZero(Op0RHS, NotAndRHS)) {
 | 
						|
            // Not masking anything out for the RHS, move to LHS.
 | 
						|
            Instruction *NewLHS = BinaryOperator::createAnd(Op0LHS, AndRHS,
 | 
						|
                                                   Op0LHS->getName()+".masked");
 | 
						|
            InsertNewInstBefore(NewLHS, I);
 | 
						|
            return BinaryOperator::create(
 | 
						|
                       cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        break;
 | 
						|
      case Instruction::And:
 | 
						|
        // (X & V) & C2 --> 0 iff (V & C2) == 0
 | 
						|
        if (MaskedValueIsZero(Op0LHS, AndRHS) ||
 | 
						|
            MaskedValueIsZero(Op0RHS, AndRHS))
 | 
						|
          return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
 | 
						|
        if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
 | 
						|
          return Res;
 | 
						|
    } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
 | 
						|
      const Type *SrcTy = CI->getOperand(0)->getType();
 | 
						|
 | 
						|
      // If this is an integer sign or zero extension instruction.
 | 
						|
      if (SrcTy->isIntegral() &&
 | 
						|
          SrcTy->getPrimitiveSize() < CI->getType()->getPrimitiveSize()) {
 | 
						|
 | 
						|
        if (SrcTy->isUnsigned()) {
 | 
						|
          // See if this and is clearing out bits that are known to be zero
 | 
						|
          // anyway (due to the zero extension).
 | 
						|
          Constant *Mask = ConstantIntegral::getAllOnesValue(SrcTy);
 | 
						|
          Mask = ConstantExpr::getZeroExtend(Mask, CI->getType());
 | 
						|
          Constant *Result = ConstantExpr::getAnd(Mask, AndRHS);
 | 
						|
          if (Result == Mask)  // The "and" isn't doing anything, remove it.
 | 
						|
            return ReplaceInstUsesWith(I, CI);
 | 
						|
          if (Result != AndRHS) { // Reduce the and RHS constant.
 | 
						|
            I.setOperand(1, Result);
 | 
						|
            return &I;
 | 
						|
          }
 | 
						|
 | 
						|
        } else {
 | 
						|
          if (CI->hasOneUse() && SrcTy->isInteger()) {
 | 
						|
            // We can only do this if all of the sign bits brought in are masked
 | 
						|
            // out.  Compute this by first getting 0000011111, then inverting
 | 
						|
            // it.
 | 
						|
            Constant *Mask = ConstantIntegral::getAllOnesValue(SrcTy);
 | 
						|
            Mask = ConstantExpr::getZeroExtend(Mask, CI->getType());
 | 
						|
            Mask = ConstantExpr::getNot(Mask);    // 1's in the new bits.
 | 
						|
            if (ConstantExpr::getAnd(Mask, AndRHS)->isNullValue()) {
 | 
						|
              // If the and is clearing all of the sign bits, change this to a
 | 
						|
              // zero extension cast.  To do this, cast the cast input to
 | 
						|
              // unsigned, then to the requested size.
 | 
						|
              Value *CastOp = CI->getOperand(0);
 | 
						|
              Instruction *NC =
 | 
						|
                new CastInst(CastOp, CastOp->getType()->getUnsignedVersion(),
 | 
						|
                             CI->getName()+".uns");
 | 
						|
              NC = InsertNewInstBefore(NC, I);
 | 
						|
              // Finally, insert a replacement for CI.
 | 
						|
              NC = new CastInst(NC, CI->getType(), CI->getName());
 | 
						|
              CI->setName("");
 | 
						|
              NC = InsertNewInstBefore(NC, I);
 | 
						|
              WorkList.push_back(CI);  // Delete CI later.
 | 
						|
              I.setOperand(0, NC);
 | 
						|
              return &I;               // The AND operand was modified.
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Try to fold constant and into select arguments.
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | 
						|
      if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | 
						|
        return R;
 | 
						|
    if (isa<PHINode>(Op0))
 | 
						|
      if (Instruction *NV = FoldOpIntoPhi(I))
 | 
						|
        return NV;
 | 
						|
  }
 | 
						|
 | 
						|
  Value *Op0NotVal = dyn_castNotVal(Op0);
 | 
						|
  Value *Op1NotVal = dyn_castNotVal(Op1);
 | 
						|
 | 
						|
  if (Op0NotVal == Op1 || Op1NotVal == Op0)  // A & ~A  == ~A & A == 0
 | 
						|
    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
 | 
						|
  // (~A & ~B) == (~(A | B)) - De Morgan's Law
 | 
						|
  if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
 | 
						|
    Instruction *Or = BinaryOperator::createOr(Op0NotVal, Op1NotVal,
 | 
						|
                                               I.getName()+".demorgan");
 | 
						|
    InsertNewInstBefore(Or, I);
 | 
						|
    return BinaryOperator::createNot(Or);
 | 
						|
  }
 | 
						|
 | 
						|
  if (SetCondInst *RHS = dyn_cast<SetCondInst>(Op1)) {
 | 
						|
    // (setcc1 A, B) & (setcc2 A, B) --> (setcc3 A, B)
 | 
						|
    if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
 | 
						|
      return R;
 | 
						|
 | 
						|
    Value *LHSVal, *RHSVal;
 | 
						|
    ConstantInt *LHSCst, *RHSCst;
 | 
						|
    Instruction::BinaryOps LHSCC, RHSCC;
 | 
						|
    if (match(Op0, m_SetCond(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
 | 
						|
      if (match(RHS, m_SetCond(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
 | 
						|
        if (LHSVal == RHSVal &&    // Found (X setcc C1) & (X setcc C2)
 | 
						|
            // Set[GL]E X, CST is folded to Set[GL]T elsewhere.
 | 
						|
            LHSCC != Instruction::SetGE && LHSCC != Instruction::SetLE && 
 | 
						|
            RHSCC != Instruction::SetGE && RHSCC != Instruction::SetLE) {
 | 
						|
          // Ensure that the larger constant is on the RHS.
 | 
						|
          Constant *Cmp = ConstantExpr::getSetGT(LHSCst, RHSCst);
 | 
						|
          SetCondInst *LHS = cast<SetCondInst>(Op0);
 | 
						|
          if (cast<ConstantBool>(Cmp)->getValue()) {
 | 
						|
            std::swap(LHS, RHS);
 | 
						|
            std::swap(LHSCst, RHSCst);
 | 
						|
            std::swap(LHSCC, RHSCC);
 | 
						|
          }
 | 
						|
 | 
						|
          // At this point, we know we have have two setcc instructions
 | 
						|
          // comparing a value against two constants and and'ing the result
 | 
						|
          // together.  Because of the above check, we know that we only have
 | 
						|
          // SetEQ, SetNE, SetLT, and SetGT here.  We also know (from the
 | 
						|
          // FoldSetCCLogical check above), that the two constants are not
 | 
						|
          // equal.
 | 
						|
          assert(LHSCst != RHSCst && "Compares not folded above?");
 | 
						|
 | 
						|
          switch (LHSCC) {
 | 
						|
          default: assert(0 && "Unknown integer condition code!");
 | 
						|
          case Instruction::SetEQ:
 | 
						|
            switch (RHSCC) {
 | 
						|
            default: assert(0 && "Unknown integer condition code!");
 | 
						|
            case Instruction::SetEQ:  // (X == 13 & X == 15) -> false
 | 
						|
            case Instruction::SetGT:  // (X == 13 & X > 15)  -> false
 | 
						|
              return ReplaceInstUsesWith(I, ConstantBool::False);
 | 
						|
            case Instruction::SetNE:  // (X == 13 & X != 15) -> X == 13
 | 
						|
            case Instruction::SetLT:  // (X == 13 & X < 15)  -> X == 13
 | 
						|
              return ReplaceInstUsesWith(I, LHS);
 | 
						|
            }
 | 
						|
          case Instruction::SetNE:
 | 
						|
            switch (RHSCC) {
 | 
						|
            default: assert(0 && "Unknown integer condition code!");
 | 
						|
            case Instruction::SetLT:
 | 
						|
              if (LHSCst == SubOne(RHSCst)) // (X != 13 & X < 14) -> X < 13
 | 
						|
                return new SetCondInst(Instruction::SetLT, LHSVal, LHSCst);
 | 
						|
              break;                        // (X != 13 & X < 15) -> no change
 | 
						|
            case Instruction::SetEQ:        // (X != 13 & X == 15) -> X == 15
 | 
						|
            case Instruction::SetGT:        // (X != 13 & X > 15)  -> X > 15
 | 
						|
              return ReplaceInstUsesWith(I, RHS);
 | 
						|
            case Instruction::SetNE:
 | 
						|
              if (LHSCst == SubOne(RHSCst)) {// (X != 13 & X != 14) -> X-13 >u 1
 | 
						|
                Constant *AddCST = ConstantExpr::getNeg(LHSCst);
 | 
						|
                Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
 | 
						|
                                                      LHSVal->getName()+".off");
 | 
						|
                InsertNewInstBefore(Add, I);
 | 
						|
                const Type *UnsType = Add->getType()->getUnsignedVersion();
 | 
						|
                Value *OffsetVal = InsertCastBefore(Add, UnsType, I);
 | 
						|
                AddCST = ConstantExpr::getSub(RHSCst, LHSCst);
 | 
						|
                AddCST = ConstantExpr::getCast(AddCST, UnsType);
 | 
						|
                return new SetCondInst(Instruction::SetGT, OffsetVal, AddCST);
 | 
						|
              }
 | 
						|
              break;                        // (X != 13 & X != 15) -> no change
 | 
						|
            }
 | 
						|
            break;
 | 
						|
          case Instruction::SetLT:
 | 
						|
            switch (RHSCC) {
 | 
						|
            default: assert(0 && "Unknown integer condition code!");
 | 
						|
            case Instruction::SetEQ:  // (X < 13 & X == 15) -> false
 | 
						|
            case Instruction::SetGT:  // (X < 13 & X > 15)  -> false
 | 
						|
              return ReplaceInstUsesWith(I, ConstantBool::False);
 | 
						|
            case Instruction::SetNE:  // (X < 13 & X != 15) -> X < 13
 | 
						|
            case Instruction::SetLT:  // (X < 13 & X < 15) -> X < 13
 | 
						|
              return ReplaceInstUsesWith(I, LHS);
 | 
						|
            }
 | 
						|
          case Instruction::SetGT:
 | 
						|
            switch (RHSCC) {
 | 
						|
            default: assert(0 && "Unknown integer condition code!");
 | 
						|
            case Instruction::SetEQ:  // (X > 13 & X == 15) -> X > 13
 | 
						|
              return ReplaceInstUsesWith(I, LHS);
 | 
						|
            case Instruction::SetGT:  // (X > 13 & X > 15)  -> X > 15
 | 
						|
              return ReplaceInstUsesWith(I, RHS);
 | 
						|
            case Instruction::SetNE:
 | 
						|
              if (RHSCst == AddOne(LHSCst)) // (X > 13 & X != 14) -> X > 14
 | 
						|
                return new SetCondInst(Instruction::SetGT, LHSVal, RHSCst);
 | 
						|
              break;                        // (X > 13 & X != 15) -> no change
 | 
						|
            case Instruction::SetLT:   // (X > 13 & X < 15) -> (X-14) <u 1
 | 
						|
              return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, true, I);
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed ? &I : 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitOr(BinaryOperator &I) {
 | 
						|
  bool Changed = SimplifyCommutative(I);
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
 | 
						|
  if (isa<UndefValue>(Op1))
 | 
						|
    return ReplaceInstUsesWith(I,                         // X | undef -> -1
 | 
						|
                               ConstantIntegral::getAllOnesValue(I.getType()));
 | 
						|
 | 
						|
  // or X, X = X   or X, 0 == X
 | 
						|
  if (Op0 == Op1 || Op1 == Constant::getNullValue(I.getType()))
 | 
						|
    return ReplaceInstUsesWith(I, Op0);
 | 
						|
 | 
						|
  // or X, -1 == -1
 | 
						|
  if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) {
 | 
						|
    // If X is known to only contain bits that already exist in RHS, just
 | 
						|
    // replace this instruction with RHS directly.
 | 
						|
    if (MaskedValueIsZero(Op0,
 | 
						|
                          cast<ConstantIntegral>(ConstantExpr::getNot(RHS))))
 | 
						|
      return ReplaceInstUsesWith(I, RHS);
 | 
						|
 | 
						|
    ConstantInt *C1; Value *X;
 | 
						|
    // (X & C1) | C2 --> (X | C2) & (C1|C2)
 | 
						|
    if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
 | 
						|
      std::string Op0Name = Op0->getName(); Op0->setName("");
 | 
						|
      Instruction *Or = BinaryOperator::createOr(X, RHS, Op0Name);
 | 
						|
      InsertNewInstBefore(Or, I);
 | 
						|
      return BinaryOperator::createAnd(Or, ConstantExpr::getOr(RHS, C1));
 | 
						|
    }
 | 
						|
 | 
						|
    // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
 | 
						|
    if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
 | 
						|
      std::string Op0Name = Op0->getName(); Op0->setName("");
 | 
						|
      Instruction *Or = BinaryOperator::createOr(X, RHS, Op0Name);
 | 
						|
      InsertNewInstBefore(Or, I);
 | 
						|
      return BinaryOperator::createXor(Or,
 | 
						|
                 ConstantExpr::getAnd(C1, ConstantExpr::getNot(RHS)));
 | 
						|
    }
 | 
						|
 | 
						|
    // Try to fold constant and into select arguments.
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | 
						|
      if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | 
						|
        return R;
 | 
						|
    if (isa<PHINode>(Op0))
 | 
						|
      if (Instruction *NV = FoldOpIntoPhi(I))
 | 
						|
        return NV;
 | 
						|
  }
 | 
						|
 | 
						|
  // (A & C1)|(A & C2) == A & (C1|C2)
 | 
						|
  Value *A, *B; ConstantInt *C1, *C2;
 | 
						|
  if (match(Op0, m_And(m_Value(A), m_ConstantInt(C1))) &&
 | 
						|
      match(Op1, m_And(m_Value(B), m_ConstantInt(C2))) && A == B)
 | 
						|
    return BinaryOperator::createAnd(A, ConstantExpr::getOr(C1, C2));
 | 
						|
 | 
						|
  if (match(Op0, m_Not(m_Value(A)))) {   // ~A | Op1
 | 
						|
    if (A == Op1)   // ~A | A == -1
 | 
						|
      return ReplaceInstUsesWith(I, 
 | 
						|
                                ConstantIntegral::getAllOnesValue(I.getType()));
 | 
						|
  } else {
 | 
						|
    A = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  if (match(Op1, m_Not(m_Value(B)))) {   // Op0 | ~B
 | 
						|
    if (Op0 == B)
 | 
						|
      return ReplaceInstUsesWith(I, 
 | 
						|
                                ConstantIntegral::getAllOnesValue(I.getType()));
 | 
						|
 | 
						|
    // (~A | ~B) == (~(A & B)) - De Morgan's Law
 | 
						|
    if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
 | 
						|
      Value *And = InsertNewInstBefore(BinaryOperator::createAnd(A, B,
 | 
						|
                                              I.getName()+".demorgan"), I);
 | 
						|
      return BinaryOperator::createNot(And);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // (setcc1 A, B) | (setcc2 A, B) --> (setcc3 A, B)
 | 
						|
  if (SetCondInst *RHS = dyn_cast<SetCondInst>(I.getOperand(1))) {
 | 
						|
    if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
 | 
						|
      return R;
 | 
						|
 | 
						|
    Value *LHSVal, *RHSVal;
 | 
						|
    ConstantInt *LHSCst, *RHSCst;
 | 
						|
    Instruction::BinaryOps LHSCC, RHSCC;
 | 
						|
    if (match(Op0, m_SetCond(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
 | 
						|
      if (match(RHS, m_SetCond(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
 | 
						|
        if (LHSVal == RHSVal &&    // Found (X setcc C1) | (X setcc C2)
 | 
						|
            // Set[GL]E X, CST is folded to Set[GL]T elsewhere.
 | 
						|
            LHSCC != Instruction::SetGE && LHSCC != Instruction::SetLE && 
 | 
						|
            RHSCC != Instruction::SetGE && RHSCC != Instruction::SetLE) {
 | 
						|
          // Ensure that the larger constant is on the RHS.
 | 
						|
          Constant *Cmp = ConstantExpr::getSetGT(LHSCst, RHSCst);
 | 
						|
          SetCondInst *LHS = cast<SetCondInst>(Op0);
 | 
						|
          if (cast<ConstantBool>(Cmp)->getValue()) {
 | 
						|
            std::swap(LHS, RHS);
 | 
						|
            std::swap(LHSCst, RHSCst);
 | 
						|
            std::swap(LHSCC, RHSCC);
 | 
						|
          }
 | 
						|
 | 
						|
          // At this point, we know we have have two setcc instructions
 | 
						|
          // comparing a value against two constants and or'ing the result
 | 
						|
          // together.  Because of the above check, we know that we only have
 | 
						|
          // SetEQ, SetNE, SetLT, and SetGT here.  We also know (from the
 | 
						|
          // FoldSetCCLogical check above), that the two constants are not
 | 
						|
          // equal.
 | 
						|
          assert(LHSCst != RHSCst && "Compares not folded above?");
 | 
						|
 | 
						|
          switch (LHSCC) {
 | 
						|
          default: assert(0 && "Unknown integer condition code!");
 | 
						|
          case Instruction::SetEQ:
 | 
						|
            switch (RHSCC) {
 | 
						|
            default: assert(0 && "Unknown integer condition code!");
 | 
						|
            case Instruction::SetEQ:
 | 
						|
              if (LHSCst == SubOne(RHSCst)) {// (X == 13 | X == 14) -> X-13 <u 2
 | 
						|
                Constant *AddCST = ConstantExpr::getNeg(LHSCst);
 | 
						|
                Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
 | 
						|
                                                      LHSVal->getName()+".off");
 | 
						|
                InsertNewInstBefore(Add, I);
 | 
						|
                const Type *UnsType = Add->getType()->getUnsignedVersion();
 | 
						|
                Value *OffsetVal = InsertCastBefore(Add, UnsType, I);
 | 
						|
                AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
 | 
						|
                AddCST = ConstantExpr::getCast(AddCST, UnsType);
 | 
						|
                return new SetCondInst(Instruction::SetLT, OffsetVal, AddCST);
 | 
						|
              }
 | 
						|
              break;                  // (X == 13 | X == 15) -> no change
 | 
						|
 | 
						|
            case Instruction::SetGT:
 | 
						|
              if (LHSCst == SubOne(RHSCst)) // (X == 13 | X > 14) -> X > 13
 | 
						|
                return new SetCondInst(Instruction::SetGT, LHSVal, LHSCst);
 | 
						|
              break;                        // (X == 13 | X > 15) -> no change
 | 
						|
            case Instruction::SetNE:  // (X == 13 | X != 15) -> X != 15
 | 
						|
            case Instruction::SetLT:  // (X == 13 | X < 15)  -> X < 15
 | 
						|
              return ReplaceInstUsesWith(I, RHS);
 | 
						|
            }
 | 
						|
            break;
 | 
						|
          case Instruction::SetNE:
 | 
						|
            switch (RHSCC) {
 | 
						|
            default: assert(0 && "Unknown integer condition code!");
 | 
						|
            case Instruction::SetLT:        // (X != 13 | X < 15) -> X < 15
 | 
						|
              return ReplaceInstUsesWith(I, RHS);
 | 
						|
            case Instruction::SetEQ:        // (X != 13 | X == 15) -> X != 13
 | 
						|
            case Instruction::SetGT:        // (X != 13 | X > 15)  -> X != 13
 | 
						|
              return ReplaceInstUsesWith(I, LHS);
 | 
						|
            case Instruction::SetNE:        // (X != 13 | X != 15) -> true
 | 
						|
              return ReplaceInstUsesWith(I, ConstantBool::True);
 | 
						|
            }
 | 
						|
            break;
 | 
						|
          case Instruction::SetLT:
 | 
						|
            switch (RHSCC) {
 | 
						|
            default: assert(0 && "Unknown integer condition code!");
 | 
						|
            case Instruction::SetEQ:  // (X < 13 | X == 14) -> no change
 | 
						|
              break;
 | 
						|
            case Instruction::SetGT:  // (X < 13 | X > 15)  -> (X-13) > 2
 | 
						|
              return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), false, I);
 | 
						|
            case Instruction::SetNE:  // (X < 13 | X != 15) -> X != 15
 | 
						|
            case Instruction::SetLT:  // (X < 13 | X < 15) -> X < 15
 | 
						|
              return ReplaceInstUsesWith(I, RHS);
 | 
						|
            }
 | 
						|
            break;
 | 
						|
          case Instruction::SetGT:
 | 
						|
            switch (RHSCC) {
 | 
						|
            default: assert(0 && "Unknown integer condition code!");
 | 
						|
            case Instruction::SetEQ:  // (X > 13 | X == 15) -> X > 13
 | 
						|
            case Instruction::SetGT:  // (X > 13 | X > 15)  -> X > 13
 | 
						|
              return ReplaceInstUsesWith(I, LHS);
 | 
						|
            case Instruction::SetNE:  // (X > 13 | X != 15)  -> true
 | 
						|
            case Instruction::SetLT:  // (X > 13 | X < 15) -> true
 | 
						|
              return ReplaceInstUsesWith(I, ConstantBool::True);
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
  }
 | 
						|
  return Changed ? &I : 0;
 | 
						|
}
 | 
						|
 | 
						|
// XorSelf - Implements: X ^ X --> 0
 | 
						|
struct XorSelf {
 | 
						|
  Value *RHS;
 | 
						|
  XorSelf(Value *rhs) : RHS(rhs) {}
 | 
						|
  bool shouldApply(Value *LHS) const { return LHS == RHS; }
 | 
						|
  Instruction *apply(BinaryOperator &Xor) const {
 | 
						|
    return &Xor;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
Instruction *InstCombiner::visitXor(BinaryOperator &I) {
 | 
						|
  bool Changed = SimplifyCommutative(I);
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
 | 
						|
  if (isa<UndefValue>(Op1))
 | 
						|
    return ReplaceInstUsesWith(I, Op1);  // X ^ undef -> undef
 | 
						|
 | 
						|
  // xor X, X = 0, even if X is nested in a sequence of Xor's.
 | 
						|
  if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
 | 
						|
    assert(Result == &I && "AssociativeOpt didn't work?");
 | 
						|
    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
  }
 | 
						|
 | 
						|
  if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) {
 | 
						|
    // xor X, 0 == X
 | 
						|
    if (RHS->isNullValue())
 | 
						|
      return ReplaceInstUsesWith(I, Op0);
 | 
						|
 | 
						|
    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
 | 
						|
      // xor (setcc A, B), true = not (setcc A, B) = setncc A, B
 | 
						|
      if (SetCondInst *SCI = dyn_cast<SetCondInst>(Op0I))
 | 
						|
        if (RHS == ConstantBool::True && SCI->hasOneUse())
 | 
						|
          return new SetCondInst(SCI->getInverseCondition(),
 | 
						|
                                 SCI->getOperand(0), SCI->getOperand(1));
 | 
						|
 | 
						|
      // ~(c-X) == X-c-1 == X+(-c-1)
 | 
						|
      if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
 | 
						|
        if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
 | 
						|
          Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
 | 
						|
          Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
 | 
						|
                                              ConstantInt::get(I.getType(), 1));
 | 
						|
          return BinaryOperator::createAdd(Op0I->getOperand(1), ConstantRHS);
 | 
						|
        }
 | 
						|
 | 
						|
      // ~(~X & Y) --> (X | ~Y)
 | 
						|
      if (Op0I->getOpcode() == Instruction::And && RHS->isAllOnesValue()) {
 | 
						|
        if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
 | 
						|
        if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
 | 
						|
          Instruction *NotY =
 | 
						|
            BinaryOperator::createNot(Op0I->getOperand(1), 
 | 
						|
                                      Op0I->getOperand(1)->getName()+".not");
 | 
						|
          InsertNewInstBefore(NotY, I);
 | 
						|
          return BinaryOperator::createOr(Op0NotVal, NotY);
 | 
						|
        }
 | 
						|
      }
 | 
						|
          
 | 
						|
      if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
 | 
						|
        switch (Op0I->getOpcode()) {
 | 
						|
        case Instruction::Add:
 | 
						|
          // ~(X-c) --> (-c-1)-X
 | 
						|
          if (RHS->isAllOnesValue()) {
 | 
						|
            Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
 | 
						|
            return BinaryOperator::createSub(
 | 
						|
                           ConstantExpr::getSub(NegOp0CI,
 | 
						|
                                             ConstantInt::get(I.getType(), 1)),
 | 
						|
                                          Op0I->getOperand(0));
 | 
						|
          }
 | 
						|
          break;
 | 
						|
        case Instruction::And:
 | 
						|
          // (X & C1) ^ C2 --> (X & C1) | C2 iff (C1&C2) == 0
 | 
						|
          if (ConstantExpr::getAnd(RHS, Op0CI)->isNullValue())
 | 
						|
            return BinaryOperator::createOr(Op0, RHS);
 | 
						|
          break;
 | 
						|
        case Instruction::Or:
 | 
						|
          // (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
 | 
						|
          if (ConstantExpr::getAnd(RHS, Op0CI) == RHS)
 | 
						|
            return BinaryOperator::createAnd(Op0, ConstantExpr::getNot(RHS));
 | 
						|
          break;
 | 
						|
        default: break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Try to fold constant and into select arguments.
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | 
						|
      if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | 
						|
        return R;
 | 
						|
    if (isa<PHINode>(Op0))
 | 
						|
      if (Instruction *NV = FoldOpIntoPhi(I))
 | 
						|
        return NV;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Value *X = dyn_castNotVal(Op0))   // ~A ^ A == -1
 | 
						|
    if (X == Op1)
 | 
						|
      return ReplaceInstUsesWith(I,
 | 
						|
                                ConstantIntegral::getAllOnesValue(I.getType()));
 | 
						|
 | 
						|
  if (Value *X = dyn_castNotVal(Op1))   // A ^ ~A == -1
 | 
						|
    if (X == Op0)
 | 
						|
      return ReplaceInstUsesWith(I,
 | 
						|
                                ConstantIntegral::getAllOnesValue(I.getType()));
 | 
						|
 | 
						|
  if (Instruction *Op1I = dyn_cast<Instruction>(Op1))
 | 
						|
    if (Op1I->getOpcode() == Instruction::Or) {
 | 
						|
      if (Op1I->getOperand(0) == Op0) {              // B^(B|A) == (A|B)^B
 | 
						|
        cast<BinaryOperator>(Op1I)->swapOperands();
 | 
						|
        I.swapOperands();
 | 
						|
        std::swap(Op0, Op1);
 | 
						|
      } else if (Op1I->getOperand(1) == Op0) {       // B^(A|B) == (A|B)^B
 | 
						|
        I.swapOperands();
 | 
						|
        std::swap(Op0, Op1);
 | 
						|
      }      
 | 
						|
    } else if (Op1I->getOpcode() == Instruction::Xor) {
 | 
						|
      if (Op0 == Op1I->getOperand(0))                        // A^(A^B) == B
 | 
						|
        return ReplaceInstUsesWith(I, Op1I->getOperand(1));
 | 
						|
      else if (Op0 == Op1I->getOperand(1))                   // A^(B^A) == B
 | 
						|
        return ReplaceInstUsesWith(I, Op1I->getOperand(0));
 | 
						|
    }
 | 
						|
 | 
						|
  if (Instruction *Op0I = dyn_cast<Instruction>(Op0))
 | 
						|
    if (Op0I->getOpcode() == Instruction::Or && Op0I->hasOneUse()) {
 | 
						|
      if (Op0I->getOperand(0) == Op1)                // (B|A)^B == (A|B)^B
 | 
						|
        cast<BinaryOperator>(Op0I)->swapOperands();
 | 
						|
      if (Op0I->getOperand(1) == Op1) {              // (A|B)^B == A & ~B
 | 
						|
        Value *NotB = InsertNewInstBefore(BinaryOperator::createNot(Op1,
 | 
						|
                                                     Op1->getName()+".not"), I);
 | 
						|
        return BinaryOperator::createAnd(Op0I->getOperand(0), NotB);
 | 
						|
      }
 | 
						|
    } else if (Op0I->getOpcode() == Instruction::Xor) {
 | 
						|
      if (Op1 == Op0I->getOperand(0))                        // (A^B)^A == B
 | 
						|
        return ReplaceInstUsesWith(I, Op0I->getOperand(1));
 | 
						|
      else if (Op1 == Op0I->getOperand(1))                   // (B^A)^A == B
 | 
						|
        return ReplaceInstUsesWith(I, Op0I->getOperand(0));
 | 
						|
    }
 | 
						|
 | 
						|
  // (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
 | 
						|
  Value *A, *B; ConstantInt *C1, *C2;
 | 
						|
  if (match(Op0, m_And(m_Value(A), m_ConstantInt(C1))) &&
 | 
						|
      match(Op1, m_And(m_Value(B), m_ConstantInt(C2))) &&
 | 
						|
      ConstantExpr::getAnd(C1, C2)->isNullValue())
 | 
						|
    return BinaryOperator::createOr(Op0, Op1);
 | 
						|
 | 
						|
  // (setcc1 A, B) ^ (setcc2 A, B) --> (setcc3 A, B)
 | 
						|
  if (SetCondInst *RHS = dyn_cast<SetCondInst>(I.getOperand(1)))
 | 
						|
    if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
 | 
						|
      return R;
 | 
						|
 | 
						|
  return Changed ? &I : 0;
 | 
						|
}
 | 
						|
 | 
						|
/// MulWithOverflow - Compute Result = In1*In2, returning true if the result
 | 
						|
/// overflowed for this type.
 | 
						|
static bool MulWithOverflow(ConstantInt *&Result, ConstantInt *In1,
 | 
						|
                            ConstantInt *In2) {
 | 
						|
  Result = cast<ConstantInt>(ConstantExpr::getMul(In1, In2));
 | 
						|
  return !In2->isNullValue() && ConstantExpr::getDiv(Result, In2) != In1;
 | 
						|
}
 | 
						|
 | 
						|
static bool isPositive(ConstantInt *C) {
 | 
						|
  return cast<ConstantSInt>(C)->getValue() >= 0;
 | 
						|
}
 | 
						|
 | 
						|
/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
 | 
						|
/// overflowed for this type.
 | 
						|
static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
 | 
						|
                            ConstantInt *In2) {
 | 
						|
  Result = cast<ConstantInt>(ConstantExpr::getAdd(In1, In2));
 | 
						|
 | 
						|
  if (In1->getType()->isUnsigned())
 | 
						|
    return cast<ConstantUInt>(Result)->getValue() <
 | 
						|
           cast<ConstantUInt>(In1)->getValue();
 | 
						|
  if (isPositive(In1) != isPositive(In2))
 | 
						|
    return false;
 | 
						|
  if (isPositive(In1))
 | 
						|
    return cast<ConstantSInt>(Result)->getValue() <
 | 
						|
           cast<ConstantSInt>(In1)->getValue();
 | 
						|
  return cast<ConstantSInt>(Result)->getValue() >
 | 
						|
         cast<ConstantSInt>(In1)->getValue();
 | 
						|
}
 | 
						|
 | 
						|
/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
 | 
						|
/// code necessary to compute the offset from the base pointer (without adding
 | 
						|
/// in the base pointer).  Return the result as a signed integer of intptr size.
 | 
						|
static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
 | 
						|
  TargetData &TD = IC.getTargetData();
 | 
						|
  gep_type_iterator GTI = gep_type_begin(GEP);
 | 
						|
  const Type *UIntPtrTy = TD.getIntPtrType();
 | 
						|
  const Type *SIntPtrTy = UIntPtrTy->getSignedVersion();
 | 
						|
  Value *Result = Constant::getNullValue(SIntPtrTy);
 | 
						|
 | 
						|
  // Build a mask for high order bits.
 | 
						|
  uint64_t PtrSizeMask = ~0ULL;
 | 
						|
  PtrSizeMask >>= 64-(TD.getPointerSize()*8);
 | 
						|
 | 
						|
  for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
 | 
						|
    Value *Op = GEP->getOperand(i);
 | 
						|
    uint64_t Size = TD.getTypeSize(GTI.getIndexedType()) & PtrSizeMask;
 | 
						|
    Constant *Scale = ConstantExpr::getCast(ConstantUInt::get(UIntPtrTy, Size),
 | 
						|
                                            SIntPtrTy);
 | 
						|
    if (Constant *OpC = dyn_cast<Constant>(Op)) {
 | 
						|
      if (!OpC->isNullValue()) {
 | 
						|
        OpC = ConstantExpr::getCast(OpC, SIntPtrTy);
 | 
						|
        Scale = ConstantExpr::getMul(OpC, Scale);
 | 
						|
        if (Constant *RC = dyn_cast<Constant>(Result))
 | 
						|
          Result = ConstantExpr::getAdd(RC, Scale);
 | 
						|
        else {
 | 
						|
          // Emit an add instruction.
 | 
						|
          Result = IC.InsertNewInstBefore(
 | 
						|
             BinaryOperator::createAdd(Result, Scale,
 | 
						|
                                       GEP->getName()+".offs"), I);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Convert to correct type.
 | 
						|
      Op = IC.InsertNewInstBefore(new CastInst(Op, SIntPtrTy,
 | 
						|
                                               Op->getName()+".c"), I);
 | 
						|
      if (Size != 1)
 | 
						|
        // We'll let instcombine(mul) convert this to a shl if possible.
 | 
						|
        Op = IC.InsertNewInstBefore(BinaryOperator::createMul(Op, Scale,
 | 
						|
                                                    GEP->getName()+".idx"), I);
 | 
						|
 | 
						|
      // Emit an add instruction.
 | 
						|
      Result = IC.InsertNewInstBefore(BinaryOperator::createAdd(Op, Result,
 | 
						|
                                                    GEP->getName()+".offs"), I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// FoldGEPSetCC - Fold comparisons between a GEP instruction and something
 | 
						|
/// else.  At this point we know that the GEP is on the LHS of the comparison.
 | 
						|
Instruction *InstCombiner::FoldGEPSetCC(User *GEPLHS, Value *RHS,
 | 
						|
                                        Instruction::BinaryOps Cond,
 | 
						|
                                        Instruction &I) {
 | 
						|
  assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");
 | 
						|
 | 
						|
  if (CastInst *CI = dyn_cast<CastInst>(RHS))
 | 
						|
    if (isa<PointerType>(CI->getOperand(0)->getType()))
 | 
						|
      RHS = CI->getOperand(0);
 | 
						|
 | 
						|
  Value *PtrBase = GEPLHS->getOperand(0);
 | 
						|
  if (PtrBase == RHS) {
 | 
						|
    // As an optimization, we don't actually have to compute the actual value of
 | 
						|
    // OFFSET if this is a seteq or setne comparison, just return whether each
 | 
						|
    // index is zero or not.
 | 
						|
    if (Cond == Instruction::SetEQ || Cond == Instruction::SetNE) {
 | 
						|
      Instruction *InVal = 0;
 | 
						|
      gep_type_iterator GTI = gep_type_begin(GEPLHS);
 | 
						|
      for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i, ++GTI) {
 | 
						|
        bool EmitIt = true;
 | 
						|
        if (Constant *C = dyn_cast<Constant>(GEPLHS->getOperand(i))) {
 | 
						|
          if (isa<UndefValue>(C))  // undef index -> undef.
 | 
						|
            return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
 | 
						|
          if (C->isNullValue())
 | 
						|
            EmitIt = false;
 | 
						|
          else if (TD->getTypeSize(GTI.getIndexedType()) == 0) {
 | 
						|
            EmitIt = false;  // This is indexing into a zero sized array?
 | 
						|
          } else if (isa<ConstantInt>(C)) 
 | 
						|
            return ReplaceInstUsesWith(I, // No comparison is needed here.
 | 
						|
                                 ConstantBool::get(Cond == Instruction::SetNE));
 | 
						|
        }
 | 
						|
 | 
						|
        if (EmitIt) {
 | 
						|
          Instruction *Comp = 
 | 
						|
            new SetCondInst(Cond, GEPLHS->getOperand(i),
 | 
						|
                    Constant::getNullValue(GEPLHS->getOperand(i)->getType()));
 | 
						|
          if (InVal == 0)
 | 
						|
            InVal = Comp;
 | 
						|
          else {
 | 
						|
            InVal = InsertNewInstBefore(InVal, I);
 | 
						|
            InsertNewInstBefore(Comp, I);
 | 
						|
            if (Cond == Instruction::SetNE)   // True if any are unequal
 | 
						|
              InVal = BinaryOperator::createOr(InVal, Comp);
 | 
						|
            else                              // True if all are equal
 | 
						|
              InVal = BinaryOperator::createAnd(InVal, Comp);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (InVal)
 | 
						|
        return InVal;
 | 
						|
      else
 | 
						|
        ReplaceInstUsesWith(I, // No comparison is needed here, all indexes = 0
 | 
						|
                            ConstantBool::get(Cond == Instruction::SetEQ));
 | 
						|
    }
 | 
						|
 | 
						|
    // Only lower this if the setcc is the only user of the GEP or if we expect
 | 
						|
    // the result to fold to a constant!
 | 
						|
    if (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) {
 | 
						|
      // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
 | 
						|
      Value *Offset = EmitGEPOffset(GEPLHS, I, *this);
 | 
						|
      return new SetCondInst(Cond, Offset,
 | 
						|
                             Constant::getNullValue(Offset->getType()));
 | 
						|
    }
 | 
						|
  } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
 | 
						|
    if (PtrBase != GEPRHS->getOperand(0))
 | 
						|
      return 0;
 | 
						|
 | 
						|
    // If one of the GEPs has all zero indices, recurse.
 | 
						|
    bool AllZeros = true;
 | 
						|
    for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
 | 
						|
      if (!isa<Constant>(GEPLHS->getOperand(i)) ||
 | 
						|
          !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
 | 
						|
        AllZeros = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    if (AllZeros)
 | 
						|
      return FoldGEPSetCC(GEPRHS, GEPLHS->getOperand(0),
 | 
						|
                          SetCondInst::getSwappedCondition(Cond), I);
 | 
						|
 | 
						|
    // If the other GEP has all zero indices, recurse.
 | 
						|
    AllZeros = true;
 | 
						|
    for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
 | 
						|
      if (!isa<Constant>(GEPRHS->getOperand(i)) ||
 | 
						|
          !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
 | 
						|
        AllZeros = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    if (AllZeros)
 | 
						|
      return FoldGEPSetCC(GEPLHS, GEPRHS->getOperand(0), Cond, I);
 | 
						|
 | 
						|
    if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
 | 
						|
      // If the GEPs only differ by one index, compare it.
 | 
						|
      unsigned NumDifferences = 0;  // Keep track of # differences.
 | 
						|
      unsigned DiffOperand = 0;     // The operand that differs.
 | 
						|
      for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
 | 
						|
        if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
 | 
						|
          if (GEPLHS->getOperand(i)->getType()->getPrimitiveSize() != 
 | 
						|
                     GEPRHS->getOperand(i)->getType()->getPrimitiveSize()) {
 | 
						|
            // Irreconcilable differences.
 | 
						|
            NumDifferences = 2;
 | 
						|
            break;
 | 
						|
          } else {
 | 
						|
            if (NumDifferences++) break;
 | 
						|
            DiffOperand = i;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
      if (NumDifferences == 0)   // SAME GEP?
 | 
						|
        return ReplaceInstUsesWith(I, // No comparison is needed here.
 | 
						|
                                 ConstantBool::get(Cond == Instruction::SetEQ));
 | 
						|
      else if (NumDifferences == 1) {
 | 
						|
        Value *LHSV = GEPLHS->getOperand(DiffOperand);
 | 
						|
        Value *RHSV = GEPRHS->getOperand(DiffOperand);
 | 
						|
        if (LHSV->getType() != RHSV->getType())
 | 
						|
          LHSV = InsertNewInstBefore(new CastInst(LHSV, RHSV->getType(),
 | 
						|
                                                  LHSV->getName()+".c"), I);
 | 
						|
          return new SetCondInst(Cond, LHSV, RHSV);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Only lower this if the setcc is the only user of the GEP or if we expect
 | 
						|
    // the result to fold to a constant!
 | 
						|
    if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
 | 
						|
        (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
 | 
						|
      // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
 | 
						|
      Value *L = EmitGEPOffset(GEPLHS, I, *this);
 | 
						|
      Value *R = EmitGEPOffset(GEPRHS, I, *this);
 | 
						|
      return new SetCondInst(Cond, L, R);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Instruction *InstCombiner::visitSetCondInst(BinaryOperator &I) {
 | 
						|
  bool Changed = SimplifyCommutative(I);
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
  const Type *Ty = Op0->getType();
 | 
						|
 | 
						|
  // setcc X, X
 | 
						|
  if (Op0 == Op1)
 | 
						|
    return ReplaceInstUsesWith(I, ConstantBool::get(isTrueWhenEqual(I)));
 | 
						|
 | 
						|
  if (isa<UndefValue>(Op1))                  // X setcc undef -> undef
 | 
						|
    return ReplaceInstUsesWith(I, UndefValue::get(Type::BoolTy));
 | 
						|
 | 
						|
  // setcc <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
 | 
						|
  // addresses never equal each other!  We already know that Op0 != Op1.
 | 
						|
  if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) || 
 | 
						|
       isa<ConstantPointerNull>(Op0)) && 
 | 
						|
      (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) || 
 | 
						|
       isa<ConstantPointerNull>(Op1)))
 | 
						|
    return ReplaceInstUsesWith(I, ConstantBool::get(!isTrueWhenEqual(I)));
 | 
						|
 | 
						|
  // setcc's with boolean values can always be turned into bitwise operations
 | 
						|
  if (Ty == Type::BoolTy) {
 | 
						|
    switch (I.getOpcode()) {
 | 
						|
    default: assert(0 && "Invalid setcc instruction!");
 | 
						|
    case Instruction::SetEQ: {     //  seteq bool %A, %B -> ~(A^B)
 | 
						|
      Instruction *Xor = BinaryOperator::createXor(Op0, Op1, I.getName()+"tmp");
 | 
						|
      InsertNewInstBefore(Xor, I);
 | 
						|
      return BinaryOperator::createNot(Xor);
 | 
						|
    }
 | 
						|
    case Instruction::SetNE:
 | 
						|
      return BinaryOperator::createXor(Op0, Op1);
 | 
						|
 | 
						|
    case Instruction::SetGT:
 | 
						|
      std::swap(Op0, Op1);                   // Change setgt -> setlt
 | 
						|
      // FALL THROUGH
 | 
						|
    case Instruction::SetLT: {               // setlt bool A, B -> ~X & Y
 | 
						|
      Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
 | 
						|
      InsertNewInstBefore(Not, I);
 | 
						|
      return BinaryOperator::createAnd(Not, Op1);
 | 
						|
    }
 | 
						|
    case Instruction::SetGE:
 | 
						|
      std::swap(Op0, Op1);                   // Change setge -> setle
 | 
						|
      // FALL THROUGH
 | 
						|
    case Instruction::SetLE: {     //  setle bool %A, %B -> ~A | B
 | 
						|
      Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
 | 
						|
      InsertNewInstBefore(Not, I);
 | 
						|
      return BinaryOperator::createOr(Not, Op1);
 | 
						|
    }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // See if we are doing a comparison between a constant and an instruction that
 | 
						|
  // can be folded into the comparison.
 | 
						|
  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | 
						|
    // Check to see if we are comparing against the minimum or maximum value...
 | 
						|
    if (CI->isMinValue()) {
 | 
						|
      if (I.getOpcode() == Instruction::SetLT)       // A < MIN -> FALSE
 | 
						|
        return ReplaceInstUsesWith(I, ConstantBool::False);
 | 
						|
      if (I.getOpcode() == Instruction::SetGE)       // A >= MIN -> TRUE
 | 
						|
        return ReplaceInstUsesWith(I, ConstantBool::True);
 | 
						|
      if (I.getOpcode() == Instruction::SetLE)       // A <= MIN -> A == MIN
 | 
						|
        return BinaryOperator::createSetEQ(Op0, Op1);
 | 
						|
      if (I.getOpcode() == Instruction::SetGT)       // A > MIN -> A != MIN
 | 
						|
        return BinaryOperator::createSetNE(Op0, Op1);
 | 
						|
 | 
						|
    } else if (CI->isMaxValue()) {
 | 
						|
      if (I.getOpcode() == Instruction::SetGT)       // A > MAX -> FALSE
 | 
						|
        return ReplaceInstUsesWith(I, ConstantBool::False);
 | 
						|
      if (I.getOpcode() == Instruction::SetLE)       // A <= MAX -> TRUE
 | 
						|
        return ReplaceInstUsesWith(I, ConstantBool::True);
 | 
						|
      if (I.getOpcode() == Instruction::SetGE)       // A >= MAX -> A == MAX
 | 
						|
        return BinaryOperator::createSetEQ(Op0, Op1);
 | 
						|
      if (I.getOpcode() == Instruction::SetLT)       // A < MAX -> A != MAX
 | 
						|
        return BinaryOperator::createSetNE(Op0, Op1);
 | 
						|
 | 
						|
      // Comparing against a value really close to min or max?
 | 
						|
    } else if (isMinValuePlusOne(CI)) {
 | 
						|
      if (I.getOpcode() == Instruction::SetLT)       // A < MIN+1 -> A == MIN
 | 
						|
        return BinaryOperator::createSetEQ(Op0, SubOne(CI));
 | 
						|
      if (I.getOpcode() == Instruction::SetGE)       // A >= MIN-1 -> A != MIN
 | 
						|
        return BinaryOperator::createSetNE(Op0, SubOne(CI));
 | 
						|
 | 
						|
    } else if (isMaxValueMinusOne(CI)) {
 | 
						|
      if (I.getOpcode() == Instruction::SetGT)       // A > MAX-1 -> A == MAX
 | 
						|
        return BinaryOperator::createSetEQ(Op0, AddOne(CI));
 | 
						|
      if (I.getOpcode() == Instruction::SetLE)       // A <= MAX-1 -> A != MAX
 | 
						|
        return BinaryOperator::createSetNE(Op0, AddOne(CI));
 | 
						|
    }
 | 
						|
 | 
						|
    // If we still have a setle or setge instruction, turn it into the
 | 
						|
    // appropriate setlt or setgt instruction.  Since the border cases have
 | 
						|
    // already been handled above, this requires little checking.
 | 
						|
    //
 | 
						|
    if (I.getOpcode() == Instruction::SetLE)
 | 
						|
      return BinaryOperator::createSetLT(Op0, AddOne(CI));
 | 
						|
    if (I.getOpcode() == Instruction::SetGE)
 | 
						|
      return BinaryOperator::createSetGT(Op0, SubOne(CI));
 | 
						|
 | 
						|
    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
 | 
						|
      switch (LHSI->getOpcode()) {
 | 
						|
      case Instruction::PHI:
 | 
						|
        if (Instruction *NV = FoldOpIntoPhi(I))
 | 
						|
          return NV;
 | 
						|
        break;
 | 
						|
      case Instruction::And:
 | 
						|
        if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
 | 
						|
            LHSI->getOperand(0)->hasOneUse()) {
 | 
						|
          // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
 | 
						|
          // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
 | 
						|
          // happens a LOT in code produced by the C front-end, for bitfield
 | 
						|
          // access.
 | 
						|
          ShiftInst *Shift = dyn_cast<ShiftInst>(LHSI->getOperand(0));
 | 
						|
          ConstantUInt *ShAmt;
 | 
						|
          ShAmt = Shift ? dyn_cast<ConstantUInt>(Shift->getOperand(1)) : 0;
 | 
						|
          ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
 | 
						|
          const Type *Ty = LHSI->getType();
 | 
						|
          
 | 
						|
          // We can fold this as long as we can't shift unknown bits
 | 
						|
          // into the mask.  This can only happen with signed shift
 | 
						|
          // rights, as they sign-extend.
 | 
						|
          if (ShAmt) {
 | 
						|
            bool CanFold = Shift->getOpcode() != Instruction::Shr ||
 | 
						|
                           Shift->getType()->isUnsigned();
 | 
						|
            if (!CanFold) {
 | 
						|
              // To test for the bad case of the signed shr, see if any
 | 
						|
              // of the bits shifted in could be tested after the mask.
 | 
						|
              Constant *OShAmt = ConstantUInt::get(Type::UByteTy, 
 | 
						|
                                   Ty->getPrimitiveSize()*8-ShAmt->getValue());
 | 
						|
              Constant *ShVal = 
 | 
						|
                ConstantExpr::getShl(ConstantInt::getAllOnesValue(Ty), OShAmt);
 | 
						|
              if (ConstantExpr::getAnd(ShVal, AndCST)->isNullValue())
 | 
						|
                CanFold = true;
 | 
						|
            }
 | 
						|
            
 | 
						|
            if (CanFold) {
 | 
						|
              Constant *NewCst;
 | 
						|
              if (Shift->getOpcode() == Instruction::Shl)
 | 
						|
                NewCst = ConstantExpr::getUShr(CI, ShAmt);
 | 
						|
              else
 | 
						|
                NewCst = ConstantExpr::getShl(CI, ShAmt);
 | 
						|
 | 
						|
              // Check to see if we are shifting out any of the bits being
 | 
						|
              // compared.
 | 
						|
              if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != CI){
 | 
						|
                // If we shifted bits out, the fold is not going to work out.
 | 
						|
                // As a special case, check to see if this means that the
 | 
						|
                // result is always true or false now.
 | 
						|
                if (I.getOpcode() == Instruction::SetEQ)
 | 
						|
                  return ReplaceInstUsesWith(I, ConstantBool::False);
 | 
						|
                if (I.getOpcode() == Instruction::SetNE)
 | 
						|
                  return ReplaceInstUsesWith(I, ConstantBool::True);
 | 
						|
              } else {
 | 
						|
                I.setOperand(1, NewCst);
 | 
						|
                Constant *NewAndCST;
 | 
						|
                if (Shift->getOpcode() == Instruction::Shl)
 | 
						|
                  NewAndCST = ConstantExpr::getUShr(AndCST, ShAmt);
 | 
						|
                else
 | 
						|
                  NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
 | 
						|
                LHSI->setOperand(1, NewAndCST);
 | 
						|
                LHSI->setOperand(0, Shift->getOperand(0));
 | 
						|
                WorkList.push_back(Shift); // Shift is dead.
 | 
						|
                AddUsesToWorkList(I);
 | 
						|
                return &I;
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
 | 
						|
      // (setcc (cast X to larger), CI)
 | 
						|
      case Instruction::Cast:
 | 
						|
        if (Instruction *R = 
 | 
						|
                visitSetCondInstWithCastAndConstant(I,cast<CastInst>(LHSI),CI))
 | 
						|
          return R;
 | 
						|
        break;
 | 
						|
 | 
						|
      case Instruction::Shl:         // (setcc (shl X, ShAmt), CI)
 | 
						|
        if (ConstantUInt *ShAmt = dyn_cast<ConstantUInt>(LHSI->getOperand(1))) {
 | 
						|
          switch (I.getOpcode()) {
 | 
						|
          default: break;
 | 
						|
          case Instruction::SetEQ:
 | 
						|
          case Instruction::SetNE: {
 | 
						|
            // If we are comparing against bits always shifted out, the
 | 
						|
            // comparison cannot succeed.
 | 
						|
            Constant *Comp = 
 | 
						|
              ConstantExpr::getShl(ConstantExpr::getShr(CI, ShAmt), ShAmt);
 | 
						|
            if (Comp != CI) {// Comparing against a bit that we know is zero.
 | 
						|
              bool IsSetNE = I.getOpcode() == Instruction::SetNE;
 | 
						|
              Constant *Cst = ConstantBool::get(IsSetNE);
 | 
						|
              return ReplaceInstUsesWith(I, Cst);
 | 
						|
            }
 | 
						|
 | 
						|
            if (LHSI->hasOneUse()) {
 | 
						|
              // Otherwise strength reduce the shift into an and.
 | 
						|
              unsigned ShAmtVal = (unsigned)ShAmt->getValue();
 | 
						|
              unsigned TypeBits = CI->getType()->getPrimitiveSize()*8;
 | 
						|
              uint64_t Val = (1ULL << (TypeBits-ShAmtVal))-1;
 | 
						|
 | 
						|
              Constant *Mask;
 | 
						|
              if (CI->getType()->isUnsigned()) {
 | 
						|
                Mask = ConstantUInt::get(CI->getType(), Val);
 | 
						|
              } else if (ShAmtVal != 0) {
 | 
						|
                Mask = ConstantSInt::get(CI->getType(), Val);
 | 
						|
              } else {
 | 
						|
                Mask = ConstantInt::getAllOnesValue(CI->getType());
 | 
						|
              }
 | 
						|
              
 | 
						|
              Instruction *AndI =
 | 
						|
                BinaryOperator::createAnd(LHSI->getOperand(0),
 | 
						|
                                          Mask, LHSI->getName()+".mask");
 | 
						|
              Value *And = InsertNewInstBefore(AndI, I);
 | 
						|
              return new SetCondInst(I.getOpcode(), And,
 | 
						|
                                     ConstantExpr::getUShr(CI, ShAmt));
 | 
						|
            }
 | 
						|
          }
 | 
						|
          }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
 | 
						|
      case Instruction::Shr:         // (setcc (shr X, ShAmt), CI)
 | 
						|
        if (ConstantUInt *ShAmt = dyn_cast<ConstantUInt>(LHSI->getOperand(1))) {
 | 
						|
          switch (I.getOpcode()) {
 | 
						|
          default: break;
 | 
						|
          case Instruction::SetEQ:
 | 
						|
          case Instruction::SetNE: {
 | 
						|
            // If we are comparing against bits always shifted out, the
 | 
						|
            // comparison cannot succeed.
 | 
						|
            Constant *Comp = 
 | 
						|
              ConstantExpr::getShr(ConstantExpr::getShl(CI, ShAmt), ShAmt);
 | 
						|
            
 | 
						|
            if (Comp != CI) {// Comparing against a bit that we know is zero.
 | 
						|
              bool IsSetNE = I.getOpcode() == Instruction::SetNE;
 | 
						|
              Constant *Cst = ConstantBool::get(IsSetNE);
 | 
						|
              return ReplaceInstUsesWith(I, Cst);
 | 
						|
            }
 | 
						|
              
 | 
						|
            if (LHSI->hasOneUse() || CI->isNullValue()) {
 | 
						|
              unsigned ShAmtVal = (unsigned)ShAmt->getValue();
 | 
						|
 | 
						|
              // Otherwise strength reduce the shift into an and.
 | 
						|
              uint64_t Val = ~0ULL;          // All ones.
 | 
						|
              Val <<= ShAmtVal;              // Shift over to the right spot.
 | 
						|
 | 
						|
              Constant *Mask;
 | 
						|
              if (CI->getType()->isUnsigned()) {
 | 
						|
                unsigned TypeBits = CI->getType()->getPrimitiveSize()*8;
 | 
						|
                if (TypeBits != 64)
 | 
						|
                  Val &= (1ULL << TypeBits)-1;
 | 
						|
                Mask = ConstantUInt::get(CI->getType(), Val);
 | 
						|
              } else {
 | 
						|
                Mask = ConstantSInt::get(CI->getType(), Val);
 | 
						|
              }
 | 
						|
              
 | 
						|
              Instruction *AndI =
 | 
						|
                BinaryOperator::createAnd(LHSI->getOperand(0),
 | 
						|
                                          Mask, LHSI->getName()+".mask");
 | 
						|
              Value *And = InsertNewInstBefore(AndI, I);
 | 
						|
              return new SetCondInst(I.getOpcode(), And,
 | 
						|
                                     ConstantExpr::getShl(CI, ShAmt));
 | 
						|
            }
 | 
						|
            break;
 | 
						|
          }
 | 
						|
          }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
 | 
						|
      case Instruction::Div:
 | 
						|
        // Fold: (div X, C1) op C2 -> range check
 | 
						|
        if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
 | 
						|
          // Fold this div into the comparison, producing a range check.
 | 
						|
          // Determine, based on the divide type, what the range is being
 | 
						|
          // checked.  If there is an overflow on the low or high side, remember
 | 
						|
          // it, otherwise compute the range [low, hi) bounding the new value.
 | 
						|
          bool LoOverflow = false, HiOverflow = 0;
 | 
						|
          ConstantInt *LoBound = 0, *HiBound = 0;
 | 
						|
 | 
						|
          ConstantInt *Prod;
 | 
						|
          bool ProdOV = MulWithOverflow(Prod, CI, DivRHS);
 | 
						|
 | 
						|
          Instruction::BinaryOps Opcode = I.getOpcode();
 | 
						|
 | 
						|
          if (DivRHS->isNullValue()) {  // Don't hack on divide by zeros.
 | 
						|
          } else if (LHSI->getType()->isUnsigned()) {  // udiv
 | 
						|
            LoBound = Prod;
 | 
						|
            LoOverflow = ProdOV;
 | 
						|
            HiOverflow = ProdOV || AddWithOverflow(HiBound, LoBound, DivRHS);
 | 
						|
          } else if (isPositive(DivRHS)) {             // Divisor is > 0.
 | 
						|
            if (CI->isNullValue()) {       // (X / pos) op 0
 | 
						|
              // Can't overflow.
 | 
						|
              LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
 | 
						|
              HiBound = DivRHS;
 | 
						|
            } else if (isPositive(CI)) {   // (X / pos) op pos
 | 
						|
              LoBound = Prod;
 | 
						|
              LoOverflow = ProdOV;
 | 
						|
              HiOverflow = ProdOV || AddWithOverflow(HiBound, Prod, DivRHS);
 | 
						|
            } else {                       // (X / pos) op neg
 | 
						|
              Constant *DivRHSH = ConstantExpr::getNeg(SubOne(DivRHS));
 | 
						|
              LoOverflow = AddWithOverflow(LoBound, Prod,
 | 
						|
                                           cast<ConstantInt>(DivRHSH));
 | 
						|
              HiBound = Prod;
 | 
						|
              HiOverflow = ProdOV;
 | 
						|
            }
 | 
						|
          } else {                                     // Divisor is < 0.
 | 
						|
            if (CI->isNullValue()) {       // (X / neg) op 0
 | 
						|
              LoBound = AddOne(DivRHS);
 | 
						|
              HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
 | 
						|
            } else if (isPositive(CI)) {   // (X / neg) op pos
 | 
						|
              HiOverflow = LoOverflow = ProdOV;
 | 
						|
              if (!LoOverflow)
 | 
						|
                LoOverflow = AddWithOverflow(LoBound, Prod, AddOne(DivRHS));
 | 
						|
              HiBound = AddOne(Prod);
 | 
						|
            } else {                       // (X / neg) op neg
 | 
						|
              LoBound = Prod;
 | 
						|
              LoOverflow = HiOverflow = ProdOV;
 | 
						|
              HiBound = cast<ConstantInt>(ConstantExpr::getSub(Prod, DivRHS));
 | 
						|
            }
 | 
						|
 | 
						|
            // Dividing by a negate swaps the condition.
 | 
						|
            Opcode = SetCondInst::getSwappedCondition(Opcode);
 | 
						|
          }
 | 
						|
 | 
						|
          if (LoBound) {
 | 
						|
            Value *X = LHSI->getOperand(0);
 | 
						|
            switch (Opcode) {
 | 
						|
            default: assert(0 && "Unhandled setcc opcode!");
 | 
						|
            case Instruction::SetEQ:
 | 
						|
              if (LoOverflow && HiOverflow)
 | 
						|
                return ReplaceInstUsesWith(I, ConstantBool::False);
 | 
						|
              else if (HiOverflow)
 | 
						|
                return new SetCondInst(Instruction::SetGE, X, LoBound);
 | 
						|
              else if (LoOverflow)
 | 
						|
                return new SetCondInst(Instruction::SetLT, X, HiBound);
 | 
						|
              else
 | 
						|
                return InsertRangeTest(X, LoBound, HiBound, true, I);
 | 
						|
            case Instruction::SetNE:
 | 
						|
              if (LoOverflow && HiOverflow)
 | 
						|
                return ReplaceInstUsesWith(I, ConstantBool::True);
 | 
						|
              else if (HiOverflow)
 | 
						|
                return new SetCondInst(Instruction::SetLT, X, LoBound);
 | 
						|
              else if (LoOverflow)
 | 
						|
                return new SetCondInst(Instruction::SetGE, X, HiBound);
 | 
						|
              else
 | 
						|
                return InsertRangeTest(X, LoBound, HiBound, false, I);
 | 
						|
            case Instruction::SetLT:
 | 
						|
              if (LoOverflow)
 | 
						|
                return ReplaceInstUsesWith(I, ConstantBool::False);
 | 
						|
              return new SetCondInst(Instruction::SetLT, X, LoBound);
 | 
						|
            case Instruction::SetGT:
 | 
						|
              if (HiOverflow)
 | 
						|
                return ReplaceInstUsesWith(I, ConstantBool::False);
 | 
						|
              return new SetCondInst(Instruction::SetGE, X, HiBound);
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case Instruction::Select:
 | 
						|
        // If either operand of the select is a constant, we can fold the
 | 
						|
        // comparison into the select arms, which will cause one to be
 | 
						|
        // constant folded and the select turned into a bitwise or.
 | 
						|
        Value *Op1 = 0, *Op2 = 0;
 | 
						|
        if (LHSI->hasOneUse()) {
 | 
						|
          if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
 | 
						|
            // Fold the known value into the constant operand.
 | 
						|
            Op1 = ConstantExpr::get(I.getOpcode(), C, CI);
 | 
						|
            // Insert a new SetCC of the other select operand.
 | 
						|
            Op2 = InsertNewInstBefore(new SetCondInst(I.getOpcode(),
 | 
						|
                                                      LHSI->getOperand(2), CI,
 | 
						|
                                                      I.getName()), I);
 | 
						|
          } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
 | 
						|
            // Fold the known value into the constant operand.
 | 
						|
            Op2 = ConstantExpr::get(I.getOpcode(), C, CI);
 | 
						|
            // Insert a new SetCC of the other select operand.
 | 
						|
            Op1 = InsertNewInstBefore(new SetCondInst(I.getOpcode(),
 | 
						|
                                                      LHSI->getOperand(1), CI,
 | 
						|
                                                      I.getName()), I);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        
 | 
						|
        if (Op1)
 | 
						|
          return new SelectInst(LHSI->getOperand(0), Op1, Op2);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    
 | 
						|
    // Simplify seteq and setne instructions...
 | 
						|
    if (I.getOpcode() == Instruction::SetEQ ||
 | 
						|
        I.getOpcode() == Instruction::SetNE) {
 | 
						|
      bool isSetNE = I.getOpcode() == Instruction::SetNE;
 | 
						|
 | 
						|
      // If the first operand is (and|or|xor) with a constant, and the second
 | 
						|
      // operand is a constant, simplify a bit.
 | 
						|
      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0)) {
 | 
						|
        switch (BO->getOpcode()) {
 | 
						|
        case Instruction::Rem:
 | 
						|
          // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
 | 
						|
          if (CI->isNullValue() && isa<ConstantSInt>(BO->getOperand(1)) &&
 | 
						|
              BO->hasOneUse() &&
 | 
						|
              cast<ConstantSInt>(BO->getOperand(1))->getValue() > 1)
 | 
						|
            if (unsigned L2 =
 | 
						|
                Log2(cast<ConstantSInt>(BO->getOperand(1))->getValue())) {
 | 
						|
              const Type *UTy = BO->getType()->getUnsignedVersion();
 | 
						|
              Value *NewX = InsertNewInstBefore(new CastInst(BO->getOperand(0),
 | 
						|
                                                             UTy, "tmp"), I);
 | 
						|
              Constant *RHSCst = ConstantUInt::get(UTy, 1ULL << L2);
 | 
						|
              Value *NewRem =InsertNewInstBefore(BinaryOperator::createRem(NewX,
 | 
						|
                                                    RHSCst, BO->getName()), I);
 | 
						|
              return BinaryOperator::create(I.getOpcode(), NewRem,
 | 
						|
                                            Constant::getNullValue(UTy));
 | 
						|
            }
 | 
						|
          break;          
 | 
						|
 | 
						|
        case Instruction::Add:
 | 
						|
          // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
 | 
						|
          if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
 | 
						|
            if (BO->hasOneUse())
 | 
						|
              return new SetCondInst(I.getOpcode(), BO->getOperand(0),
 | 
						|
                                     ConstantExpr::getSub(CI, BOp1C));
 | 
						|
          } else if (CI->isNullValue()) {
 | 
						|
            // Replace ((add A, B) != 0) with (A != -B) if A or B is
 | 
						|
            // efficiently invertible, or if the add has just this one use.
 | 
						|
            Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
 | 
						|
            
 | 
						|
            if (Value *NegVal = dyn_castNegVal(BOp1))
 | 
						|
              return new SetCondInst(I.getOpcode(), BOp0, NegVal);
 | 
						|
            else if (Value *NegVal = dyn_castNegVal(BOp0))
 | 
						|
              return new SetCondInst(I.getOpcode(), NegVal, BOp1);
 | 
						|
            else if (BO->hasOneUse()) {
 | 
						|
              Instruction *Neg = BinaryOperator::createNeg(BOp1, BO->getName());
 | 
						|
              BO->setName("");
 | 
						|
              InsertNewInstBefore(Neg, I);
 | 
						|
              return new SetCondInst(I.getOpcode(), BOp0, Neg);
 | 
						|
            }
 | 
						|
          }
 | 
						|
          break;
 | 
						|
        case Instruction::Xor:
 | 
						|
          // For the xor case, we can xor two constants together, eliminating
 | 
						|
          // the explicit xor.
 | 
						|
          if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
 | 
						|
            return BinaryOperator::create(I.getOpcode(), BO->getOperand(0),
 | 
						|
                                  ConstantExpr::getXor(CI, BOC));
 | 
						|
 | 
						|
          // FALLTHROUGH
 | 
						|
        case Instruction::Sub:
 | 
						|
          // Replace (([sub|xor] A, B) != 0) with (A != B)
 | 
						|
          if (CI->isNullValue())
 | 
						|
            return new SetCondInst(I.getOpcode(), BO->getOperand(0),
 | 
						|
                                   BO->getOperand(1));
 | 
						|
          break;
 | 
						|
 | 
						|
        case Instruction::Or:
 | 
						|
          // If bits are being or'd in that are not present in the constant we
 | 
						|
          // are comparing against, then the comparison could never succeed!
 | 
						|
          if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
 | 
						|
            Constant *NotCI = ConstantExpr::getNot(CI);
 | 
						|
            if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
 | 
						|
              return ReplaceInstUsesWith(I, ConstantBool::get(isSetNE));
 | 
						|
          }
 | 
						|
          break;
 | 
						|
 | 
						|
        case Instruction::And:
 | 
						|
          if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
 | 
						|
            // If bits are being compared against that are and'd out, then the
 | 
						|
            // comparison can never succeed!
 | 
						|
            if (!ConstantExpr::getAnd(CI,
 | 
						|
                                      ConstantExpr::getNot(BOC))->isNullValue())
 | 
						|
              return ReplaceInstUsesWith(I, ConstantBool::get(isSetNE));
 | 
						|
 | 
						|
            // If we have ((X & C) == C), turn it into ((X & C) != 0).
 | 
						|
            if (CI == BOC && isOneBitSet(CI))
 | 
						|
              return new SetCondInst(isSetNE ? Instruction::SetEQ :
 | 
						|
                                     Instruction::SetNE, Op0,
 | 
						|
                                     Constant::getNullValue(CI->getType()));
 | 
						|
 | 
						|
            // Replace (and X, (1 << size(X)-1) != 0) with x < 0, converting X
 | 
						|
            // to be a signed value as appropriate.
 | 
						|
            if (isSignBit(BOC)) {
 | 
						|
              Value *X = BO->getOperand(0);
 | 
						|
              // If 'X' is not signed, insert a cast now...
 | 
						|
              if (!BOC->getType()->isSigned()) {
 | 
						|
                const Type *DestTy = BOC->getType()->getSignedVersion();
 | 
						|
                X = InsertCastBefore(X, DestTy, I);
 | 
						|
              }
 | 
						|
              return new SetCondInst(isSetNE ? Instruction::SetLT :
 | 
						|
                                         Instruction::SetGE, X,
 | 
						|
                                     Constant::getNullValue(X->getType()));
 | 
						|
            }
 | 
						|
            
 | 
						|
            // ((X & ~7) == 0) --> X < 8
 | 
						|
            if (CI->isNullValue() && isHighOnes(BOC)) {
 | 
						|
              Value *X = BO->getOperand(0);
 | 
						|
              Constant *NegX = ConstantExpr::getNeg(BOC);
 | 
						|
 | 
						|
              // If 'X' is signed, insert a cast now.
 | 
						|
              if (NegX->getType()->isSigned()) {
 | 
						|
                const Type *DestTy = NegX->getType()->getUnsignedVersion();
 | 
						|
                X = InsertCastBefore(X, DestTy, I);
 | 
						|
                NegX = ConstantExpr::getCast(NegX, DestTy);
 | 
						|
              }
 | 
						|
 | 
						|
              return new SetCondInst(isSetNE ? Instruction::SetGE :
 | 
						|
                                     Instruction::SetLT, X, NegX);
 | 
						|
            }
 | 
						|
 | 
						|
          }
 | 
						|
        default: break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else {  // Not a SetEQ/SetNE
 | 
						|
      // If the LHS is a cast from an integral value of the same size, 
 | 
						|
      if (CastInst *Cast = dyn_cast<CastInst>(Op0)) {
 | 
						|
        Value *CastOp = Cast->getOperand(0);
 | 
						|
        const Type *SrcTy = CastOp->getType();
 | 
						|
        unsigned SrcTySize = SrcTy->getPrimitiveSize();
 | 
						|
        if (SrcTy != Cast->getType() && SrcTy->isInteger() &&
 | 
						|
            SrcTySize == Cast->getType()->getPrimitiveSize()) {
 | 
						|
          assert((SrcTy->isSigned() ^ Cast->getType()->isSigned()) && 
 | 
						|
                 "Source and destination signednesses should differ!");
 | 
						|
          if (Cast->getType()->isSigned()) {
 | 
						|
            // If this is a signed comparison, check for comparisons in the
 | 
						|
            // vicinity of zero.
 | 
						|
            if (I.getOpcode() == Instruction::SetLT && CI->isNullValue())
 | 
						|
              // X < 0  => x > 127
 | 
						|
              return BinaryOperator::createSetGT(CastOp,
 | 
						|
                         ConstantUInt::get(SrcTy, (1ULL << (SrcTySize*8-1))-1));
 | 
						|
            else if (I.getOpcode() == Instruction::SetGT &&
 | 
						|
                     cast<ConstantSInt>(CI)->getValue() == -1)
 | 
						|
              // X > -1  => x < 128
 | 
						|
              return BinaryOperator::createSetLT(CastOp,
 | 
						|
                         ConstantUInt::get(SrcTy, 1ULL << (SrcTySize*8-1)));
 | 
						|
          } else {
 | 
						|
            ConstantUInt *CUI = cast<ConstantUInt>(CI);
 | 
						|
            if (I.getOpcode() == Instruction::SetLT &&
 | 
						|
                CUI->getValue() == 1ULL << (SrcTySize*8-1))
 | 
						|
              // X < 128 => X > -1
 | 
						|
              return BinaryOperator::createSetGT(CastOp,
 | 
						|
                                                 ConstantSInt::get(SrcTy, -1));
 | 
						|
            else if (I.getOpcode() == Instruction::SetGT &&
 | 
						|
                     CUI->getValue() == (1ULL << (SrcTySize*8-1))-1)
 | 
						|
              // X > 127 => X < 0
 | 
						|
              return BinaryOperator::createSetLT(CastOp,
 | 
						|
                                                 Constant::getNullValue(SrcTy));
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we can optimize a 'setcc GEP, P' or 'setcc P, GEP', do so now.
 | 
						|
  if (User *GEP = dyn_castGetElementPtr(Op0))
 | 
						|
    if (Instruction *NI = FoldGEPSetCC(GEP, Op1, I.getOpcode(), I))
 | 
						|
      return NI;
 | 
						|
  if (User *GEP = dyn_castGetElementPtr(Op1))
 | 
						|
    if (Instruction *NI = FoldGEPSetCC(GEP, Op0,
 | 
						|
                           SetCondInst::getSwappedCondition(I.getOpcode()), I))
 | 
						|
      return NI;
 | 
						|
 | 
						|
  // Test to see if the operands of the setcc are casted versions of other
 | 
						|
  // values.  If the cast can be stripped off both arguments, we do so now.
 | 
						|
  if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
 | 
						|
    Value *CastOp0 = CI->getOperand(0);
 | 
						|
    if (CastOp0->getType()->isLosslesslyConvertibleTo(CI->getType()) &&
 | 
						|
        (isa<Constant>(Op1) || isa<CastInst>(Op1)) &&
 | 
						|
        (I.getOpcode() == Instruction::SetEQ ||
 | 
						|
         I.getOpcode() == Instruction::SetNE)) {
 | 
						|
      // We keep moving the cast from the left operand over to the right
 | 
						|
      // operand, where it can often be eliminated completely.
 | 
						|
      Op0 = CastOp0;
 | 
						|
      
 | 
						|
      // If operand #1 is a cast instruction, see if we can eliminate it as
 | 
						|
      // well.
 | 
						|
      if (CastInst *CI2 = dyn_cast<CastInst>(Op1))
 | 
						|
        if (CI2->getOperand(0)->getType()->isLosslesslyConvertibleTo(
 | 
						|
                                                               Op0->getType()))
 | 
						|
          Op1 = CI2->getOperand(0);
 | 
						|
      
 | 
						|
      // If Op1 is a constant, we can fold the cast into the constant.
 | 
						|
      if (Op1->getType() != Op0->getType())
 | 
						|
        if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
 | 
						|
          Op1 = ConstantExpr::getCast(Op1C, Op0->getType());
 | 
						|
        } else {
 | 
						|
          // Otherwise, cast the RHS right before the setcc
 | 
						|
          Op1 = new CastInst(Op1, Op0->getType(), Op1->getName());
 | 
						|
          InsertNewInstBefore(cast<Instruction>(Op1), I);
 | 
						|
        }
 | 
						|
      return BinaryOperator::create(I.getOpcode(), Op0, Op1);
 | 
						|
    }
 | 
						|
 | 
						|
    // Handle the special case of: setcc (cast bool to X), <cst>
 | 
						|
    // This comes up when you have code like
 | 
						|
    //   int X = A < B;
 | 
						|
    //   if (X) ...
 | 
						|
    // For generality, we handle any zero-extension of any operand comparison
 | 
						|
    // with a constant.
 | 
						|
    if (ConstantInt *ConstantRHS = dyn_cast<ConstantInt>(Op1)) {
 | 
						|
      const Type *SrcTy = CastOp0->getType();
 | 
						|
      const Type *DestTy = Op0->getType();
 | 
						|
      if (SrcTy->getPrimitiveSize() < DestTy->getPrimitiveSize() &&
 | 
						|
          (SrcTy->isUnsigned() || SrcTy == Type::BoolTy)) {
 | 
						|
        // Ok, we have an expansion of operand 0 into a new type.  Get the
 | 
						|
        // constant value, masink off bits which are not set in the RHS.  These
 | 
						|
        // could be set if the destination value is signed.
 | 
						|
        uint64_t ConstVal = ConstantRHS->getRawValue();
 | 
						|
        ConstVal &= (1ULL << DestTy->getPrimitiveSize()*8)-1;
 | 
						|
 | 
						|
        // If the constant we are comparing it with has high bits set, which
 | 
						|
        // don't exist in the original value, the values could never be equal,
 | 
						|
        // because the source would be zero extended.
 | 
						|
        unsigned SrcBits =
 | 
						|
          SrcTy == Type::BoolTy ? 1 : SrcTy->getPrimitiveSize()*8;
 | 
						|
        bool HasSignBit = ConstVal & (1ULL << (DestTy->getPrimitiveSize()*8-1));
 | 
						|
        if (ConstVal & ~((1ULL << SrcBits)-1)) {
 | 
						|
          switch (I.getOpcode()) {
 | 
						|
          default: assert(0 && "Unknown comparison type!");
 | 
						|
          case Instruction::SetEQ:
 | 
						|
            return ReplaceInstUsesWith(I, ConstantBool::False);
 | 
						|
          case Instruction::SetNE:
 | 
						|
            return ReplaceInstUsesWith(I, ConstantBool::True);
 | 
						|
          case Instruction::SetLT:
 | 
						|
          case Instruction::SetLE:
 | 
						|
            if (DestTy->isSigned() && HasSignBit)
 | 
						|
              return ReplaceInstUsesWith(I, ConstantBool::False);
 | 
						|
            return ReplaceInstUsesWith(I, ConstantBool::True);
 | 
						|
          case Instruction::SetGT:
 | 
						|
          case Instruction::SetGE:
 | 
						|
            if (DestTy->isSigned() && HasSignBit)
 | 
						|
              return ReplaceInstUsesWith(I, ConstantBool::True);
 | 
						|
            return ReplaceInstUsesWith(I, ConstantBool::False);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        
 | 
						|
        // Otherwise, we can replace the setcc with a setcc of the smaller
 | 
						|
        // operand value.
 | 
						|
        Op1 = ConstantExpr::getCast(cast<Constant>(Op1), SrcTy);
 | 
						|
        return BinaryOperator::create(I.getOpcode(), CastOp0, Op1);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Changed ? &I : 0;
 | 
						|
}
 | 
						|
 | 
						|
// visitSetCondInstWithCastAndConstant - this method is part of the 
 | 
						|
// visitSetCondInst method. It handles the situation where we have:
 | 
						|
//   (setcc (cast X to larger), CI)
 | 
						|
// It tries to remove the cast and even the setcc if the CI value 
 | 
						|
// and range of the cast allow it.
 | 
						|
Instruction *
 | 
						|
InstCombiner::visitSetCondInstWithCastAndConstant(BinaryOperator&I,
 | 
						|
                                                  CastInst* LHSI,
 | 
						|
                                                  ConstantInt* CI) {
 | 
						|
  const Type *SrcTy = LHSI->getOperand(0)->getType();
 | 
						|
  const Type *DestTy = LHSI->getType();
 | 
						|
  if (!SrcTy->isIntegral() || !DestTy->isIntegral())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  unsigned SrcBits = SrcTy->getPrimitiveSize()*8;
 | 
						|
  unsigned DestBits = DestTy->getPrimitiveSize()*8;
 | 
						|
  if (SrcTy == Type::BoolTy) 
 | 
						|
    SrcBits = 1;
 | 
						|
  if (DestTy == Type::BoolTy) 
 | 
						|
    DestBits = 1;
 | 
						|
  if (SrcBits < DestBits) {
 | 
						|
    // There are fewer bits in the source of the cast than in the result
 | 
						|
    // of the cast. Any other case doesn't matter because the constant
 | 
						|
    // value won't have changed due to sign extension.
 | 
						|
    Constant *NewCst = ConstantExpr::getCast(CI, SrcTy);
 | 
						|
    if (ConstantExpr::getCast(NewCst, DestTy) == CI) {
 | 
						|
      // The constant value operand of the setCC before and after a 
 | 
						|
      // cast to the source type of the cast instruction is the same 
 | 
						|
      // value, so we just replace with the same setcc opcode, but 
 | 
						|
      // using the source value compared to the constant casted to the 
 | 
						|
      // source type. 
 | 
						|
      if (SrcTy->isSigned() && DestTy->isUnsigned()) {
 | 
						|
        CastInst* Cst = new CastInst(LHSI->getOperand(0),
 | 
						|
                                     SrcTy->getUnsignedVersion(),
 | 
						|
                                     LHSI->getName());
 | 
						|
        InsertNewInstBefore(Cst,I);
 | 
						|
        return new SetCondInst(I.getOpcode(), Cst, 
 | 
						|
                               ConstantExpr::getCast(CI,
 | 
						|
                                                 SrcTy->getUnsignedVersion()));
 | 
						|
      }
 | 
						|
      return new SetCondInst(I.getOpcode(), LHSI->getOperand(0),NewCst);
 | 
						|
    }
 | 
						|
 | 
						|
    // The constant value before and after a cast to the source type 
 | 
						|
    // is different, so various cases are possible depending on the 
 | 
						|
    // opcode and the signs of the types involved in the cast.
 | 
						|
    switch (I.getOpcode()) {
 | 
						|
    case Instruction::SetLT: {
 | 
						|
      return 0;
 | 
						|
      Constant* Max = ConstantIntegral::getMaxValue(SrcTy);
 | 
						|
      Max = ConstantExpr::getCast(Max, DestTy);
 | 
						|
      return ReplaceInstUsesWith(I, ConstantExpr::getSetLT(Max, CI));
 | 
						|
    }
 | 
						|
    case Instruction::SetGT: {
 | 
						|
      return 0; // FIXME! RENABLE.  This breaks for (cast sbyte to uint) > 255
 | 
						|
      Constant* Min = ConstantIntegral::getMinValue(SrcTy);
 | 
						|
      Min = ConstantExpr::getCast(Min, DestTy);
 | 
						|
      return ReplaceInstUsesWith(I, ConstantExpr::getSetGT(Min, CI));
 | 
						|
    }
 | 
						|
    case Instruction::SetEQ:
 | 
						|
      // We're looking for equality, and we know the values are not
 | 
						|
      // equal so replace with constant False.
 | 
						|
      return ReplaceInstUsesWith(I, ConstantBool::False);
 | 
						|
    case Instruction::SetNE: 
 | 
						|
      // We're testing for inequality, and we know the values are not
 | 
						|
      // equal so replace with constant True.
 | 
						|
      return ReplaceInstUsesWith(I, ConstantBool::True);
 | 
						|
    case Instruction::SetLE: 
 | 
						|
    case Instruction::SetGE: 
 | 
						|
      assert(0 && "SetLE and SetGE should be handled elsewhere");
 | 
						|
    default: 
 | 
						|
      assert(0 && "unknown integer comparison");
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Instruction *InstCombiner::visitShiftInst(ShiftInst &I) {
 | 
						|
  assert(I.getOperand(1)->getType() == Type::UByteTy);
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
  bool isLeftShift = I.getOpcode() == Instruction::Shl;
 | 
						|
 | 
						|
  // shl X, 0 == X and shr X, 0 == X
 | 
						|
  // shl 0, X == 0 and shr 0, X == 0
 | 
						|
  if (Op1 == Constant::getNullValue(Type::UByteTy) ||
 | 
						|
      Op0 == Constant::getNullValue(Op0->getType()))
 | 
						|
    return ReplaceInstUsesWith(I, Op0);
 | 
						|
 | 
						|
  if (isa<UndefValue>(Op0)) {            // undef >>s X -> undef
 | 
						|
    if (!isLeftShift && I.getType()->isSigned())
 | 
						|
      return ReplaceInstUsesWith(I, Op0);
 | 
						|
    else                         // undef << X -> 0   AND  undef >>u X -> 0
 | 
						|
      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
  }
 | 
						|
  if (isa<UndefValue>(Op1)) {
 | 
						|
    if (isLeftShift || I.getType()->isUnsigned())
 | 
						|
      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
    else
 | 
						|
      return ReplaceInstUsesWith(I, Op0);          // X >>s undef -> X
 | 
						|
  }
 | 
						|
 | 
						|
  // shr int -1, X = -1   (for any arithmetic shift rights of ~0)
 | 
						|
  if (!isLeftShift)
 | 
						|
    if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(Op0))
 | 
						|
      if (CSI->isAllOnesValue())
 | 
						|
        return ReplaceInstUsesWith(I, CSI);
 | 
						|
 | 
						|
  // Try to fold constant and into select arguments.
 | 
						|
  if (isa<Constant>(Op0))
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
 | 
						|
      if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | 
						|
        return R;
 | 
						|
 | 
						|
  if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(Op1)) {
 | 
						|
    // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
 | 
						|
    // of a signed value.
 | 
						|
    //
 | 
						|
    unsigned TypeBits = Op0->getType()->getPrimitiveSize()*8;
 | 
						|
    if (CUI->getValue() >= TypeBits) {
 | 
						|
      if (!Op0->getType()->isSigned() || isLeftShift)
 | 
						|
        return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
 | 
						|
      else {
 | 
						|
        I.setOperand(1, ConstantUInt::get(Type::UByteTy, TypeBits-1));
 | 
						|
        return &I;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // ((X*C1) << C2) == (X * (C1 << C2))
 | 
						|
    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
 | 
						|
      if (BO->getOpcode() == Instruction::Mul && isLeftShift)
 | 
						|
        if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
 | 
						|
          return BinaryOperator::createMul(BO->getOperand(0),
 | 
						|
                                           ConstantExpr::getShl(BOOp, CUI));
 | 
						|
    
 | 
						|
    // Try to fold constant and into select arguments.
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | 
						|
      if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | 
						|
        return R;
 | 
						|
    if (isa<PHINode>(Op0))
 | 
						|
      if (Instruction *NV = FoldOpIntoPhi(I))
 | 
						|
        return NV;
 | 
						|
 | 
						|
    if (Op0->hasOneUse()) {
 | 
						|
      // If this is a SHL of a sign-extending cast, see if we can turn the input
 | 
						|
      // into a zero extending cast (a simple strength reduction).
 | 
						|
      if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
 | 
						|
        const Type *SrcTy = CI->getOperand(0)->getType();
 | 
						|
        if (isLeftShift && SrcTy->isInteger() && SrcTy->isSigned() &&
 | 
						|
            SrcTy->getPrimitiveSize() < CI->getType()->getPrimitiveSize()) {
 | 
						|
          // We can change it to a zero extension if we are shifting out all of
 | 
						|
          // the sign extended bits.  To check this, form a mask of all of the
 | 
						|
          // sign extend bits, then shift them left and see if we have anything
 | 
						|
          // left.
 | 
						|
          Constant *Mask = ConstantIntegral::getAllOnesValue(SrcTy); //     1111
 | 
						|
          Mask = ConstantExpr::getZeroExtend(Mask, CI->getType());   // 00001111
 | 
						|
          Mask = ConstantExpr::getNot(Mask);   // 1's in the sign bits: 11110000
 | 
						|
          if (ConstantExpr::getShl(Mask, CUI)->isNullValue()) {
 | 
						|
            // If the shift is nuking all of the sign bits, change this to a
 | 
						|
            // zero extension cast.  To do this, cast the cast input to
 | 
						|
            // unsigned, then to the requested size.
 | 
						|
            Value *CastOp = CI->getOperand(0);
 | 
						|
            Instruction *NC =
 | 
						|
              new CastInst(CastOp, CastOp->getType()->getUnsignedVersion(),
 | 
						|
                           CI->getName()+".uns");
 | 
						|
            NC = InsertNewInstBefore(NC, I);
 | 
						|
            // Finally, insert a replacement for CI.
 | 
						|
            NC = new CastInst(NC, CI->getType(), CI->getName());
 | 
						|
            CI->setName("");
 | 
						|
            NC = InsertNewInstBefore(NC, I);
 | 
						|
            WorkList.push_back(CI);  // Delete CI later.
 | 
						|
            I.setOperand(0, NC);
 | 
						|
            return &I;               // The SHL operand was modified.
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // If the operand is an bitwise operator with a constant RHS, and the
 | 
						|
      // shift is the only use, we can pull it out of the shift.
 | 
						|
      if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0))
 | 
						|
        if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
 | 
						|
          bool isValid = true;     // Valid only for And, Or, Xor
 | 
						|
          bool highBitSet = false; // Transform if high bit of constant set?
 | 
						|
 | 
						|
          switch (Op0BO->getOpcode()) {
 | 
						|
          default: isValid = false; break;   // Do not perform transform!
 | 
						|
          case Instruction::Add:
 | 
						|
            isValid = isLeftShift;
 | 
						|
            break;
 | 
						|
          case Instruction::Or:
 | 
						|
          case Instruction::Xor:
 | 
						|
            highBitSet = false;
 | 
						|
            break;
 | 
						|
          case Instruction::And:
 | 
						|
            highBitSet = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
 | 
						|
          // If this is a signed shift right, and the high bit is modified
 | 
						|
          // by the logical operation, do not perform the transformation.
 | 
						|
          // The highBitSet boolean indicates the value of the high bit of
 | 
						|
          // the constant which would cause it to be modified for this
 | 
						|
          // operation.
 | 
						|
          //
 | 
						|
          if (isValid && !isLeftShift && !I.getType()->isUnsigned()) {
 | 
						|
            uint64_t Val = Op0C->getRawValue();
 | 
						|
            isValid = ((Val & (1 << (TypeBits-1))) != 0) == highBitSet;
 | 
						|
          }
 | 
						|
 | 
						|
          if (isValid) {
 | 
						|
            Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, CUI);
 | 
						|
 | 
						|
            Instruction *NewShift =
 | 
						|
              new ShiftInst(I.getOpcode(), Op0BO->getOperand(0), CUI,
 | 
						|
                            Op0BO->getName());
 | 
						|
            Op0BO->setName("");
 | 
						|
            InsertNewInstBefore(NewShift, I);
 | 
						|
 | 
						|
            return BinaryOperator::create(Op0BO->getOpcode(), NewShift,
 | 
						|
                                          NewRHS);
 | 
						|
          }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a shift of a shift, see if we can fold the two together...
 | 
						|
    if (ShiftInst *Op0SI = dyn_cast<ShiftInst>(Op0))
 | 
						|
      if (ConstantUInt *ShiftAmt1C =
 | 
						|
                                 dyn_cast<ConstantUInt>(Op0SI->getOperand(1))) {
 | 
						|
        unsigned ShiftAmt1 = (unsigned)ShiftAmt1C->getValue();
 | 
						|
        unsigned ShiftAmt2 = (unsigned)CUI->getValue();
 | 
						|
        
 | 
						|
        // Check for (A << c1) << c2   and   (A >> c1) >> c2
 | 
						|
        if (I.getOpcode() == Op0SI->getOpcode()) {
 | 
						|
          unsigned Amt = ShiftAmt1+ShiftAmt2;   // Fold into one big shift...
 | 
						|
          if (Op0->getType()->getPrimitiveSize()*8 < Amt)
 | 
						|
            Amt = Op0->getType()->getPrimitiveSize()*8;
 | 
						|
          return new ShiftInst(I.getOpcode(), Op0SI->getOperand(0),
 | 
						|
                               ConstantUInt::get(Type::UByteTy, Amt));
 | 
						|
        }
 | 
						|
        
 | 
						|
        // Check for (A << c1) >> c2 or visaversa.  If we are dealing with
 | 
						|
        // signed types, we can only support the (A >> c1) << c2 configuration,
 | 
						|
        // because it can not turn an arbitrary bit of A into a sign bit.
 | 
						|
        if (I.getType()->isUnsigned() || isLeftShift) {
 | 
						|
          // Calculate bitmask for what gets shifted off the edge...
 | 
						|
          Constant *C = ConstantIntegral::getAllOnesValue(I.getType());
 | 
						|
          if (isLeftShift)
 | 
						|
            C = ConstantExpr::getShl(C, ShiftAmt1C);
 | 
						|
          else
 | 
						|
            C = ConstantExpr::getShr(C, ShiftAmt1C);
 | 
						|
          
 | 
						|
          Instruction *Mask =
 | 
						|
            BinaryOperator::createAnd(Op0SI->getOperand(0), C,
 | 
						|
                                      Op0SI->getOperand(0)->getName()+".mask");
 | 
						|
          InsertNewInstBefore(Mask, I);
 | 
						|
          
 | 
						|
          // Figure out what flavor of shift we should use...
 | 
						|
          if (ShiftAmt1 == ShiftAmt2)
 | 
						|
            return ReplaceInstUsesWith(I, Mask);  // (A << c) >> c  === A & c2
 | 
						|
          else if (ShiftAmt1 < ShiftAmt2) {
 | 
						|
            return new ShiftInst(I.getOpcode(), Mask,
 | 
						|
                         ConstantUInt::get(Type::UByteTy, ShiftAmt2-ShiftAmt1));
 | 
						|
          } else {
 | 
						|
            return new ShiftInst(Op0SI->getOpcode(), Mask,
 | 
						|
                         ConstantUInt::get(Type::UByteTy, ShiftAmt1-ShiftAmt2));
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
enum CastType {
 | 
						|
  Noop     = 0,
 | 
						|
  Truncate = 1,
 | 
						|
  Signext  = 2,
 | 
						|
  Zeroext  = 3
 | 
						|
};
 | 
						|
 | 
						|
/// getCastType - In the future, we will split the cast instruction into these
 | 
						|
/// various types.  Until then, we have to do the analysis here.
 | 
						|
static CastType getCastType(const Type *Src, const Type *Dest) {
 | 
						|
  assert(Src->isIntegral() && Dest->isIntegral() &&
 | 
						|
         "Only works on integral types!");
 | 
						|
  unsigned SrcSize = Src->getPrimitiveSize()*8;
 | 
						|
  if (Src == Type::BoolTy) SrcSize = 1;
 | 
						|
  unsigned DestSize = Dest->getPrimitiveSize()*8;
 | 
						|
  if (Dest == Type::BoolTy) DestSize = 1;
 | 
						|
 | 
						|
  if (SrcSize == DestSize) return Noop;
 | 
						|
  if (SrcSize > DestSize)  return Truncate;
 | 
						|
  if (Src->isSigned()) return Signext;
 | 
						|
  return Zeroext;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// isEliminableCastOfCast - Return true if it is valid to eliminate the CI
 | 
						|
// instruction.
 | 
						|
//
 | 
						|
static inline bool isEliminableCastOfCast(const Type *SrcTy, const Type *MidTy,
 | 
						|
                                          const Type *DstTy, TargetData *TD) {
 | 
						|
 | 
						|
  // It is legal to eliminate the instruction if casting A->B->A if the sizes
 | 
						|
  // are identical and the bits don't get reinterpreted (for example 
 | 
						|
  // int->float->int would not be allowed).
 | 
						|
  if (SrcTy == DstTy && SrcTy->isLosslesslyConvertibleTo(MidTy))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If we are casting between pointer and integer types, treat pointers as
 | 
						|
  // integers of the appropriate size for the code below.
 | 
						|
  if (isa<PointerType>(SrcTy)) SrcTy = TD->getIntPtrType();
 | 
						|
  if (isa<PointerType>(MidTy)) MidTy = TD->getIntPtrType();
 | 
						|
  if (isa<PointerType>(DstTy)) DstTy = TD->getIntPtrType();
 | 
						|
 | 
						|
  // Allow free casting and conversion of sizes as long as the sign doesn't
 | 
						|
  // change...
 | 
						|
  if (SrcTy->isIntegral() && MidTy->isIntegral() && DstTy->isIntegral()) {
 | 
						|
    CastType FirstCast = getCastType(SrcTy, MidTy);
 | 
						|
    CastType SecondCast = getCastType(MidTy, DstTy);
 | 
						|
 | 
						|
    // Capture the effect of these two casts.  If the result is a legal cast,
 | 
						|
    // the CastType is stored here, otherwise a special code is used.
 | 
						|
    static const unsigned CastResult[] = {
 | 
						|
      // First cast is noop
 | 
						|
      0, 1, 2, 3,
 | 
						|
      // First cast is a truncate
 | 
						|
      1, 1, 4, 4,         // trunc->extend is not safe to eliminate
 | 
						|
      // First cast is a sign ext
 | 
						|
      2, 5, 2, 4,         // signext->zeroext never ok
 | 
						|
      // First cast is a zero ext
 | 
						|
      3, 5, 3, 3,
 | 
						|
    };
 | 
						|
 | 
						|
    unsigned Result = CastResult[FirstCast*4+SecondCast];
 | 
						|
    switch (Result) {
 | 
						|
    default: assert(0 && "Illegal table value!");
 | 
						|
    case 0:
 | 
						|
    case 1:
 | 
						|
    case 2:
 | 
						|
    case 3:
 | 
						|
      // FIXME: in the future, when LLVM has explicit sign/zeroextends and
 | 
						|
      // truncates, we could eliminate more casts.
 | 
						|
      return (unsigned)getCastType(SrcTy, DstTy) == Result;
 | 
						|
    case 4:
 | 
						|
      return false;  // Not possible to eliminate this here.
 | 
						|
    case 5:
 | 
						|
      // Sign or zero extend followed by truncate is always ok if the result
 | 
						|
      // is a truncate or noop.
 | 
						|
      CastType ResultCast = getCastType(SrcTy, DstTy);
 | 
						|
      if (ResultCast == Noop || ResultCast == Truncate)
 | 
						|
        return true;
 | 
						|
      // Otherwise we are still growing the value, we are only safe if the 
 | 
						|
      // result will match the sign/zeroextendness of the result.
 | 
						|
      return ResultCast == FirstCast;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool ValueRequiresCast(const Value *V, const Type *Ty, TargetData *TD) {
 | 
						|
  if (V->getType() == Ty || isa<Constant>(V)) return false;
 | 
						|
  if (const CastInst *CI = dyn_cast<CastInst>(V))
 | 
						|
    if (isEliminableCastOfCast(CI->getOperand(0)->getType(), CI->getType(), Ty,
 | 
						|
                               TD))
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
 | 
						|
/// InsertBefore instruction.  This is specialized a bit to avoid inserting
 | 
						|
/// casts that are known to not do anything...
 | 
						|
///
 | 
						|
Value *InstCombiner::InsertOperandCastBefore(Value *V, const Type *DestTy,
 | 
						|
                                             Instruction *InsertBefore) {
 | 
						|
  if (V->getType() == DestTy) return V;
 | 
						|
  if (Constant *C = dyn_cast<Constant>(V))
 | 
						|
    return ConstantExpr::getCast(C, DestTy);
 | 
						|
 | 
						|
  CastInst *CI = new CastInst(V, DestTy, V->getName());
 | 
						|
  InsertNewInstBefore(CI, *InsertBefore);
 | 
						|
  return CI;
 | 
						|
}
 | 
						|
 | 
						|
// CastInst simplification
 | 
						|
//
 | 
						|
Instruction *InstCombiner::visitCastInst(CastInst &CI) {
 | 
						|
  Value *Src = CI.getOperand(0);
 | 
						|
 | 
						|
  // If the user is casting a value to the same type, eliminate this cast
 | 
						|
  // instruction...
 | 
						|
  if (CI.getType() == Src->getType())
 | 
						|
    return ReplaceInstUsesWith(CI, Src);
 | 
						|
 | 
						|
  if (isa<UndefValue>(Src))   // cast undef -> undef
 | 
						|
    return ReplaceInstUsesWith(CI, UndefValue::get(CI.getType()));
 | 
						|
 | 
						|
  // If casting the result of another cast instruction, try to eliminate this
 | 
						|
  // one!
 | 
						|
  //
 | 
						|
  if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
 | 
						|
    Value *A = CSrc->getOperand(0);
 | 
						|
    if (isEliminableCastOfCast(A->getType(), CSrc->getType(),
 | 
						|
                               CI.getType(), TD)) {
 | 
						|
      // This instruction now refers directly to the cast's src operand.  This
 | 
						|
      // has a good chance of making CSrc dead.
 | 
						|
      CI.setOperand(0, CSrc->getOperand(0));
 | 
						|
      return &CI;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is an A->B->A cast, and we are dealing with integral types, try
 | 
						|
    // to convert this into a logical 'and' instruction.
 | 
						|
    //
 | 
						|
    if (A->getType()->isInteger() && 
 | 
						|
        CI.getType()->isInteger() && CSrc->getType()->isInteger() &&
 | 
						|
        CSrc->getType()->isUnsigned() &&   // B->A cast must zero extend
 | 
						|
        CSrc->getType()->getPrimitiveSize() < CI.getType()->getPrimitiveSize()&&
 | 
						|
        A->getType()->getPrimitiveSize() == CI.getType()->getPrimitiveSize()) {
 | 
						|
      assert(CSrc->getType() != Type::ULongTy &&
 | 
						|
             "Cannot have type bigger than ulong!");
 | 
						|
      uint64_t AndValue = (1ULL << CSrc->getType()->getPrimitiveSize()*8)-1;
 | 
						|
      Constant *AndOp = ConstantUInt::get(A->getType()->getUnsignedVersion(),
 | 
						|
                                          AndValue);
 | 
						|
      AndOp = ConstantExpr::getCast(AndOp, A->getType());
 | 
						|
      Instruction *And = BinaryOperator::createAnd(CSrc->getOperand(0), AndOp);
 | 
						|
      if (And->getType() != CI.getType()) {
 | 
						|
        And->setName(CSrc->getName()+".mask");
 | 
						|
        InsertNewInstBefore(And, CI);
 | 
						|
        And = new CastInst(And, CI.getType());
 | 
						|
      }
 | 
						|
      return And;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If this is a cast to bool, turn it into the appropriate setne instruction.
 | 
						|
  if (CI.getType() == Type::BoolTy)
 | 
						|
    return BinaryOperator::createSetNE(CI.getOperand(0),
 | 
						|
                       Constant::getNullValue(CI.getOperand(0)->getType()));
 | 
						|
 | 
						|
  // If casting the result of a getelementptr instruction with no offset, turn
 | 
						|
  // this into a cast of the original pointer!
 | 
						|
  //
 | 
						|
  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
 | 
						|
    bool AllZeroOperands = true;
 | 
						|
    for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
 | 
						|
      if (!isa<Constant>(GEP->getOperand(i)) ||
 | 
						|
          !cast<Constant>(GEP->getOperand(i))->isNullValue()) {
 | 
						|
        AllZeroOperands = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    if (AllZeroOperands) {
 | 
						|
      CI.setOperand(0, GEP->getOperand(0));
 | 
						|
      return &CI;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we are casting a malloc or alloca to a pointer to a type of the same
 | 
						|
  // size, rewrite the allocation instruction to allocate the "right" type.
 | 
						|
  //
 | 
						|
  if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
 | 
						|
    if (AI->hasOneUse() && !AI->isArrayAllocation())
 | 
						|
      if (const PointerType *PTy = dyn_cast<PointerType>(CI.getType())) {
 | 
						|
        // Get the type really allocated and the type casted to...
 | 
						|
        const Type *AllocElTy = AI->getAllocatedType();
 | 
						|
        const Type *CastElTy = PTy->getElementType();
 | 
						|
        if (AllocElTy->isSized() && CastElTy->isSized()) {
 | 
						|
          uint64_t AllocElTySize = TD->getTypeSize(AllocElTy);
 | 
						|
          uint64_t CastElTySize = TD->getTypeSize(CastElTy);
 | 
						|
 | 
						|
          // If the allocation is for an even multiple of the cast type size
 | 
						|
          if (CastElTySize && (AllocElTySize % CastElTySize == 0)) {
 | 
						|
            Value *Amt = ConstantUInt::get(Type::UIntTy, 
 | 
						|
                                         AllocElTySize/CastElTySize);
 | 
						|
            std::string Name = AI->getName(); AI->setName("");
 | 
						|
            AllocationInst *New;
 | 
						|
            if (isa<MallocInst>(AI))
 | 
						|
              New = new MallocInst(CastElTy, Amt, Name);
 | 
						|
            else
 | 
						|
              New = new AllocaInst(CastElTy, Amt, Name);
 | 
						|
            InsertNewInstBefore(New, *AI);
 | 
						|
            return ReplaceInstUsesWith(CI, New);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
  if (SelectInst *SI = dyn_cast<SelectInst>(Src))
 | 
						|
    if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
 | 
						|
      return NV;
 | 
						|
  if (isa<PHINode>(Src))
 | 
						|
    if (Instruction *NV = FoldOpIntoPhi(CI))
 | 
						|
      return NV;
 | 
						|
 | 
						|
  // If the source value is an instruction with only this use, we can attempt to
 | 
						|
  // propagate the cast into the instruction.  Also, only handle integral types
 | 
						|
  // for now.
 | 
						|
  if (Instruction *SrcI = dyn_cast<Instruction>(Src))
 | 
						|
    if (SrcI->hasOneUse() && Src->getType()->isIntegral() &&
 | 
						|
        CI.getType()->isInteger()) {  // Don't mess with casts to bool here
 | 
						|
      const Type *DestTy = CI.getType();
 | 
						|
      unsigned SrcBitSize = getTypeSizeInBits(Src->getType());
 | 
						|
      unsigned DestBitSize = getTypeSizeInBits(DestTy);
 | 
						|
 | 
						|
      Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
 | 
						|
      Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
 | 
						|
 | 
						|
      switch (SrcI->getOpcode()) {
 | 
						|
      case Instruction::Add:
 | 
						|
      case Instruction::Mul:
 | 
						|
      case Instruction::And:
 | 
						|
      case Instruction::Or:
 | 
						|
      case Instruction::Xor:
 | 
						|
        // If we are discarding information, or just changing the sign, rewrite.
 | 
						|
        if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
 | 
						|
          // Don't insert two casts if they cannot be eliminated.  We allow two
 | 
						|
          // casts to be inserted if the sizes are the same.  This could only be
 | 
						|
          // converting signedness, which is a noop.
 | 
						|
          if (DestBitSize == SrcBitSize || !ValueRequiresCast(Op1, DestTy,TD) ||
 | 
						|
              !ValueRequiresCast(Op0, DestTy, TD)) {
 | 
						|
            Value *Op0c = InsertOperandCastBefore(Op0, DestTy, SrcI);
 | 
						|
            Value *Op1c = InsertOperandCastBefore(Op1, DestTy, SrcI);
 | 
						|
            return BinaryOperator::create(cast<BinaryOperator>(SrcI)
 | 
						|
                             ->getOpcode(), Op0c, Op1c);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case Instruction::Shl:
 | 
						|
        // Allow changing the sign of the source operand.  Do not allow changing
 | 
						|
        // the size of the shift, UNLESS the shift amount is a constant.  We
 | 
						|
        // mush not change variable sized shifts to a smaller size, because it
 | 
						|
        // is undefined to shift more bits out than exist in the value.
 | 
						|
        if (DestBitSize == SrcBitSize ||
 | 
						|
            (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
 | 
						|
          Value *Op0c = InsertOperandCastBefore(Op0, DestTy, SrcI);
 | 
						|
          return new ShiftInst(Instruction::Shl, Op0c, Op1);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// GetSelectFoldableOperands - We want to turn code that looks like this:
 | 
						|
///   %C = or %A, %B
 | 
						|
///   %D = select %cond, %C, %A
 | 
						|
/// into:
 | 
						|
///   %C = select %cond, %B, 0
 | 
						|
///   %D = or %A, %C
 | 
						|
///
 | 
						|
/// Assuming that the specified instruction is an operand to the select, return
 | 
						|
/// a bitmask indicating which operands of this instruction are foldable if they
 | 
						|
/// equal the other incoming value of the select.
 | 
						|
///
 | 
						|
static unsigned GetSelectFoldableOperands(Instruction *I) {
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Mul:
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
    return 3;              // Can fold through either operand.
 | 
						|
  case Instruction::Sub:   // Can only fold on the amount subtracted.
 | 
						|
  case Instruction::Shl:   // Can only fold on the shift amount.
 | 
						|
  case Instruction::Shr:
 | 
						|
    return 1;           
 | 
						|
  default:
 | 
						|
    return 0;              // Cannot fold
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// GetSelectFoldableConstant - For the same transformation as the previous
 | 
						|
/// function, return the identity constant that goes into the select.
 | 
						|
static Constant *GetSelectFoldableConstant(Instruction *I) {
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  default: assert(0 && "This cannot happen!"); abort();
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
    return Constant::getNullValue(I->getType());
 | 
						|
  case Instruction::Shl:
 | 
						|
  case Instruction::Shr:
 | 
						|
    return Constant::getNullValue(Type::UByteTy);
 | 
						|
  case Instruction::And:
 | 
						|
    return ConstantInt::getAllOnesValue(I->getType());
 | 
						|
  case Instruction::Mul:
 | 
						|
    return ConstantInt::get(I->getType(), 1);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
 | 
						|
/// have the same opcode and only one use each.  Try to simplify this.
 | 
						|
Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
 | 
						|
                                          Instruction *FI) {
 | 
						|
  if (TI->getNumOperands() == 1) {
 | 
						|
    // If this is a non-volatile load or a cast from the same type,
 | 
						|
    // merge.
 | 
						|
    if (TI->getOpcode() == Instruction::Cast) {
 | 
						|
      if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
 | 
						|
        return 0;
 | 
						|
    } else {
 | 
						|
      return 0;  // unknown unary op.
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Fold this by inserting a select from the input values.
 | 
						|
    SelectInst *NewSI = new SelectInst(SI.getCondition(), TI->getOperand(0),
 | 
						|
                                       FI->getOperand(0), SI.getName()+".v");
 | 
						|
    InsertNewInstBefore(NewSI, SI);
 | 
						|
    return new CastInst(NewSI, TI->getType());
 | 
						|
  }
 | 
						|
 | 
						|
  // Only handle binary operators here.
 | 
						|
  if (!isa<ShiftInst>(TI) && !isa<BinaryOperator>(TI))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // Figure out if the operations have any operands in common.
 | 
						|
  Value *MatchOp, *OtherOpT, *OtherOpF;
 | 
						|
  bool MatchIsOpZero;
 | 
						|
  if (TI->getOperand(0) == FI->getOperand(0)) {
 | 
						|
    MatchOp  = TI->getOperand(0);
 | 
						|
    OtherOpT = TI->getOperand(1);
 | 
						|
    OtherOpF = FI->getOperand(1);
 | 
						|
    MatchIsOpZero = true;
 | 
						|
  } else if (TI->getOperand(1) == FI->getOperand(1)) {
 | 
						|
    MatchOp  = TI->getOperand(1);
 | 
						|
    OtherOpT = TI->getOperand(0);
 | 
						|
    OtherOpF = FI->getOperand(0);
 | 
						|
    MatchIsOpZero = false;
 | 
						|
  } else if (!TI->isCommutative()) {
 | 
						|
    return 0;
 | 
						|
  } else if (TI->getOperand(0) == FI->getOperand(1)) {
 | 
						|
    MatchOp  = TI->getOperand(0);
 | 
						|
    OtherOpT = TI->getOperand(1);
 | 
						|
    OtherOpF = FI->getOperand(0);
 | 
						|
    MatchIsOpZero = true;
 | 
						|
  } else if (TI->getOperand(1) == FI->getOperand(0)) {
 | 
						|
    MatchOp  = TI->getOperand(1);
 | 
						|
    OtherOpT = TI->getOperand(0);
 | 
						|
    OtherOpF = FI->getOperand(1);
 | 
						|
    MatchIsOpZero = true;
 | 
						|
  } else {
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we reach here, they do have operations in common.
 | 
						|
  SelectInst *NewSI = new SelectInst(SI.getCondition(), OtherOpT,
 | 
						|
                                     OtherOpF, SI.getName()+".v");
 | 
						|
  InsertNewInstBefore(NewSI, SI);
 | 
						|
 | 
						|
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
 | 
						|
    if (MatchIsOpZero)
 | 
						|
      return BinaryOperator::create(BO->getOpcode(), MatchOp, NewSI);
 | 
						|
    else
 | 
						|
      return BinaryOperator::create(BO->getOpcode(), NewSI, MatchOp);
 | 
						|
  } else {
 | 
						|
    if (MatchIsOpZero)
 | 
						|
      return new ShiftInst(cast<ShiftInst>(TI)->getOpcode(), MatchOp, NewSI);
 | 
						|
    else
 | 
						|
      return new ShiftInst(cast<ShiftInst>(TI)->getOpcode(), NewSI, MatchOp);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
 | 
						|
  Value *CondVal = SI.getCondition();
 | 
						|
  Value *TrueVal = SI.getTrueValue();
 | 
						|
  Value *FalseVal = SI.getFalseValue();
 | 
						|
 | 
						|
  // select true, X, Y  -> X
 | 
						|
  // select false, X, Y -> Y
 | 
						|
  if (ConstantBool *C = dyn_cast<ConstantBool>(CondVal))
 | 
						|
    if (C == ConstantBool::True)
 | 
						|
      return ReplaceInstUsesWith(SI, TrueVal);
 | 
						|
    else {
 | 
						|
      assert(C == ConstantBool::False);
 | 
						|
      return ReplaceInstUsesWith(SI, FalseVal);
 | 
						|
    }
 | 
						|
 | 
						|
  // select C, X, X -> X
 | 
						|
  if (TrueVal == FalseVal)
 | 
						|
    return ReplaceInstUsesWith(SI, TrueVal);
 | 
						|
 | 
						|
  if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
 | 
						|
    return ReplaceInstUsesWith(SI, FalseVal);
 | 
						|
  if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
 | 
						|
    return ReplaceInstUsesWith(SI, TrueVal);
 | 
						|
  if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
 | 
						|
    if (isa<Constant>(TrueVal))
 | 
						|
      return ReplaceInstUsesWith(SI, TrueVal);
 | 
						|
    else
 | 
						|
      return ReplaceInstUsesWith(SI, FalseVal);
 | 
						|
  }
 | 
						|
 | 
						|
  if (SI.getType() == Type::BoolTy)
 | 
						|
    if (ConstantBool *C = dyn_cast<ConstantBool>(TrueVal)) {
 | 
						|
      if (C == ConstantBool::True) {
 | 
						|
        // Change: A = select B, true, C --> A = or B, C
 | 
						|
        return BinaryOperator::createOr(CondVal, FalseVal);
 | 
						|
      } else {
 | 
						|
        // Change: A = select B, false, C --> A = and !B, C
 | 
						|
        Value *NotCond =
 | 
						|
          InsertNewInstBefore(BinaryOperator::createNot(CondVal,
 | 
						|
                                             "not."+CondVal->getName()), SI);
 | 
						|
        return BinaryOperator::createAnd(NotCond, FalseVal);
 | 
						|
      }
 | 
						|
    } else if (ConstantBool *C = dyn_cast<ConstantBool>(FalseVal)) {
 | 
						|
      if (C == ConstantBool::False) {
 | 
						|
        // Change: A = select B, C, false --> A = and B, C
 | 
						|
        return BinaryOperator::createAnd(CondVal, TrueVal);
 | 
						|
      } else {
 | 
						|
        // Change: A = select B, C, true --> A = or !B, C
 | 
						|
        Value *NotCond =
 | 
						|
          InsertNewInstBefore(BinaryOperator::createNot(CondVal,
 | 
						|
                                             "not."+CondVal->getName()), SI);
 | 
						|
        return BinaryOperator::createOr(NotCond, TrueVal);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  // Selecting between two integer constants?
 | 
						|
  if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
 | 
						|
    if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
 | 
						|
      // select C, 1, 0 -> cast C to int
 | 
						|
      if (FalseValC->isNullValue() && TrueValC->getRawValue() == 1) {
 | 
						|
        return new CastInst(CondVal, SI.getType());
 | 
						|
      } else if (TrueValC->isNullValue() && FalseValC->getRawValue() == 1) {
 | 
						|
        // select C, 0, 1 -> cast !C to int
 | 
						|
        Value *NotCond =
 | 
						|
          InsertNewInstBefore(BinaryOperator::createNot(CondVal,
 | 
						|
                                               "not."+CondVal->getName()), SI);
 | 
						|
        return new CastInst(NotCond, SI.getType());
 | 
						|
      }
 | 
						|
 | 
						|
      // If one of the constants is zero (we know they can't both be) and we
 | 
						|
      // have a setcc instruction with zero, and we have an 'and' with the
 | 
						|
      // non-constant value, eliminate this whole mess.  This corresponds to
 | 
						|
      // cases like this: ((X & 27) ? 27 : 0)
 | 
						|
      if (TrueValC->isNullValue() || FalseValC->isNullValue())
 | 
						|
        if (Instruction *IC = dyn_cast<Instruction>(SI.getCondition()))
 | 
						|
          if ((IC->getOpcode() == Instruction::SetEQ ||
 | 
						|
               IC->getOpcode() == Instruction::SetNE) &&
 | 
						|
              isa<ConstantInt>(IC->getOperand(1)) &&
 | 
						|
              cast<Constant>(IC->getOperand(1))->isNullValue())
 | 
						|
            if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
 | 
						|
              if (ICA->getOpcode() == Instruction::And &&
 | 
						|
                  isa<ConstantInt>(ICA->getOperand(1)) && 
 | 
						|
                  (ICA->getOperand(1) == TrueValC || 
 | 
						|
                   ICA->getOperand(1) == FalseValC) && 
 | 
						|
                  isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
 | 
						|
                // Okay, now we know that everything is set up, we just don't
 | 
						|
                // know whether we have a setne or seteq and whether the true or
 | 
						|
                // false val is the zero.
 | 
						|
                bool ShouldNotVal = !TrueValC->isNullValue();
 | 
						|
                ShouldNotVal ^= IC->getOpcode() == Instruction::SetNE;
 | 
						|
                Value *V = ICA;
 | 
						|
                if (ShouldNotVal)
 | 
						|
                  V = InsertNewInstBefore(BinaryOperator::create(
 | 
						|
                                  Instruction::Xor, V, ICA->getOperand(1)), SI);
 | 
						|
                return ReplaceInstUsesWith(SI, V);
 | 
						|
              }
 | 
						|
    }
 | 
						|
 | 
						|
  // See if we are selecting two values based on a comparison of the two values.
 | 
						|
  if (SetCondInst *SCI = dyn_cast<SetCondInst>(CondVal)) {
 | 
						|
    if (SCI->getOperand(0) == TrueVal && SCI->getOperand(1) == FalseVal) {
 | 
						|
      // Transform (X == Y) ? X : Y  -> Y
 | 
						|
      if (SCI->getOpcode() == Instruction::SetEQ)
 | 
						|
        return ReplaceInstUsesWith(SI, FalseVal);
 | 
						|
      // Transform (X != Y) ? X : Y  -> X
 | 
						|
      if (SCI->getOpcode() == Instruction::SetNE)
 | 
						|
        return ReplaceInstUsesWith(SI, TrueVal);
 | 
						|
      // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
 | 
						|
 | 
						|
    } else if (SCI->getOperand(0) == FalseVal && SCI->getOperand(1) == TrueVal){
 | 
						|
      // Transform (X == Y) ? Y : X  -> X
 | 
						|
      if (SCI->getOpcode() == Instruction::SetEQ)
 | 
						|
        return ReplaceInstUsesWith(SI, FalseVal);
 | 
						|
      // Transform (X != Y) ? Y : X  -> Y
 | 
						|
      if (SCI->getOpcode() == Instruction::SetNE)
 | 
						|
        return ReplaceInstUsesWith(SI, TrueVal);
 | 
						|
      // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
 | 
						|
    if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
 | 
						|
      if (TI->hasOneUse() && FI->hasOneUse()) {
 | 
						|
        bool isInverse = false;
 | 
						|
        Instruction *AddOp = 0, *SubOp = 0;
 | 
						|
 | 
						|
        // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
 | 
						|
        if (TI->getOpcode() == FI->getOpcode())
 | 
						|
          if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
 | 
						|
            return IV;
 | 
						|
 | 
						|
        // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))).  This is
 | 
						|
        // even legal for FP.
 | 
						|
        if (TI->getOpcode() == Instruction::Sub &&
 | 
						|
            FI->getOpcode() == Instruction::Add) {
 | 
						|
          AddOp = FI; SubOp = TI;
 | 
						|
        } else if (FI->getOpcode() == Instruction::Sub &&
 | 
						|
                   TI->getOpcode() == Instruction::Add) {
 | 
						|
          AddOp = TI; SubOp = FI;
 | 
						|
        }
 | 
						|
 | 
						|
        if (AddOp) {
 | 
						|
          Value *OtherAddOp = 0;
 | 
						|
          if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
 | 
						|
            OtherAddOp = AddOp->getOperand(1);
 | 
						|
          } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
 | 
						|
            OtherAddOp = AddOp->getOperand(0);
 | 
						|
          }
 | 
						|
 | 
						|
          if (OtherAddOp) {
 | 
						|
            // So at this point we know we have:
 | 
						|
            //        select C, (add X, Y), (sub X, ?)
 | 
						|
            // We can do the transform profitably if either 'Y' = '?' or '?' is
 | 
						|
            // a constant.
 | 
						|
            if (SubOp->getOperand(1) == AddOp ||
 | 
						|
                isa<Constant>(SubOp->getOperand(1))) {
 | 
						|
              Value *NegVal;
 | 
						|
              if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
 | 
						|
                NegVal = ConstantExpr::getNeg(C);
 | 
						|
              } else {
 | 
						|
                NegVal = InsertNewInstBefore(
 | 
						|
                           BinaryOperator::createNeg(SubOp->getOperand(1)), SI);
 | 
						|
              }
 | 
						|
 | 
						|
              Value *NewTrueOp = OtherAddOp;
 | 
						|
              Value *NewFalseOp = NegVal;
 | 
						|
              if (AddOp != TI)
 | 
						|
                std::swap(NewTrueOp, NewFalseOp);
 | 
						|
              Instruction *NewSel =
 | 
						|
                new SelectInst(CondVal, NewTrueOp,NewFalseOp,SI.getName()+".p");
 | 
						|
                               
 | 
						|
              NewSel = InsertNewInstBefore(NewSel, SI);
 | 
						|
              return BinaryOperator::createAdd(SubOp->getOperand(0), NewSel);
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
  
 | 
						|
  // See if we can fold the select into one of our operands.
 | 
						|
  if (SI.getType()->isInteger()) {
 | 
						|
    // See the comment above GetSelectFoldableOperands for a description of the
 | 
						|
    // transformation we are doing here.
 | 
						|
    if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
 | 
						|
      if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
 | 
						|
          !isa<Constant>(FalseVal))
 | 
						|
        if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
 | 
						|
          unsigned OpToFold = 0;
 | 
						|
          if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
 | 
						|
            OpToFold = 1;
 | 
						|
          } else  if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
 | 
						|
            OpToFold = 2;
 | 
						|
          }
 | 
						|
 | 
						|
          if (OpToFold) {
 | 
						|
            Constant *C = GetSelectFoldableConstant(TVI);
 | 
						|
            std::string Name = TVI->getName(); TVI->setName("");
 | 
						|
            Instruction *NewSel =
 | 
						|
              new SelectInst(SI.getCondition(), TVI->getOperand(2-OpToFold), C,
 | 
						|
                             Name);
 | 
						|
            InsertNewInstBefore(NewSel, SI);
 | 
						|
            if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
 | 
						|
              return BinaryOperator::create(BO->getOpcode(), FalseVal, NewSel);
 | 
						|
            else if (ShiftInst *SI = dyn_cast<ShiftInst>(TVI))
 | 
						|
              return new ShiftInst(SI->getOpcode(), FalseVal, NewSel);
 | 
						|
            else {
 | 
						|
              assert(0 && "Unknown instruction!!");
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
    if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
 | 
						|
      if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
 | 
						|
          !isa<Constant>(TrueVal))
 | 
						|
        if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
 | 
						|
          unsigned OpToFold = 0;
 | 
						|
          if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
 | 
						|
            OpToFold = 1;
 | 
						|
          } else  if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
 | 
						|
            OpToFold = 2;
 | 
						|
          }
 | 
						|
 | 
						|
          if (OpToFold) {
 | 
						|
            Constant *C = GetSelectFoldableConstant(FVI);
 | 
						|
            std::string Name = FVI->getName(); FVI->setName("");
 | 
						|
            Instruction *NewSel =
 | 
						|
              new SelectInst(SI.getCondition(), C, FVI->getOperand(2-OpToFold),
 | 
						|
                             Name);
 | 
						|
            InsertNewInstBefore(NewSel, SI);
 | 
						|
            if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
 | 
						|
              return BinaryOperator::create(BO->getOpcode(), TrueVal, NewSel);
 | 
						|
            else if (ShiftInst *SI = dyn_cast<ShiftInst>(FVI))
 | 
						|
              return new ShiftInst(SI->getOpcode(), TrueVal, NewSel);
 | 
						|
            else {
 | 
						|
              assert(0 && "Unknown instruction!!");
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// CallInst simplification
 | 
						|
//
 | 
						|
Instruction *InstCombiner::visitCallInst(CallInst &CI) {
 | 
						|
  // Intrinsics cannot occur in an invoke, so handle them here instead of in
 | 
						|
  // visitCallSite.
 | 
						|
  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&CI)) {
 | 
						|
    bool Changed = false;
 | 
						|
 | 
						|
    // memmove/cpy/set of zero bytes is a noop.
 | 
						|
    if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
 | 
						|
      if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
 | 
						|
 | 
						|
      // FIXME: Increase alignment here.
 | 
						|
      
 | 
						|
      if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
 | 
						|
        if (CI->getRawValue() == 1) {
 | 
						|
          // Replace the instruction with just byte operations.  We would
 | 
						|
          // transform other cases to loads/stores, but we don't know if
 | 
						|
          // alignment is sufficient.
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // If we have a memmove and the source operation is a constant global,
 | 
						|
    // then the source and dest pointers can't alias, so we can change this
 | 
						|
    // into a call to memcpy.
 | 
						|
    if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI))
 | 
						|
      if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
 | 
						|
        if (GVSrc->isConstant()) {
 | 
						|
          Module *M = CI.getParent()->getParent()->getParent();
 | 
						|
          Function *MemCpy = M->getOrInsertFunction("llvm.memcpy",
 | 
						|
                                     CI.getCalledFunction()->getFunctionType());
 | 
						|
          CI.setOperand(0, MemCpy);
 | 
						|
          Changed = true;
 | 
						|
        }
 | 
						|
 | 
						|
    if (Changed) return &CI;
 | 
						|
  } else if (DbgStopPointInst *SPI = dyn_cast<DbgStopPointInst>(&CI)) {
 | 
						|
    // If this stoppoint is at the same source location as the previous
 | 
						|
    // stoppoint in the chain, it is not needed.
 | 
						|
    if (DbgStopPointInst *PrevSPI =
 | 
						|
        dyn_cast<DbgStopPointInst>(SPI->getChain()))
 | 
						|
      if (SPI->getLineNo() == PrevSPI->getLineNo() &&
 | 
						|
          SPI->getColNo() == PrevSPI->getColNo()) {
 | 
						|
        SPI->replaceAllUsesWith(PrevSPI);
 | 
						|
        return EraseInstFromFunction(CI);
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  return visitCallSite(&CI);
 | 
						|
}
 | 
						|
 | 
						|
// InvokeInst simplification
 | 
						|
//
 | 
						|
Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
 | 
						|
  return visitCallSite(&II);
 | 
						|
}
 | 
						|
 | 
						|
// visitCallSite - Improvements for call and invoke instructions.
 | 
						|
//
 | 
						|
Instruction *InstCombiner::visitCallSite(CallSite CS) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // If the callee is a constexpr cast of a function, attempt to move the cast
 | 
						|
  // to the arguments of the call/invoke.
 | 
						|
  if (transformConstExprCastCall(CS)) return 0;
 | 
						|
 | 
						|
  Value *Callee = CS.getCalledValue();
 | 
						|
 | 
						|
  if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
 | 
						|
    // This instruction is not reachable, just remove it.  We insert a store to
 | 
						|
    // undef so that we know that this code is not reachable, despite the fact
 | 
						|
    // that we can't modify the CFG here.
 | 
						|
    new StoreInst(ConstantBool::True,
 | 
						|
                  UndefValue::get(PointerType::get(Type::BoolTy)),
 | 
						|
                  CS.getInstruction());
 | 
						|
 | 
						|
    if (!CS.getInstruction()->use_empty())
 | 
						|
      CS.getInstruction()->
 | 
						|
        replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
 | 
						|
 | 
						|
    if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
 | 
						|
      // Don't break the CFG, insert a dummy cond branch.
 | 
						|
      new BranchInst(II->getNormalDest(), II->getUnwindDest(),
 | 
						|
                     ConstantBool::True, II);
 | 
						|
    }
 | 
						|
    return EraseInstFromFunction(*CS.getInstruction());
 | 
						|
  }
 | 
						|
 | 
						|
  const PointerType *PTy = cast<PointerType>(Callee->getType());
 | 
						|
  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
 | 
						|
  if (FTy->isVarArg()) {
 | 
						|
    // See if we can optimize any arguments passed through the varargs area of
 | 
						|
    // the call.
 | 
						|
    for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
 | 
						|
           E = CS.arg_end(); I != E; ++I)
 | 
						|
      if (CastInst *CI = dyn_cast<CastInst>(*I)) {
 | 
						|
        // If this cast does not effect the value passed through the varargs
 | 
						|
        // area, we can eliminate the use of the cast.
 | 
						|
        Value *Op = CI->getOperand(0);
 | 
						|
        if (CI->getType()->isLosslesslyConvertibleTo(Op->getType())) {
 | 
						|
          *I = Op;
 | 
						|
          Changed = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return Changed ? CS.getInstruction() : 0;
 | 
						|
}
 | 
						|
 | 
						|
// transformConstExprCastCall - If the callee is a constexpr cast of a function,
 | 
						|
// attempt to move the cast to the arguments of the call/invoke.
 | 
						|
//
 | 
						|
bool InstCombiner::transformConstExprCastCall(CallSite CS) {
 | 
						|
  if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
 | 
						|
  ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
 | 
						|
  if (CE->getOpcode() != Instruction::Cast || !isa<Function>(CE->getOperand(0)))
 | 
						|
    return false;
 | 
						|
  Function *Callee = cast<Function>(CE->getOperand(0));
 | 
						|
  Instruction *Caller = CS.getInstruction();
 | 
						|
 | 
						|
  // Okay, this is a cast from a function to a different type.  Unless doing so
 | 
						|
  // would cause a type conversion of one of our arguments, change this call to
 | 
						|
  // be a direct call with arguments casted to the appropriate types.
 | 
						|
  //
 | 
						|
  const FunctionType *FT = Callee->getFunctionType();
 | 
						|
  const Type *OldRetTy = Caller->getType();
 | 
						|
 | 
						|
  // Check to see if we are changing the return type...
 | 
						|
  if (OldRetTy != FT->getReturnType()) {
 | 
						|
    if (Callee->isExternal() &&
 | 
						|
        !OldRetTy->isLosslesslyConvertibleTo(FT->getReturnType()) &&
 | 
						|
        !Caller->use_empty())
 | 
						|
      return false;   // Cannot transform this return value...
 | 
						|
 | 
						|
    // If the callsite is an invoke instruction, and the return value is used by
 | 
						|
    // a PHI node in a successor, we cannot change the return type of the call
 | 
						|
    // because there is no place to put the cast instruction (without breaking
 | 
						|
    // the critical edge).  Bail out in this case.
 | 
						|
    if (!Caller->use_empty())
 | 
						|
      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
 | 
						|
        for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
 | 
						|
             UI != E; ++UI)
 | 
						|
          if (PHINode *PN = dyn_cast<PHINode>(*UI))
 | 
						|
            if (PN->getParent() == II->getNormalDest() ||
 | 
						|
                PN->getParent() == II->getUnwindDest())
 | 
						|
              return false;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
 | 
						|
  unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
 | 
						|
                                    
 | 
						|
  CallSite::arg_iterator AI = CS.arg_begin();
 | 
						|
  for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
 | 
						|
    const Type *ParamTy = FT->getParamType(i);
 | 
						|
    bool isConvertible = (*AI)->getType()->isLosslesslyConvertibleTo(ParamTy);
 | 
						|
    if (Callee->isExternal() && !isConvertible) return false;    
 | 
						|
  }
 | 
						|
 | 
						|
  if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
 | 
						|
      Callee->isExternal())
 | 
						|
    return false;   // Do not delete arguments unless we have a function body...
 | 
						|
 | 
						|
  // Okay, we decided that this is a safe thing to do: go ahead and start
 | 
						|
  // inserting cast instructions as necessary...
 | 
						|
  std::vector<Value*> Args;
 | 
						|
  Args.reserve(NumActualArgs);
 | 
						|
 | 
						|
  AI = CS.arg_begin();
 | 
						|
  for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
 | 
						|
    const Type *ParamTy = FT->getParamType(i);
 | 
						|
    if ((*AI)->getType() == ParamTy) {
 | 
						|
      Args.push_back(*AI);
 | 
						|
    } else {
 | 
						|
      Args.push_back(InsertNewInstBefore(new CastInst(*AI, ParamTy, "tmp"),
 | 
						|
                                         *Caller));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the function takes more arguments than the call was taking, add them
 | 
						|
  // now...
 | 
						|
  for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
 | 
						|
    Args.push_back(Constant::getNullValue(FT->getParamType(i)));
 | 
						|
 | 
						|
  // If we are removing arguments to the function, emit an obnoxious warning...
 | 
						|
  if (FT->getNumParams() < NumActualArgs)
 | 
						|
    if (!FT->isVarArg()) {
 | 
						|
      std::cerr << "WARNING: While resolving call to function '"
 | 
						|
                << Callee->getName() << "' arguments were dropped!\n";
 | 
						|
    } else {
 | 
						|
      // Add all of the arguments in their promoted form to the arg list...
 | 
						|
      for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
 | 
						|
        const Type *PTy = getPromotedType((*AI)->getType());
 | 
						|
        if (PTy != (*AI)->getType()) {
 | 
						|
          // Must promote to pass through va_arg area!
 | 
						|
          Instruction *Cast = new CastInst(*AI, PTy, "tmp");
 | 
						|
          InsertNewInstBefore(Cast, *Caller);
 | 
						|
          Args.push_back(Cast);
 | 
						|
        } else {
 | 
						|
          Args.push_back(*AI);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  if (FT->getReturnType() == Type::VoidTy)
 | 
						|
    Caller->setName("");   // Void type should not have a name...
 | 
						|
 | 
						|
  Instruction *NC;
 | 
						|
  if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
 | 
						|
    NC = new InvokeInst(Callee, II->getNormalDest(), II->getUnwindDest(),
 | 
						|
                        Args, Caller->getName(), Caller);
 | 
						|
  } else {
 | 
						|
    NC = new CallInst(Callee, Args, Caller->getName(), Caller);
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert a cast of the return type as necessary...
 | 
						|
  Value *NV = NC;
 | 
						|
  if (Caller->getType() != NV->getType() && !Caller->use_empty()) {
 | 
						|
    if (NV->getType() != Type::VoidTy) {
 | 
						|
      NV = NC = new CastInst(NC, Caller->getType(), "tmp");
 | 
						|
 | 
						|
      // If this is an invoke instruction, we should insert it after the first
 | 
						|
      // non-phi, instruction in the normal successor block.
 | 
						|
      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
 | 
						|
        BasicBlock::iterator I = II->getNormalDest()->begin();
 | 
						|
        while (isa<PHINode>(I)) ++I;
 | 
						|
        InsertNewInstBefore(NC, *I);
 | 
						|
      } else {
 | 
						|
        // Otherwise, it's a call, just insert cast right after the call instr
 | 
						|
        InsertNewInstBefore(NC, *Caller);
 | 
						|
      }
 | 
						|
      AddUsersToWorkList(*Caller);
 | 
						|
    } else {
 | 
						|
      NV = UndefValue::get(Caller->getType());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
 | 
						|
    Caller->replaceAllUsesWith(NV);
 | 
						|
  Caller->getParent()->getInstList().erase(Caller);
 | 
						|
  removeFromWorkList(Caller);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
 | 
						|
// operator and they all are only used by the PHI, PHI together their
 | 
						|
// inputs, and do the operation once, to the result of the PHI.
 | 
						|
Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
 | 
						|
  Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
 | 
						|
 | 
						|
  // Scan the instruction, looking for input operations that can be folded away.
 | 
						|
  // If all input operands to the phi are the same instruction (e.g. a cast from
 | 
						|
  // the same type or "+42") we can pull the operation through the PHI, reducing
 | 
						|
  // code size and simplifying code.
 | 
						|
  Constant *ConstantOp = 0;
 | 
						|
  const Type *CastSrcTy = 0;
 | 
						|
  if (isa<CastInst>(FirstInst)) {
 | 
						|
    CastSrcTy = FirstInst->getOperand(0)->getType();
 | 
						|
  } else if (isa<BinaryOperator>(FirstInst) || isa<ShiftInst>(FirstInst)) {
 | 
						|
    // Can fold binop or shift if the RHS is a constant.
 | 
						|
    ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
 | 
						|
    if (ConstantOp == 0) return 0;
 | 
						|
  } else {
 | 
						|
    return 0;  // Cannot fold this operation.
 | 
						|
  }
 | 
						|
 | 
						|
  // Check to see if all arguments are the same operation.
 | 
						|
  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
 | 
						|
    if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
 | 
						|
    Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
 | 
						|
    if (!I->hasOneUse() || I->getOpcode() != FirstInst->getOpcode())
 | 
						|
      return 0;
 | 
						|
    if (CastSrcTy) {
 | 
						|
      if (I->getOperand(0)->getType() != CastSrcTy)
 | 
						|
        return 0;  // Cast operation must match.
 | 
						|
    } else if (I->getOperand(1) != ConstantOp) {
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, they are all the same operation.  Create a new PHI node of the
 | 
						|
  // correct type, and PHI together all of the LHS's of the instructions.
 | 
						|
  PHINode *NewPN = new PHINode(FirstInst->getOperand(0)->getType(),
 | 
						|
                               PN.getName()+".in");
 | 
						|
  NewPN->reserveOperandSpace(PN.getNumOperands()/2);
 | 
						|
 | 
						|
  Value *InVal = FirstInst->getOperand(0);
 | 
						|
  NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
 | 
						|
 | 
						|
  // Add all operands to the new PHI.
 | 
						|
  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
 | 
						|
    Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
 | 
						|
    if (NewInVal != InVal)
 | 
						|
      InVal = 0;
 | 
						|
    NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
 | 
						|
  }
 | 
						|
 | 
						|
  Value *PhiVal;
 | 
						|
  if (InVal) {
 | 
						|
    // The new PHI unions all of the same values together.  This is really
 | 
						|
    // common, so we handle it intelligently here for compile-time speed.
 | 
						|
    PhiVal = InVal;
 | 
						|
    delete NewPN;
 | 
						|
  } else {
 | 
						|
    InsertNewInstBefore(NewPN, PN);
 | 
						|
    PhiVal = NewPN;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Insert and return the new operation.
 | 
						|
  if (isa<CastInst>(FirstInst))
 | 
						|
    return new CastInst(PhiVal, PN.getType());
 | 
						|
  else if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
 | 
						|
    return BinaryOperator::create(BinOp->getOpcode(), PhiVal, ConstantOp);
 | 
						|
  else
 | 
						|
    return new ShiftInst(cast<ShiftInst>(FirstInst)->getOpcode(),
 | 
						|
                         PhiVal, ConstantOp);
 | 
						|
}
 | 
						|
 | 
						|
/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
 | 
						|
/// that is dead.
 | 
						|
static bool DeadPHICycle(PHINode *PN, std::set<PHINode*> &PotentiallyDeadPHIs) {
 | 
						|
  if (PN->use_empty()) return true;
 | 
						|
  if (!PN->hasOneUse()) return false;
 | 
						|
 | 
						|
  // Remember this node, and if we find the cycle, return.
 | 
						|
  if (!PotentiallyDeadPHIs.insert(PN).second)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
 | 
						|
    return DeadPHICycle(PU, PotentiallyDeadPHIs);
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// PHINode simplification
 | 
						|
//
 | 
						|
Instruction *InstCombiner::visitPHINode(PHINode &PN) {
 | 
						|
  if (Value *V = hasConstantValue(&PN)) {
 | 
						|
    // If V is an instruction, we have to be certain that it dominates PN.
 | 
						|
    // However, because we don't have dom info, we can't do a perfect job.
 | 
						|
    if (Instruction *I = dyn_cast<Instruction>(V)) {
 | 
						|
      // We know that the instruction dominates the PHI if there are no undef
 | 
						|
      // values coming in.
 | 
						|
      if (I->getParent() != &I->getParent()->getParent()->front() ||
 | 
						|
          isa<InvokeInst>(I))
 | 
						|
        for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
 | 
						|
          if (isa<UndefValue>(PN.getIncomingValue(i))) {
 | 
						|
            V = 0;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
    }
 | 
						|
 | 
						|
    if (V)
 | 
						|
      return ReplaceInstUsesWith(PN, V);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the only user of this instruction is a cast instruction, and all of the
 | 
						|
  // incoming values are constants, change this PHI to merge together the casted
 | 
						|
  // constants.
 | 
						|
  if (PN.hasOneUse())
 | 
						|
    if (CastInst *CI = dyn_cast<CastInst>(PN.use_back()))
 | 
						|
      if (CI->getType() != PN.getType()) {  // noop casts will be folded
 | 
						|
        bool AllConstant = true;
 | 
						|
        for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
 | 
						|
          if (!isa<Constant>(PN.getIncomingValue(i))) {
 | 
						|
            AllConstant = false;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        if (AllConstant) {
 | 
						|
          // Make a new PHI with all casted values.
 | 
						|
          PHINode *New = new PHINode(CI->getType(), PN.getName(), &PN);
 | 
						|
          for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
 | 
						|
            Constant *OldArg = cast<Constant>(PN.getIncomingValue(i));
 | 
						|
            New->addIncoming(ConstantExpr::getCast(OldArg, New->getType()),
 | 
						|
                             PN.getIncomingBlock(i));
 | 
						|
          }
 | 
						|
 | 
						|
          // Update the cast instruction.
 | 
						|
          CI->setOperand(0, New);
 | 
						|
          WorkList.push_back(CI);    // revisit the cast instruction to fold.
 | 
						|
          WorkList.push_back(New);   // Make sure to revisit the new Phi
 | 
						|
          return &PN;                // PN is now dead!
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
  // If all PHI operands are the same operation, pull them through the PHI,
 | 
						|
  // reducing code size.
 | 
						|
  if (isa<Instruction>(PN.getIncomingValue(0)) &&
 | 
						|
      PN.getIncomingValue(0)->hasOneUse())
 | 
						|
    if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
 | 
						|
      return Result;
 | 
						|
 | 
						|
  // If this is a trivial cycle in the PHI node graph, remove it.  Basically, if
 | 
						|
  // this PHI only has a single use (a PHI), and if that PHI only has one use (a
 | 
						|
  // PHI)... break the cycle.
 | 
						|
  if (PN.hasOneUse())
 | 
						|
    if (PHINode *PU = dyn_cast<PHINode>(PN.use_back())) {
 | 
						|
      std::set<PHINode*> PotentiallyDeadPHIs;
 | 
						|
      PotentiallyDeadPHIs.insert(&PN);
 | 
						|
      if (DeadPHICycle(PU, PotentiallyDeadPHIs))
 | 
						|
        return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
 | 
						|
    }
 | 
						|
  
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
static Value *InsertSignExtendToPtrTy(Value *V, const Type *DTy,
 | 
						|
                                      Instruction *InsertPoint,
 | 
						|
                                      InstCombiner *IC) {
 | 
						|
  unsigned PS = IC->getTargetData().getPointerSize();
 | 
						|
  const Type *VTy = V->getType();
 | 
						|
  if (!VTy->isSigned() && VTy->getPrimitiveSize() < PS)
 | 
						|
    // We must insert a cast to ensure we sign-extend.
 | 
						|
    V = IC->InsertNewInstBefore(new CastInst(V, VTy->getSignedVersion(),
 | 
						|
                                             V->getName()), *InsertPoint);
 | 
						|
  return IC->InsertNewInstBefore(new CastInst(V, DTy, V->getName()),
 | 
						|
                                 *InsertPoint);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
 | 
						|
  Value *PtrOp = GEP.getOperand(0);
 | 
						|
  // Is it 'getelementptr %P, long 0'  or 'getelementptr %P'
 | 
						|
  // If so, eliminate the noop.
 | 
						|
  if (GEP.getNumOperands() == 1)
 | 
						|
    return ReplaceInstUsesWith(GEP, PtrOp);
 | 
						|
 | 
						|
  if (isa<UndefValue>(GEP.getOperand(0)))
 | 
						|
    return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
 | 
						|
 | 
						|
  bool HasZeroPointerIndex = false;
 | 
						|
  if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
 | 
						|
    HasZeroPointerIndex = C->isNullValue();
 | 
						|
 | 
						|
  if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
 | 
						|
    return ReplaceInstUsesWith(GEP, PtrOp);
 | 
						|
 | 
						|
  // Eliminate unneeded casts for indices.
 | 
						|
  bool MadeChange = false;
 | 
						|
  gep_type_iterator GTI = gep_type_begin(GEP);
 | 
						|
  for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i, ++GTI)
 | 
						|
    if (isa<SequentialType>(*GTI)) {
 | 
						|
      if (CastInst *CI = dyn_cast<CastInst>(GEP.getOperand(i))) {
 | 
						|
        Value *Src = CI->getOperand(0);
 | 
						|
        const Type *SrcTy = Src->getType();
 | 
						|
        const Type *DestTy = CI->getType();
 | 
						|
        if (Src->getType()->isInteger()) {
 | 
						|
          if (SrcTy->getPrimitiveSize() == DestTy->getPrimitiveSize()) {
 | 
						|
            // We can always eliminate a cast from ulong or long to the other.
 | 
						|
            // We can always eliminate a cast from uint to int or the other on
 | 
						|
            // 32-bit pointer platforms.
 | 
						|
            if (DestTy->getPrimitiveSize() >= TD->getPointerSize()) {
 | 
						|
              MadeChange = true;
 | 
						|
              GEP.setOperand(i, Src);
 | 
						|
            }
 | 
						|
          } else if (SrcTy->getPrimitiveSize() < DestTy->getPrimitiveSize() &&
 | 
						|
                     SrcTy->getPrimitiveSize() == 4) {
 | 
						|
            // We can always eliminate a cast from int to [u]long.  We can
 | 
						|
            // eliminate a cast from uint to [u]long iff the target is a 32-bit
 | 
						|
            // pointer target.
 | 
						|
            if (SrcTy->isSigned() || 
 | 
						|
                SrcTy->getPrimitiveSize() >= TD->getPointerSize()) {
 | 
						|
              MadeChange = true;
 | 
						|
              GEP.setOperand(i, Src);
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // If we are using a wider index than needed for this platform, shrink it
 | 
						|
      // to what we need.  If the incoming value needs a cast instruction,
 | 
						|
      // insert it.  This explicit cast can make subsequent optimizations more
 | 
						|
      // obvious.
 | 
						|
      Value *Op = GEP.getOperand(i);
 | 
						|
      if (Op->getType()->getPrimitiveSize() > TD->getPointerSize())
 | 
						|
        if (Constant *C = dyn_cast<Constant>(Op)) {
 | 
						|
          GEP.setOperand(i, ConstantExpr::getCast(C,
 | 
						|
                                     TD->getIntPtrType()->getSignedVersion()));
 | 
						|
          MadeChange = true;
 | 
						|
        } else {
 | 
						|
          Op = InsertNewInstBefore(new CastInst(Op, TD->getIntPtrType(),
 | 
						|
                                                Op->getName()), GEP);
 | 
						|
          GEP.setOperand(i, Op);
 | 
						|
          MadeChange = true;
 | 
						|
        }
 | 
						|
 | 
						|
      // If this is a constant idx, make sure to canonicalize it to be a signed
 | 
						|
      // operand, otherwise CSE and other optimizations are pessimized.
 | 
						|
      if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(Op)) {
 | 
						|
        GEP.setOperand(i, ConstantExpr::getCast(CUI,
 | 
						|
                                          CUI->getType()->getSignedVersion()));
 | 
						|
        MadeChange = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  if (MadeChange) return &GEP;
 | 
						|
 | 
						|
  // Combine Indices - If the source pointer to this getelementptr instruction
 | 
						|
  // is a getelementptr instruction, combine the indices of the two
 | 
						|
  // getelementptr instructions into a single instruction.
 | 
						|
  //
 | 
						|
  std::vector<Value*> SrcGEPOperands;
 | 
						|
  if (User *Src = dyn_castGetElementPtr(PtrOp))
 | 
						|
    SrcGEPOperands.assign(Src->op_begin(), Src->op_end());
 | 
						|
 | 
						|
  if (!SrcGEPOperands.empty()) {
 | 
						|
    // Note that if our source is a gep chain itself that we wait for that
 | 
						|
    // chain to be resolved before we perform this transformation.  This
 | 
						|
    // avoids us creating a TON of code in some cases.
 | 
						|
    //
 | 
						|
    if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
 | 
						|
        cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
 | 
						|
      return 0;   // Wait until our source is folded to completion.
 | 
						|
 | 
						|
    std::vector<Value *> Indices;
 | 
						|
 | 
						|
    // Find out whether the last index in the source GEP is a sequential idx.
 | 
						|
    bool EndsWithSequential = false;
 | 
						|
    for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
 | 
						|
           E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
 | 
						|
      EndsWithSequential = !isa<StructType>(*I);
 | 
						|
  
 | 
						|
    // Can we combine the two pointer arithmetics offsets?
 | 
						|
    if (EndsWithSequential) {
 | 
						|
      // Replace: gep (gep %P, long B), long A, ...
 | 
						|
      // With:    T = long A+B; gep %P, T, ...
 | 
						|
      //
 | 
						|
      Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
 | 
						|
      if (SO1 == Constant::getNullValue(SO1->getType())) {
 | 
						|
        Sum = GO1;
 | 
						|
      } else if (GO1 == Constant::getNullValue(GO1->getType())) {
 | 
						|
        Sum = SO1;
 | 
						|
      } else {
 | 
						|
        // If they aren't the same type, convert both to an integer of the
 | 
						|
        // target's pointer size.
 | 
						|
        if (SO1->getType() != GO1->getType()) {
 | 
						|
          if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
 | 
						|
            SO1 = ConstantExpr::getCast(SO1C, GO1->getType());
 | 
						|
          } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
 | 
						|
            GO1 = ConstantExpr::getCast(GO1C, SO1->getType());
 | 
						|
          } else {
 | 
						|
            unsigned PS = TD->getPointerSize();
 | 
						|
            if (SO1->getType()->getPrimitiveSize() == PS) {
 | 
						|
              // Convert GO1 to SO1's type.
 | 
						|
              GO1 = InsertSignExtendToPtrTy(GO1, SO1->getType(), &GEP, this);
 | 
						|
 | 
						|
            } else if (GO1->getType()->getPrimitiveSize() == PS) {
 | 
						|
              // Convert SO1 to GO1's type.
 | 
						|
              SO1 = InsertSignExtendToPtrTy(SO1, GO1->getType(), &GEP, this);
 | 
						|
            } else {
 | 
						|
              const Type *PT = TD->getIntPtrType();
 | 
						|
              SO1 = InsertSignExtendToPtrTy(SO1, PT, &GEP, this);
 | 
						|
              GO1 = InsertSignExtendToPtrTy(GO1, PT, &GEP, this);
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
        if (isa<Constant>(SO1) && isa<Constant>(GO1))
 | 
						|
          Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
 | 
						|
        else {
 | 
						|
          Sum = BinaryOperator::createAdd(SO1, GO1, PtrOp->getName()+".sum");
 | 
						|
          InsertNewInstBefore(cast<Instruction>(Sum), GEP);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Recycle the GEP we already have if possible.
 | 
						|
      if (SrcGEPOperands.size() == 2) {
 | 
						|
        GEP.setOperand(0, SrcGEPOperands[0]);
 | 
						|
        GEP.setOperand(1, Sum);
 | 
						|
        return &GEP;
 | 
						|
      } else {
 | 
						|
        Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
 | 
						|
                       SrcGEPOperands.end()-1);
 | 
						|
        Indices.push_back(Sum);
 | 
						|
        Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
 | 
						|
      }
 | 
						|
    } else if (isa<Constant>(*GEP.idx_begin()) && 
 | 
						|
               cast<Constant>(*GEP.idx_begin())->isNullValue() &&
 | 
						|
               SrcGEPOperands.size() != 1) { 
 | 
						|
      // Otherwise we can do the fold if the first index of the GEP is a zero
 | 
						|
      Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
 | 
						|
                     SrcGEPOperands.end());
 | 
						|
      Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Indices.empty())
 | 
						|
      return new GetElementPtrInst(SrcGEPOperands[0], Indices, GEP.getName());
 | 
						|
 | 
						|
  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
 | 
						|
    // GEP of global variable.  If all of the indices for this GEP are
 | 
						|
    // constants, we can promote this to a constexpr instead of an instruction.
 | 
						|
 | 
						|
    // Scan for nonconstants...
 | 
						|
    std::vector<Constant*> Indices;
 | 
						|
    User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
 | 
						|
    for (; I != E && isa<Constant>(*I); ++I)
 | 
						|
      Indices.push_back(cast<Constant>(*I));
 | 
						|
 | 
						|
    if (I == E) {  // If they are all constants...
 | 
						|
      Constant *CE = ConstantExpr::getGetElementPtr(GV, Indices);
 | 
						|
 | 
						|
      // Replace all uses of the GEP with the new constexpr...
 | 
						|
      return ReplaceInstUsesWith(GEP, CE);
 | 
						|
    }
 | 
						|
  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PtrOp)) {
 | 
						|
    if (CE->getOpcode() == Instruction::Cast) {
 | 
						|
      if (HasZeroPointerIndex) {
 | 
						|
        // transform: GEP (cast [10 x ubyte]* X to [0 x ubyte]*), long 0, ...
 | 
						|
        // into     : GEP [10 x ubyte]* X, long 0, ...
 | 
						|
        //
 | 
						|
        // This occurs when the program declares an array extern like "int X[];"
 | 
						|
        //
 | 
						|
        Constant *X = CE->getOperand(0);
 | 
						|
        const PointerType *CPTy = cast<PointerType>(CE->getType());
 | 
						|
        if (const PointerType *XTy = dyn_cast<PointerType>(X->getType()))
 | 
						|
          if (const ArrayType *XATy =
 | 
						|
              dyn_cast<ArrayType>(XTy->getElementType()))
 | 
						|
            if (const ArrayType *CATy =
 | 
						|
                dyn_cast<ArrayType>(CPTy->getElementType()))
 | 
						|
              if (CATy->getElementType() == XATy->getElementType()) {
 | 
						|
                // At this point, we know that the cast source type is a pointer
 | 
						|
                // to an array of the same type as the destination pointer
 | 
						|
                // array.  Because the array type is never stepped over (there
 | 
						|
                // is a leading zero) we can fold the cast into this GEP.
 | 
						|
                GEP.setOperand(0, X);
 | 
						|
                return &GEP;
 | 
						|
              }
 | 
						|
      } else if (GEP.getNumOperands() == 2 &&
 | 
						|
                 isa<PointerType>(CE->getOperand(0)->getType())) {
 | 
						|
        // Transform things like:
 | 
						|
        // %t = getelementptr ubyte* cast ([2 x sbyte]* %str to ubyte*), uint %V
 | 
						|
        // into:  %t1 = getelementptr [2 x sbyte*]* %str, int 0, uint %V; cast
 | 
						|
        Constant *X = CE->getOperand(0);
 | 
						|
        const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
 | 
						|
        const Type *ResElTy =cast<PointerType>(CE->getType())->getElementType();
 | 
						|
        if (isa<ArrayType>(SrcElTy) &&
 | 
						|
            TD->getTypeSize(cast<ArrayType>(SrcElTy)->getElementType()) == 
 | 
						|
            TD->getTypeSize(ResElTy)) {
 | 
						|
          Value *V = InsertNewInstBefore(
 | 
						|
                 new GetElementPtrInst(X, Constant::getNullValue(Type::IntTy),
 | 
						|
                                       GEP.getOperand(1), GEP.getName()), GEP);
 | 
						|
          return new CastInst(V, GEP.getType());
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
 | 
						|
  // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
 | 
						|
  if (AI.isArrayAllocation())    // Check C != 1
 | 
						|
    if (const ConstantUInt *C = dyn_cast<ConstantUInt>(AI.getArraySize())) {
 | 
						|
      const Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getValue());
 | 
						|
      AllocationInst *New = 0;
 | 
						|
 | 
						|
      // Create and insert the replacement instruction...
 | 
						|
      if (isa<MallocInst>(AI))
 | 
						|
        New = new MallocInst(NewTy, 0, AI.getName());
 | 
						|
      else {
 | 
						|
        assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
 | 
						|
        New = new AllocaInst(NewTy, 0, AI.getName());
 | 
						|
      }
 | 
						|
 | 
						|
      InsertNewInstBefore(New, AI);
 | 
						|
      
 | 
						|
      // Scan to the end of the allocation instructions, to skip over a block of
 | 
						|
      // allocas if possible...
 | 
						|
      //
 | 
						|
      BasicBlock::iterator It = New;
 | 
						|
      while (isa<AllocationInst>(*It)) ++It;
 | 
						|
 | 
						|
      // Now that I is pointing to the first non-allocation-inst in the block,
 | 
						|
      // insert our getelementptr instruction...
 | 
						|
      //
 | 
						|
      std::vector<Value*> Idx(2, Constant::getNullValue(Type::IntTy));
 | 
						|
      Value *V = new GetElementPtrInst(New, Idx, New->getName()+".sub", It);
 | 
						|
 | 
						|
      // Now make everything use the getelementptr instead of the original
 | 
						|
      // allocation.
 | 
						|
      return ReplaceInstUsesWith(AI, V);
 | 
						|
    } else if (isa<UndefValue>(AI.getArraySize())) {
 | 
						|
      return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
 | 
						|
    }
 | 
						|
 | 
						|
  // If alloca'ing a zero byte object, replace the alloca with a null pointer.
 | 
						|
  // Note that we only do this for alloca's, because malloc should allocate and
 | 
						|
  // return a unique pointer, even for a zero byte allocation.
 | 
						|
  if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() && 
 | 
						|
      TD->getTypeSize(AI.getAllocatedType()) == 0)
 | 
						|
    return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
 | 
						|
  Value *Op = FI.getOperand(0);
 | 
						|
 | 
						|
  // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
 | 
						|
  if (CastInst *CI = dyn_cast<CastInst>(Op))
 | 
						|
    if (isa<PointerType>(CI->getOperand(0)->getType())) {
 | 
						|
      FI.setOperand(0, CI->getOperand(0));
 | 
						|
      return &FI;
 | 
						|
    }
 | 
						|
 | 
						|
  // free undef -> unreachable.
 | 
						|
  if (isa<UndefValue>(Op)) {
 | 
						|
    // Insert a new store to null because we cannot modify the CFG here.
 | 
						|
    new StoreInst(ConstantBool::True,
 | 
						|
                  UndefValue::get(PointerType::get(Type::BoolTy)), &FI);
 | 
						|
    return EraseInstFromFunction(FI);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have 'free null' delete the instruction.  This can happen in stl code
 | 
						|
  // when lots of inlining happens.
 | 
						|
  if (isa<ConstantPointerNull>(Op))
 | 
						|
    return EraseInstFromFunction(FI);
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// GetGEPGlobalInitializer - Given a constant, and a getelementptr
 | 
						|
/// constantexpr, return the constant value being addressed by the constant
 | 
						|
/// expression, or null if something is funny.
 | 
						|
///
 | 
						|
static Constant *GetGEPGlobalInitializer(Constant *C, ConstantExpr *CE) {
 | 
						|
  if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
 | 
						|
    return 0;  // Do not allow stepping over the value!
 | 
						|
 | 
						|
  // Loop over all of the operands, tracking down which value we are
 | 
						|
  // addressing...
 | 
						|
  gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
 | 
						|
  for (++I; I != E; ++I)
 | 
						|
    if (const StructType *STy = dyn_cast<StructType>(*I)) {
 | 
						|
      ConstantUInt *CU = cast<ConstantUInt>(I.getOperand());
 | 
						|
      assert(CU->getValue() < STy->getNumElements() &&
 | 
						|
             "Struct index out of range!");
 | 
						|
      unsigned El = (unsigned)CU->getValue();
 | 
						|
      if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
 | 
						|
        C = CS->getOperand(El);
 | 
						|
      } else if (isa<ConstantAggregateZero>(C)) {
 | 
						|
	C = Constant::getNullValue(STy->getElementType(El));
 | 
						|
      } else if (isa<UndefValue>(C)) {
 | 
						|
	C = UndefValue::get(STy->getElementType(El));
 | 
						|
      } else {
 | 
						|
        return 0;
 | 
						|
      }
 | 
						|
    } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
 | 
						|
      const ArrayType *ATy = cast<ArrayType>(*I);
 | 
						|
      if ((uint64_t)CI->getRawValue() >= ATy->getNumElements()) return 0;
 | 
						|
      if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
 | 
						|
        C = CA->getOperand((unsigned)CI->getRawValue());
 | 
						|
      else if (isa<ConstantAggregateZero>(C))
 | 
						|
        C = Constant::getNullValue(ATy->getElementType());
 | 
						|
      else if (isa<UndefValue>(C))
 | 
						|
        C = UndefValue::get(ATy->getElementType());
 | 
						|
      else
 | 
						|
        return 0;
 | 
						|
    } else {
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
  return C;
 | 
						|
}
 | 
						|
 | 
						|
/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
 | 
						|
static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI) {
 | 
						|
  User *CI = cast<User>(LI.getOperand(0));
 | 
						|
  Value *CastOp = CI->getOperand(0);
 | 
						|
 | 
						|
  const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
 | 
						|
  if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
 | 
						|
    const Type *SrcPTy = SrcTy->getElementType();
 | 
						|
 | 
						|
    if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
 | 
						|
      // If the source is an array, the code below will not succeed.  Check to
 | 
						|
      // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for
 | 
						|
      // constants.
 | 
						|
      if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
 | 
						|
        if (Constant *CSrc = dyn_cast<Constant>(CastOp))
 | 
						|
          if (ASrcTy->getNumElements() != 0) {
 | 
						|
            std::vector<Value*> Idxs(2, Constant::getNullValue(Type::IntTy));
 | 
						|
            CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs);
 | 
						|
            SrcTy = cast<PointerType>(CastOp->getType());
 | 
						|
            SrcPTy = SrcTy->getElementType();
 | 
						|
          }
 | 
						|
 | 
						|
      if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
 | 
						|
          // Do not allow turning this into a load of an integer, which is then
 | 
						|
          // casted to a pointer, this pessimizes pointer analysis a lot.
 | 
						|
          (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
 | 
						|
          IC.getTargetData().getTypeSize(SrcPTy) == 
 | 
						|
               IC.getTargetData().getTypeSize(DestPTy)) {
 | 
						|
          
 | 
						|
        // Okay, we are casting from one integer or pointer type to another of
 | 
						|
        // the same size.  Instead of casting the pointer before the load, cast
 | 
						|
        // the result of the loaded value.
 | 
						|
        Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
 | 
						|
                                                             CI->getName(),
 | 
						|
                                                         LI.isVolatile()),LI);
 | 
						|
        // Now cast the result of the load.
 | 
						|
        return new CastInst(NewLoad, LI.getType());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// isSafeToLoadUnconditionally - Return true if we know that executing a load
 | 
						|
/// from this value cannot trap.  If it is not obviously safe to load from the
 | 
						|
/// specified pointer, we do a quick local scan of the basic block containing
 | 
						|
/// ScanFrom, to determine if the address is already accessed.
 | 
						|
static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
 | 
						|
  // If it is an alloca or global variable, it is always safe to load from.
 | 
						|
  if (isa<AllocaInst>(V) || isa<GlobalVariable>(V)) return true;
 | 
						|
 | 
						|
  // Otherwise, be a little bit agressive by scanning the local block where we
 | 
						|
  // want to check to see if the pointer is already being loaded or stored
 | 
						|
  // from/to.  If so, the previous load or store would have already trapped,
 | 
						|
  // so there is no harm doing an extra load (also, CSE will later eliminate
 | 
						|
  // the load entirely).
 | 
						|
  BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
 | 
						|
 | 
						|
  while (BBI != E) {
 | 
						|
    --BBI;
 | 
						|
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
 | 
						|
      if (LI->getOperand(0) == V) return true;
 | 
						|
    } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
 | 
						|
      if (SI->getOperand(1) == V) return true;
 | 
						|
    
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
 | 
						|
  Value *Op = LI.getOperand(0);
 | 
						|
 | 
						|
  if (Constant *C = dyn_cast<Constant>(Op)) {
 | 
						|
    if ((C->isNullValue() || isa<UndefValue>(C)) &&
 | 
						|
        !LI.isVolatile()) {                          // load null/undef -> undef
 | 
						|
      // Insert a new store to null instruction before the load to indicate that
 | 
						|
      // this code is not reachable.  We do this instead of inserting an
 | 
						|
      // unreachable instruction directly because we cannot modify the CFG.
 | 
						|
      new StoreInst(UndefValue::get(LI.getType()), C, &LI);
 | 
						|
      return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
 | 
						|
    }
 | 
						|
 | 
						|
    // Instcombine load (constant global) into the value loaded.
 | 
						|
    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
 | 
						|
      if (GV->isConstant() && !GV->isExternal())
 | 
						|
        return ReplaceInstUsesWith(LI, GV->getInitializer());
 | 
						|
    
 | 
						|
    // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
 | 
						|
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
 | 
						|
      if (CE->getOpcode() == Instruction::GetElementPtr) {
 | 
						|
        if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
 | 
						|
          if (GV->isConstant() && !GV->isExternal())
 | 
						|
            if (Constant *V = GetGEPGlobalInitializer(GV->getInitializer(), CE))
 | 
						|
              return ReplaceInstUsesWith(LI, V);
 | 
						|
      } else if (CE->getOpcode() == Instruction::Cast) {
 | 
						|
        if (Instruction *Res = InstCombineLoadCast(*this, LI))
 | 
						|
          return Res;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  // load (cast X) --> cast (load X) iff safe
 | 
						|
  if (CastInst *CI = dyn_cast<CastInst>(Op))
 | 
						|
    if (Instruction *Res = InstCombineLoadCast(*this, LI))
 | 
						|
      return Res;
 | 
						|
 | 
						|
  if (!LI.isVolatile() && Op->hasOneUse()) {
 | 
						|
    // Change select and PHI nodes to select values instead of addresses: this
 | 
						|
    // helps alias analysis out a lot, allows many others simplifications, and
 | 
						|
    // exposes redundancy in the code.
 | 
						|
    //
 | 
						|
    // Note that we cannot do the transformation unless we know that the
 | 
						|
    // introduced loads cannot trap!  Something like this is valid as long as
 | 
						|
    // the condition is always false: load (select bool %C, int* null, int* %G),
 | 
						|
    // but it would not be valid if we transformed it to load from null
 | 
						|
    // unconditionally.
 | 
						|
    //
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
 | 
						|
      // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
 | 
						|
      if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
 | 
						|
          isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
 | 
						|
        Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
 | 
						|
                                     SI->getOperand(1)->getName()+".val"), LI);
 | 
						|
        Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
 | 
						|
                                     SI->getOperand(2)->getName()+".val"), LI);
 | 
						|
        return new SelectInst(SI->getCondition(), V1, V2);
 | 
						|
      }
 | 
						|
 | 
						|
      // load (select (cond, null, P)) -> load P
 | 
						|
      if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
 | 
						|
        if (C->isNullValue()) {
 | 
						|
          LI.setOperand(0, SI->getOperand(2));
 | 
						|
          return &LI;
 | 
						|
        }
 | 
						|
 | 
						|
      // load (select (cond, P, null)) -> load P
 | 
						|
      if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
 | 
						|
        if (C->isNullValue()) {
 | 
						|
          LI.setOperand(0, SI->getOperand(1));
 | 
						|
          return &LI;
 | 
						|
        }
 | 
						|
 | 
						|
    } else if (PHINode *PN = dyn_cast<PHINode>(Op)) {
 | 
						|
      // load (phi (&V1, &V2, &V3))  --> phi(load &V1, load &V2, load &V3)
 | 
						|
      bool Safe = PN->getParent() == LI.getParent();
 | 
						|
 | 
						|
      // Scan all of the instructions between the PHI and the load to make
 | 
						|
      // sure there are no instructions that might possibly alter the value
 | 
						|
      // loaded from the PHI.
 | 
						|
      if (Safe) {
 | 
						|
        BasicBlock::iterator I = &LI;
 | 
						|
        for (--I; !isa<PHINode>(I); --I)
 | 
						|
          if (isa<StoreInst>(I) || isa<CallInst>(I)) {
 | 
						|
            Safe = false;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
      }
 | 
						|
 | 
						|
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e && Safe; ++i)
 | 
						|
        if (!isSafeToLoadUnconditionally(PN->getIncomingValue(i),
 | 
						|
                                    PN->getIncomingBlock(i)->getTerminator()))
 | 
						|
          Safe = false;
 | 
						|
 | 
						|
      if (Safe) {
 | 
						|
        // Create the PHI.
 | 
						|
        PHINode *NewPN = new PHINode(LI.getType(), PN->getName());
 | 
						|
        InsertNewInstBefore(NewPN, *PN);
 | 
						|
        std::map<BasicBlock*,Value*> LoadMap;  // Don't insert duplicate loads
 | 
						|
 | 
						|
        for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
          BasicBlock *BB = PN->getIncomingBlock(i);
 | 
						|
          Value *&TheLoad = LoadMap[BB];
 | 
						|
          if (TheLoad == 0) {
 | 
						|
            Value *InVal = PN->getIncomingValue(i);
 | 
						|
            TheLoad = InsertNewInstBefore(new LoadInst(InVal,
 | 
						|
                                                       InVal->getName()+".val"),
 | 
						|
                                          *BB->getTerminator());
 | 
						|
          }
 | 
						|
          NewPN->addIncoming(TheLoad, BB);
 | 
						|
        }
 | 
						|
        return ReplaceInstUsesWith(LI, NewPN);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// InstCombineStoreToCast - Fold 'store V, (cast P)' -> store (cast V), P'
 | 
						|
/// when possible.
 | 
						|
static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
 | 
						|
  User *CI = cast<User>(SI.getOperand(1));
 | 
						|
  Value *CastOp = CI->getOperand(0);
 | 
						|
 | 
						|
  const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
 | 
						|
  if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
 | 
						|
    const Type *SrcPTy = SrcTy->getElementType();
 | 
						|
 | 
						|
    if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
 | 
						|
      // If the source is an array, the code below will not succeed.  Check to
 | 
						|
      // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for
 | 
						|
      // constants.
 | 
						|
      if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
 | 
						|
        if (Constant *CSrc = dyn_cast<Constant>(CastOp))
 | 
						|
          if (ASrcTy->getNumElements() != 0) {
 | 
						|
            std::vector<Value*> Idxs(2, Constant::getNullValue(Type::IntTy));
 | 
						|
            CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs);
 | 
						|
            SrcTy = cast<PointerType>(CastOp->getType());
 | 
						|
            SrcPTy = SrcTy->getElementType();
 | 
						|
          }
 | 
						|
 | 
						|
      if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
 | 
						|
          IC.getTargetData().getTypeSize(SrcPTy) == 
 | 
						|
               IC.getTargetData().getTypeSize(DestPTy)) {
 | 
						|
 | 
						|
        // Okay, we are casting from one integer or pointer type to another of
 | 
						|
        // the same size.  Instead of casting the pointer before the store, cast
 | 
						|
        // the value to be stored.
 | 
						|
        Value *NewCast;
 | 
						|
        if (Constant *C = dyn_cast<Constant>(SI.getOperand(0)))
 | 
						|
          NewCast = ConstantExpr::getCast(C, SrcPTy);
 | 
						|
        else
 | 
						|
          NewCast = IC.InsertNewInstBefore(new CastInst(SI.getOperand(0),
 | 
						|
                                                        SrcPTy,
 | 
						|
                                         SI.getOperand(0)->getName()+".c"), SI);
 | 
						|
 | 
						|
        return new StoreInst(NewCast, CastOp);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
 | 
						|
  Value *Val = SI.getOperand(0);
 | 
						|
  Value *Ptr = SI.getOperand(1);
 | 
						|
 | 
						|
  if (isa<UndefValue>(Ptr)) {     // store X, undef -> noop (even if volatile)
 | 
						|
    removeFromWorkList(&SI);
 | 
						|
    SI.eraseFromParent();
 | 
						|
    ++NumCombined;
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  if (SI.isVolatile()) return 0;  // Don't hack volatile loads.
 | 
						|
 | 
						|
  // store X, null    -> turns into 'unreachable' in SimplifyCFG
 | 
						|
  if (isa<ConstantPointerNull>(Ptr)) {
 | 
						|
    if (!isa<UndefValue>(Val)) {
 | 
						|
      SI.setOperand(0, UndefValue::get(Val->getType()));
 | 
						|
      if (Instruction *U = dyn_cast<Instruction>(Val))
 | 
						|
        WorkList.push_back(U);  // Dropped a use.
 | 
						|
      ++NumCombined;
 | 
						|
    }
 | 
						|
    return 0;  // Do not modify these!
 | 
						|
  }
 | 
						|
 | 
						|
  // store undef, Ptr -> noop
 | 
						|
  if (isa<UndefValue>(Val)) {
 | 
						|
    removeFromWorkList(&SI);
 | 
						|
    SI.eraseFromParent();
 | 
						|
    ++NumCombined;
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the pointer destination is a cast, see if we can fold the cast into the
 | 
						|
  // source instead.
 | 
						|
  if (CastInst *CI = dyn_cast<CastInst>(Ptr))
 | 
						|
    if (Instruction *Res = InstCombineStoreToCast(*this, SI))
 | 
						|
      return Res;
 | 
						|
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
 | 
						|
    if (CE->getOpcode() == Instruction::Cast)
 | 
						|
      if (Instruction *Res = InstCombineStoreToCast(*this, SI))
 | 
						|
        return Res;
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
 | 
						|
  // Change br (not X), label True, label False to: br X, label False, True
 | 
						|
  Value *X;
 | 
						|
  BasicBlock *TrueDest;
 | 
						|
  BasicBlock *FalseDest;
 | 
						|
  if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
 | 
						|
      !isa<Constant>(X)) {
 | 
						|
    // Swap Destinations and condition...
 | 
						|
    BI.setCondition(X);
 | 
						|
    BI.setSuccessor(0, FalseDest);
 | 
						|
    BI.setSuccessor(1, TrueDest);
 | 
						|
    return &BI;
 | 
						|
  }
 | 
						|
 | 
						|
  // Cannonicalize setne -> seteq
 | 
						|
  Instruction::BinaryOps Op; Value *Y;
 | 
						|
  if (match(&BI, m_Br(m_SetCond(Op, m_Value(X), m_Value(Y)),
 | 
						|
                      TrueDest, FalseDest)))
 | 
						|
    if ((Op == Instruction::SetNE || Op == Instruction::SetLE ||
 | 
						|
         Op == Instruction::SetGE) && BI.getCondition()->hasOneUse()) {
 | 
						|
      SetCondInst *I = cast<SetCondInst>(BI.getCondition());
 | 
						|
      std::string Name = I->getName(); I->setName("");
 | 
						|
      Instruction::BinaryOps NewOpcode = SetCondInst::getInverseCondition(Op);
 | 
						|
      Value *NewSCC =  BinaryOperator::create(NewOpcode, X, Y, Name, I);
 | 
						|
      // Swap Destinations and condition...
 | 
						|
      BI.setCondition(NewSCC);
 | 
						|
      BI.setSuccessor(0, FalseDest);
 | 
						|
      BI.setSuccessor(1, TrueDest);
 | 
						|
      removeFromWorkList(I);
 | 
						|
      I->getParent()->getInstList().erase(I);
 | 
						|
      WorkList.push_back(cast<Instruction>(NewSCC));
 | 
						|
      return &BI;
 | 
						|
    }
 | 
						|
  
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
 | 
						|
  Value *Cond = SI.getCondition();
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(Cond)) {
 | 
						|
    if (I->getOpcode() == Instruction::Add)
 | 
						|
      if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | 
						|
        // change 'switch (X+4) case 1:' into 'switch (X) case -3'
 | 
						|
        for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
 | 
						|
          SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
 | 
						|
                                                AddRHS));
 | 
						|
        SI.setOperand(0, I->getOperand(0));
 | 
						|
        WorkList.push_back(I);
 | 
						|
        return &SI;
 | 
						|
      }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void InstCombiner::removeFromWorkList(Instruction *I) {
 | 
						|
  WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), I),
 | 
						|
                 WorkList.end());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// TryToSinkInstruction - Try to move the specified instruction from its
 | 
						|
/// current block into the beginning of DestBlock, which can only happen if it's
 | 
						|
/// safe to move the instruction past all of the instructions between it and the
 | 
						|
/// end of its block.
 | 
						|
static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
 | 
						|
  assert(I->hasOneUse() && "Invariants didn't hold!");
 | 
						|
 | 
						|
  // Cannot move control-flow-involving instructions.
 | 
						|
  if (isa<PHINode>(I) || isa<InvokeInst>(I) || isa<CallInst>(I)) return false;
 | 
						|
  
 | 
						|
  // Do not sink alloca instructions out of the entry block.
 | 
						|
  if (isa<AllocaInst>(I) && I->getParent() == &DestBlock->getParent()->front())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We can only sink load instructions if there is nothing between the load and
 | 
						|
  // the end of block that could change the value.
 | 
						|
  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | 
						|
    if (LI->isVolatile()) return false;  // Don't sink volatile loads.
 | 
						|
 | 
						|
    for (BasicBlock::iterator Scan = LI, E = LI->getParent()->end();
 | 
						|
         Scan != E; ++Scan)
 | 
						|
      if (Scan->mayWriteToMemory())
 | 
						|
        return false;
 | 
						|
  }
 | 
						|
 | 
						|
  BasicBlock::iterator InsertPos = DestBlock->begin();
 | 
						|
  while (isa<PHINode>(InsertPos)) ++InsertPos;
 | 
						|
 | 
						|
  BasicBlock *SrcBlock = I->getParent();
 | 
						|
  DestBlock->getInstList().splice(InsertPos, SrcBlock->getInstList(), I);  
 | 
						|
  ++NumSunkInst;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool InstCombiner::runOnFunction(Function &F) {
 | 
						|
  bool Changed = false;
 | 
						|
  TD = &getAnalysis<TargetData>();
 | 
						|
 | 
						|
  for (inst_iterator i = inst_begin(F), e = inst_end(F); i != e; ++i)
 | 
						|
    WorkList.push_back(&*i);
 | 
						|
 | 
						|
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    Instruction *I = WorkList.back();  // Get an instruction from the worklist
 | 
						|
    WorkList.pop_back();
 | 
						|
 | 
						|
    // Check to see if we can DCE or ConstantPropagate the instruction...
 | 
						|
    // Check to see if we can DIE the instruction...
 | 
						|
    if (isInstructionTriviallyDead(I)) {
 | 
						|
      // Add operands to the worklist...
 | 
						|
      if (I->getNumOperands() < 4)
 | 
						|
        AddUsesToWorkList(*I);
 | 
						|
      ++NumDeadInst;
 | 
						|
 | 
						|
      DEBUG(std::cerr << "IC: DCE: " << *I);
 | 
						|
 | 
						|
      I->eraseFromParent();
 | 
						|
      removeFromWorkList(I);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Instruction isn't dead, see if we can constant propagate it...
 | 
						|
    if (Constant *C = ConstantFoldInstruction(I)) {
 | 
						|
      Value* Ptr = I->getOperand(0);
 | 
						|
      if (isa<GetElementPtrInst>(I) &&
 | 
						|
          cast<Constant>(Ptr)->isNullValue() &&
 | 
						|
          !isa<ConstantPointerNull>(C) &&
 | 
						|
          cast<PointerType>(Ptr->getType())->getElementType()->isSized()) {
 | 
						|
        // If this is a constant expr gep that is effectively computing an
 | 
						|
        // "offsetof", fold it into 'cast int X to T*' instead of 'gep 0, 0, 12'
 | 
						|
        bool isFoldableGEP = true;
 | 
						|
        for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i)
 | 
						|
          if (!isa<ConstantInt>(I->getOperand(i)))
 | 
						|
            isFoldableGEP = false;
 | 
						|
        if (isFoldableGEP) {
 | 
						|
          uint64_t Offset = TD->getIndexedOffset(Ptr->getType(),
 | 
						|
                             std::vector<Value*>(I->op_begin()+1, I->op_end()));
 | 
						|
          C = ConstantUInt::get(Type::ULongTy, Offset);
 | 
						|
          C = ConstantExpr::getCast(C, TD->getIntPtrType());
 | 
						|
          C = ConstantExpr::getCast(C, I->getType());
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      DEBUG(std::cerr << "IC: ConstFold to: " << *C << " from: " << *I);
 | 
						|
 | 
						|
      // Add operands to the worklist...
 | 
						|
      AddUsesToWorkList(*I);
 | 
						|
      ReplaceInstUsesWith(*I, C);
 | 
						|
 | 
						|
      ++NumConstProp;
 | 
						|
      I->getParent()->getInstList().erase(I);
 | 
						|
      removeFromWorkList(I);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // See if we can trivially sink this instruction to a successor basic block.
 | 
						|
    if (I->hasOneUse()) {
 | 
						|
      BasicBlock *BB = I->getParent();
 | 
						|
      BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
 | 
						|
      if (UserParent != BB) {
 | 
						|
        bool UserIsSuccessor = false;
 | 
						|
        // See if the user is one of our successors.
 | 
						|
        for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
 | 
						|
          if (*SI == UserParent) {
 | 
						|
            UserIsSuccessor = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
 | 
						|
        // If the user is one of our immediate successors, and if that successor
 | 
						|
        // only has us as a predecessors (we'd have to split the critical edge
 | 
						|
        // otherwise), we can keep going.
 | 
						|
        if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
 | 
						|
            next(pred_begin(UserParent)) == pred_end(UserParent))
 | 
						|
          // Okay, the CFG is simple enough, try to sink this instruction.
 | 
						|
          Changed |= TryToSinkInstruction(I, UserParent);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Now that we have an instruction, try combining it to simplify it...
 | 
						|
    if (Instruction *Result = visit(*I)) {
 | 
						|
      ++NumCombined;
 | 
						|
      // Should we replace the old instruction with a new one?
 | 
						|
      if (Result != I) {
 | 
						|
        DEBUG(std::cerr << "IC: Old = " << *I
 | 
						|
                        << "    New = " << *Result);
 | 
						|
 | 
						|
        // Everything uses the new instruction now.
 | 
						|
        I->replaceAllUsesWith(Result);
 | 
						|
 | 
						|
        // Push the new instruction and any users onto the worklist.
 | 
						|
        WorkList.push_back(Result);
 | 
						|
        AddUsersToWorkList(*Result);
 | 
						|
 | 
						|
        // Move the name to the new instruction first...
 | 
						|
        std::string OldName = I->getName(); I->setName("");
 | 
						|
        Result->setName(OldName);
 | 
						|
 | 
						|
        // Insert the new instruction into the basic block...
 | 
						|
        BasicBlock *InstParent = I->getParent();
 | 
						|
        BasicBlock::iterator InsertPos = I;
 | 
						|
 | 
						|
        if (!isa<PHINode>(Result))        // If combining a PHI, don't insert
 | 
						|
          while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
 | 
						|
            ++InsertPos;
 | 
						|
 | 
						|
        InstParent->getInstList().insert(InsertPos, Result);
 | 
						|
 | 
						|
        // Make sure that we reprocess all operands now that we reduced their
 | 
						|
        // use counts.
 | 
						|
        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | 
						|
          if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(i)))
 | 
						|
            WorkList.push_back(OpI);
 | 
						|
 | 
						|
        // Instructions can end up on the worklist more than once.  Make sure
 | 
						|
        // we do not process an instruction that has been deleted.
 | 
						|
        removeFromWorkList(I);
 | 
						|
 | 
						|
        // Erase the old instruction.
 | 
						|
        InstParent->getInstList().erase(I);
 | 
						|
      } else {
 | 
						|
        DEBUG(std::cerr << "IC: MOD = " << *I);
 | 
						|
 | 
						|
        // If the instruction was modified, it's possible that it is now dead.
 | 
						|
        // if so, remove it.
 | 
						|
        if (isInstructionTriviallyDead(I)) {
 | 
						|
          // Make sure we process all operands now that we are reducing their
 | 
						|
          // use counts.
 | 
						|
          for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | 
						|
            if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(i)))
 | 
						|
              WorkList.push_back(OpI);
 | 
						|
          
 | 
						|
          // Instructions may end up in the worklist more than once.  Erase all
 | 
						|
          // occurrances of this instruction.
 | 
						|
          removeFromWorkList(I);
 | 
						|
          I->eraseFromParent();
 | 
						|
        } else {
 | 
						|
          WorkList.push_back(Result);
 | 
						|
          AddUsersToWorkList(*Result);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass *llvm::createInstructionCombiningPass() {
 | 
						|
  return new InstCombiner();
 | 
						|
}
 | 
						|
 |