mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	This prevents crashes on some programs when using -ds-aa -licm. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@20831 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			859 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			859 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
 | |
| // 
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass performs several transformations to transform natural loops into a
 | |
| // simpler form, which makes subsequent analyses and transformations simpler and
 | |
| // more effective.
 | |
| //
 | |
| // Loop pre-header insertion guarantees that there is a single, non-critical
 | |
| // entry edge from outside of the loop to the loop header.  This simplifies a
 | |
| // number of analyses and transformations, such as LICM.
 | |
| //
 | |
| // Loop exit-block insertion guarantees that all exit blocks from the loop
 | |
| // (blocks which are outside of the loop that have predecessors inside of the
 | |
| // loop) only have predecessors from inside of the loop (and are thus dominated
 | |
| // by the loop header).  This simplifies transformations such as store-sinking
 | |
| // that are built into LICM.
 | |
| //
 | |
| // This pass also guarantees that loops will have exactly one backedge.
 | |
| //
 | |
| // Note that the simplifycfg pass will clean up blocks which are split out but
 | |
| // end up being unnecessary, so usage of this pass should not pessimize
 | |
| // generated code.
 | |
| //
 | |
| // This pass obviously modifies the CFG, but updates loop information and
 | |
| // dominator information.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Constant.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/ADT/SetOperations.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   Statistic<>
 | |
|   NumInserted("loopsimplify", "Number of pre-header or exit blocks inserted");
 | |
|   Statistic<>
 | |
|   NumNested("loopsimplify", "Number of nested loops split out");
 | |
| 
 | |
|   struct LoopSimplify : public FunctionPass {
 | |
|     // AA - If we have an alias analysis object to update, this is it, otherwise
 | |
|     // this is null.
 | |
|     AliasAnalysis *AA;
 | |
| 
 | |
|     virtual bool runOnFunction(Function &F);
 | |
|     
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       // We need loop information to identify the loops...
 | |
|       AU.addRequired<LoopInfo>();
 | |
|       AU.addRequired<DominatorSet>();
 | |
|       AU.addRequired<DominatorTree>();
 | |
| 
 | |
|       AU.addPreserved<LoopInfo>();
 | |
|       AU.addPreserved<DominatorSet>();
 | |
|       AU.addPreserved<ImmediateDominators>();
 | |
|       AU.addPreserved<DominatorTree>();
 | |
|       AU.addPreserved<DominanceFrontier>();
 | |
|       AU.addPreservedID(BreakCriticalEdgesID);  // No crit edges added....
 | |
|     }
 | |
|   private:
 | |
|     bool ProcessLoop(Loop *L);
 | |
|     BasicBlock *SplitBlockPredecessors(BasicBlock *BB, const char *Suffix,
 | |
|                                        const std::vector<BasicBlock*> &Preds);
 | |
|     BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
 | |
|     void InsertPreheaderForLoop(Loop *L);
 | |
|     Loop *SeparateNestedLoop(Loop *L);
 | |
|     void InsertUniqueBackedgeBlock(Loop *L);
 | |
| 
 | |
|     void UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
 | |
|                                          std::vector<BasicBlock*> &PredBlocks);
 | |
|   };
 | |
| 
 | |
|   RegisterOpt<LoopSimplify>
 | |
|   X("loopsimplify", "Canonicalize natural loops", true);
 | |
| }
 | |
| 
 | |
| // Publically exposed interface to pass...
 | |
| const PassInfo *llvm::LoopSimplifyID = X.getPassInfo();
 | |
| FunctionPass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
 | |
| 
 | |
| /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
 | |
| /// it in any convenient order) inserting preheaders...
 | |
| ///
 | |
| bool LoopSimplify::runOnFunction(Function &F) {
 | |
|   bool Changed = false;
 | |
|   LoopInfo &LI = getAnalysis<LoopInfo>();
 | |
|   AA = getAnalysisToUpdate<AliasAnalysis>();
 | |
| 
 | |
|   for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
 | |
|     Changed |= ProcessLoop(*I);
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ProcessLoop - Walk the loop structure in depth first order, ensuring that
 | |
| /// all loops have preheaders.
 | |
| ///
 | |
| bool LoopSimplify::ProcessLoop(Loop *L) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // Check to see that no blocks (other than the header) in the loop have
 | |
|   // predecessors that are not in the loop.  This is not valid for natural
 | |
|   // loops, but can occur if the blocks are unreachable.  Since they are
 | |
|   // unreachable we can just shamelessly destroy their terminators to make them
 | |
|   // not branch into the loop!
 | |
|   assert(L->getBlocks()[0] == L->getHeader() &&
 | |
|          "Header isn't first block in loop?");
 | |
|   for (unsigned i = 1, e = L->getBlocks().size(); i != e; ++i) {
 | |
|     BasicBlock *LoopBB = L->getBlocks()[i];
 | |
|   Retry:
 | |
|     for (pred_iterator PI = pred_begin(LoopBB), E = pred_end(LoopBB);
 | |
|          PI != E; ++PI)
 | |
|       if (!L->contains(*PI)) {
 | |
|         // This predecessor is not in the loop.  Kill its terminator!
 | |
|         BasicBlock *DeadBlock = *PI;
 | |
|         for (succ_iterator SI = succ_begin(DeadBlock), E = succ_end(DeadBlock);
 | |
|              SI != E; ++SI)
 | |
|           (*SI)->removePredecessor(DeadBlock);  // Remove PHI node entries
 | |
| 
 | |
|         // Delete the dead terminator.
 | |
|         if (AA) AA->deleteValue(&DeadBlock->back());
 | |
|         DeadBlock->getInstList().pop_back();
 | |
| 
 | |
|         Value *RetVal = 0;
 | |
|         if (LoopBB->getParent()->getReturnType() != Type::VoidTy)
 | |
|           RetVal = Constant::getNullValue(LoopBB->getParent()->getReturnType());
 | |
|         new ReturnInst(RetVal, DeadBlock);
 | |
|         goto Retry;  // We just invalidated the pred_iterator.  Retry.
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // Does the loop already have a preheader?  If so, don't modify the loop...
 | |
|   if (L->getLoopPreheader() == 0) {
 | |
|     InsertPreheaderForLoop(L);
 | |
|     NumInserted++;
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   // Next, check to make sure that all exit nodes of the loop only have
 | |
|   // predecessors that are inside of the loop.  This check guarantees that the
 | |
|   // loop preheader/header will dominate the exit blocks.  If the exit block has
 | |
|   // predecessors from outside of the loop, split the edge now.
 | |
|   std::vector<BasicBlock*> ExitBlocks;
 | |
|   L->getExitBlocks(ExitBlocks);
 | |
| 
 | |
|   SetVector<BasicBlock*> ExitBlockSet(ExitBlocks.begin(), ExitBlocks.end());
 | |
|   for (SetVector<BasicBlock*>::iterator I = ExitBlockSet.begin(),
 | |
|          E = ExitBlockSet.end(); I != E; ++I) {
 | |
|     BasicBlock *ExitBlock = *I;
 | |
|     for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
 | |
|          PI != PE; ++PI)
 | |
|       if (!L->contains(*PI)) {
 | |
|         RewriteLoopExitBlock(L, ExitBlock);
 | |
|         NumInserted++;
 | |
|         Changed = true;
 | |
|         break;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // If the header has more than two predecessors at this point (from the
 | |
|   // preheader and from multiple backedges), we must adjust the loop.
 | |
|   if (L->getNumBackEdges() != 1) {
 | |
|     // If this is really a nested loop, rip it out into a child loop.
 | |
|     if (Loop *NL = SeparateNestedLoop(L)) {
 | |
|       ++NumNested;
 | |
|       // This is a big restructuring change, reprocess the whole loop.
 | |
|       ProcessLoop(NL);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     InsertUniqueBackedgeBlock(L);
 | |
|     NumInserted++;
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
 | |
|     Changed |= ProcessLoop(*I);
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// SplitBlockPredecessors - Split the specified block into two blocks.  We want
 | |
| /// to move the predecessors specified in the Preds list to point to the new
 | |
| /// block, leaving the remaining predecessors pointing to BB.  This method
 | |
| /// updates the SSA PHINode's, but no other analyses.
 | |
| ///
 | |
| BasicBlock *LoopSimplify::SplitBlockPredecessors(BasicBlock *BB,
 | |
|                                                  const char *Suffix,
 | |
|                                        const std::vector<BasicBlock*> &Preds) {
 | |
|   
 | |
|   // Create new basic block, insert right before the original block...
 | |
|   BasicBlock *NewBB = new BasicBlock(BB->getName()+Suffix, BB->getParent(), BB);
 | |
| 
 | |
|   // The preheader first gets an unconditional branch to the loop header...
 | |
|   BranchInst *BI = new BranchInst(BB, NewBB);
 | |
|   
 | |
|   // For every PHI node in the block, insert a PHI node into NewBB where the
 | |
|   // incoming values from the out of loop edges are moved to NewBB.  We have two
 | |
|   // possible cases here.  If the loop is dead, we just insert dummy entries
 | |
|   // into the PHI nodes for the new edge.  If the loop is not dead, we move the
 | |
|   // incoming edges in BB into new PHI nodes in NewBB.
 | |
|   //
 | |
|   if (!Preds.empty()) {  // Is the loop not obviously dead?
 | |
|     // Check to see if the values being merged into the new block need PHI
 | |
|     // nodes.  If so, insert them.
 | |
|     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) {
 | |
|       PHINode *PN = cast<PHINode>(I);
 | |
|       ++I;
 | |
| 
 | |
|       // Check to see if all of the values coming in are the same.  If so, we
 | |
|       // don't need to create a new PHI node.
 | |
|       Value *InVal = PN->getIncomingValueForBlock(Preds[0]);
 | |
|       for (unsigned i = 1, e = Preds.size(); i != e; ++i)
 | |
|         if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
 | |
|           InVal = 0;
 | |
|           break;
 | |
|         }
 | |
|       
 | |
|       // If the values coming into the block are not the same, we need a PHI.
 | |
|       if (InVal == 0) {
 | |
|         // Create the new PHI node, insert it into NewBB at the end of the block
 | |
|         PHINode *NewPHI = new PHINode(PN->getType(), PN->getName()+".ph", BI);
 | |
|         if (AA) AA->copyValue(PN, NewPHI);
 | |
|         
 | |
|         // Move all of the edges from blocks outside the loop to the new PHI
 | |
|         for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
 | |
|           Value *V = PN->removeIncomingValue(Preds[i], false);
 | |
|           NewPHI->addIncoming(V, Preds[i]);
 | |
|         }
 | |
|         InVal = NewPHI;
 | |
|       } else {
 | |
|         // Remove all of the edges coming into the PHI nodes from outside of the
 | |
|         // block.
 | |
|         for (unsigned i = 0, e = Preds.size(); i != e; ++i)
 | |
|           PN->removeIncomingValue(Preds[i], false);
 | |
|       }
 | |
| 
 | |
|       // Add an incoming value to the PHI node in the loop for the preheader
 | |
|       // edge.
 | |
|       PN->addIncoming(InVal, NewBB);
 | |
| 
 | |
|       // Can we eliminate this phi node now?
 | |
|       if (Value *V = hasConstantValue(PN)) {
 | |
|         if (!isa<Instruction>(V) ||
 | |
|             getAnalysis<DominatorSet>().dominates(cast<Instruction>(V), PN)) {
 | |
|           PN->replaceAllUsesWith(V);
 | |
|           if (AA) AA->deleteValue(PN);
 | |
|           BB->getInstList().erase(PN);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Now that the PHI nodes are updated, actually move the edges from
 | |
|     // Preds to point to NewBB instead of BB.
 | |
|     //
 | |
|     for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
 | |
|       TerminatorInst *TI = Preds[i]->getTerminator();
 | |
|       for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s)
 | |
|         if (TI->getSuccessor(s) == BB)
 | |
|           TI->setSuccessor(s, NewBB);
 | |
|     }
 | |
|     
 | |
|   } else {                       // Otherwise the loop is dead...
 | |
|     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) {
 | |
|       PHINode *PN = cast<PHINode>(I);
 | |
|       // Insert dummy values as the incoming value...
 | |
|       PN->addIncoming(Constant::getNullValue(PN->getType()), NewBB);
 | |
|     }
 | |
|   }  
 | |
|   return NewBB;
 | |
| }
 | |
| 
 | |
| /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
 | |
| /// preheader, this method is called to insert one.  This method has two phases:
 | |
| /// preheader insertion and analysis updating.
 | |
| ///
 | |
| void LoopSimplify::InsertPreheaderForLoop(Loop *L) {
 | |
|   BasicBlock *Header = L->getHeader();
 | |
| 
 | |
|   // Compute the set of predecessors of the loop that are not in the loop.
 | |
|   std::vector<BasicBlock*> OutsideBlocks;
 | |
|   for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
 | |
|        PI != PE; ++PI)
 | |
|       if (!L->contains(*PI))           // Coming in from outside the loop?
 | |
|         OutsideBlocks.push_back(*PI);  // Keep track of it...
 | |
|   
 | |
|   // Split out the loop pre-header
 | |
|   BasicBlock *NewBB =
 | |
|     SplitBlockPredecessors(Header, ".preheader", OutsideBlocks);
 | |
|   
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   //  Update analysis results now that we have performed the transformation
 | |
|   //
 | |
|   
 | |
|   // We know that we have loop information to update... update it now.
 | |
|   if (Loop *Parent = L->getParentLoop())
 | |
|     Parent->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
 | |
| 
 | |
|   // If the header for the loop used to be an exit node for another loop, then
 | |
|   // we need to update this to know that the loop-preheader is now the exit
 | |
|   // node.  Note that the only loop that could have our header as an exit node
 | |
|   // is a sibling loop, ie, one with the same parent loop, or one if it's
 | |
|   // children.
 | |
|   //
 | |
|   LoopInfo::iterator ParentLoops, ParentLoopsE;
 | |
|   if (Loop *Parent = L->getParentLoop()) {
 | |
|     ParentLoops = Parent->begin();
 | |
|     ParentLoopsE = Parent->end();
 | |
|   } else {      // Must check top-level loops...
 | |
|     ParentLoops = getAnalysis<LoopInfo>().begin();
 | |
|     ParentLoopsE = getAnalysis<LoopInfo>().end();
 | |
|   }
 | |
| 
 | |
|   DominatorSet &DS = getAnalysis<DominatorSet>();  // Update dominator info
 | |
|   DominatorTree &DT = getAnalysis<DominatorTree>();
 | |
|     
 | |
| 
 | |
|   // Update the dominator tree information.
 | |
|   // The immediate dominator of the preheader is the immediate dominator of
 | |
|   // the old header.
 | |
|   DominatorTree::Node *PHDomTreeNode =
 | |
|     DT.createNewNode(NewBB, DT.getNode(Header)->getIDom());
 | |
| 
 | |
|   // Change the header node so that PNHode is the new immediate dominator
 | |
|   DT.changeImmediateDominator(DT.getNode(Header), PHDomTreeNode);
 | |
| 
 | |
|   {
 | |
|     // The blocks that dominate NewBB are the blocks that dominate Header,
 | |
|     // minus Header, plus NewBB.
 | |
|     DominatorSet::DomSetType DomSet = DS.getDominators(Header);
 | |
|     DomSet.erase(Header);  // Header does not dominate us...
 | |
|     DS.addBasicBlock(NewBB, DomSet);
 | |
| 
 | |
|     // The newly created basic block dominates all nodes dominated by Header.
 | |
|     for (df_iterator<DominatorTree::Node*> DFI = df_begin(PHDomTreeNode),
 | |
|            E = df_end(PHDomTreeNode); DFI != E; ++DFI)
 | |
|       DS.addDominator((*DFI)->getBlock(), NewBB);
 | |
|   }
 | |
|   
 | |
|   // Update immediate dominator information if we have it...
 | |
|   if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
 | |
|     // Whatever i-dominated the header node now immediately dominates NewBB
 | |
|     ID->addNewBlock(NewBB, ID->get(Header));
 | |
|     
 | |
|     // The preheader now is the immediate dominator for the header node...
 | |
|     ID->setImmediateDominator(Header, NewBB);
 | |
|   }
 | |
|   
 | |
|   // Update dominance frontier information...
 | |
|   if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
 | |
|     // The DF(NewBB) is just (DF(Header)-Header), because NewBB dominates
 | |
|     // everything that Header does, and it strictly dominates Header in
 | |
|     // addition.
 | |
|     assert(DF->find(Header) != DF->end() && "Header node doesn't have DF set?");
 | |
|     DominanceFrontier::DomSetType NewDFSet = DF->find(Header)->second;
 | |
|     NewDFSet.erase(Header);
 | |
|     DF->addBasicBlock(NewBB, NewDFSet);
 | |
| 
 | |
|     // Now we must loop over all of the dominance frontiers in the function,
 | |
|     // replacing occurrences of Header with NewBB in some cases.  If a block
 | |
|     // dominates a (now) predecessor of NewBB, but did not strictly dominate
 | |
|     // Header, it will have Header in it's DF set, but should now have NewBB in
 | |
|     // its set.
 | |
|     for (unsigned i = 0, e = OutsideBlocks.size(); i != e; ++i) {
 | |
|       // Get all of the dominators of the predecessor...
 | |
|       const DominatorSet::DomSetType &PredDoms =
 | |
|         DS.getDominators(OutsideBlocks[i]);
 | |
|       for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
 | |
|              PDE = PredDoms.end(); PDI != PDE; ++PDI) {
 | |
|         BasicBlock *PredDom = *PDI;
 | |
|         // If the loop header is in DF(PredDom), then PredDom didn't dominate
 | |
|         // the header but did dominate a predecessor outside of the loop.  Now
 | |
|         // we change this entry to include the preheader in the DF instead of
 | |
|         // the header.
 | |
|         DominanceFrontier::iterator DFI = DF->find(PredDom);
 | |
|         assert(DFI != DF->end() && "No dominance frontier for node?");
 | |
|         if (DFI->second.count(Header)) {
 | |
|           DF->removeFromFrontier(DFI, Header);
 | |
|           DF->addToFrontier(DFI, NewBB);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
 | |
| /// blocks.  This method is used to split exit blocks that have predecessors
 | |
| /// outside of the loop.
 | |
| BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
 | |
|   DominatorSet &DS = getAnalysis<DominatorSet>();
 | |
|   
 | |
|   std::vector<BasicBlock*> LoopBlocks;
 | |
|   for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I)
 | |
|     if (L->contains(*I))
 | |
|       LoopBlocks.push_back(*I);
 | |
| 
 | |
|   assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
 | |
|   BasicBlock *NewBB = SplitBlockPredecessors(Exit, ".loopexit", LoopBlocks);
 | |
| 
 | |
|   // Update Loop Information - we know that the new block will be in the parent
 | |
|   // loop of L.
 | |
|   if (Loop *Parent = L->getParentLoop())
 | |
|     Parent->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
 | |
| 
 | |
|   // Update dominator information (set, immdom, domtree, and domfrontier)
 | |
|   UpdateDomInfoForRevectoredPreds(NewBB, LoopBlocks);
 | |
|   return NewBB;
 | |
| }
 | |
| 
 | |
| /// AddBlockAndPredsToSet - Add the specified block, and all of its
 | |
| /// predecessors, to the specified set, if it's not already in there.  Stop
 | |
| /// predecessor traversal when we reach StopBlock.
 | |
| static void AddBlockAndPredsToSet(BasicBlock *BB, BasicBlock *StopBlock,
 | |
|                                   std::set<BasicBlock*> &Blocks) {
 | |
|   if (!Blocks.insert(BB).second) return;  // already processed.
 | |
|   if (BB == StopBlock) return;  // Stop here!
 | |
| 
 | |
|   for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I)
 | |
|     AddBlockAndPredsToSet(*I, StopBlock, Blocks);
 | |
| }
 | |
| 
 | |
| /// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
 | |
| /// PHI node that tells us how to partition the loops.
 | |
| static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorSet &DS,
 | |
|                                         AliasAnalysis *AA) {
 | |
|   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
 | |
|     PHINode *PN = cast<PHINode>(I);
 | |
|     ++I;
 | |
|     if (Value *V = hasConstantValue(PN))
 | |
|       if (!isa<Instruction>(V) || DS.dominates(cast<Instruction>(V), PN)) {
 | |
|         // This is a degenerate PHI already, don't modify it!
 | |
|         PN->replaceAllUsesWith(V);
 | |
|         if (AA) AA->deleteValue(PN);
 | |
|         PN->eraseFromParent();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|     // Scan this PHI node looking for a use of the PHI node by itself.
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|       if (PN->getIncomingValue(i) == PN &&
 | |
|           L->contains(PN->getIncomingBlock(i)))
 | |
|         // We found something tasty to remove.
 | |
|         return PN;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
 | |
| /// them out into a nested loop.  This is important for code that looks like
 | |
| /// this:
 | |
| ///
 | |
| ///  Loop:
 | |
| ///     ...
 | |
| ///     br cond, Loop, Next
 | |
| ///     ...
 | |
| ///     br cond2, Loop, Out
 | |
| ///
 | |
| /// To identify this common case, we look at the PHI nodes in the header of the
 | |
| /// loop.  PHI nodes with unchanging values on one backedge correspond to values
 | |
| /// that change in the "outer" loop, but not in the "inner" loop.
 | |
| ///
 | |
| /// If we are able to separate out a loop, return the new outer loop that was
 | |
| /// created.
 | |
| ///
 | |
| Loop *LoopSimplify::SeparateNestedLoop(Loop *L) {
 | |
|   PHINode *PN = FindPHIToPartitionLoops(L, getAnalysis<DominatorSet>(), AA);
 | |
|   if (PN == 0) return 0;  // No known way to partition.
 | |
| 
 | |
|   // Pull out all predecessors that have varying values in the loop.  This
 | |
|   // handles the case when a PHI node has multiple instances of itself as
 | |
|   // arguments.
 | |
|   std::vector<BasicBlock*> OuterLoopPreds;
 | |
|   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|     if (PN->getIncomingValue(i) != PN ||
 | |
|         !L->contains(PN->getIncomingBlock(i)))
 | |
|       OuterLoopPreds.push_back(PN->getIncomingBlock(i));
 | |
| 
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   BasicBlock *NewBB = SplitBlockPredecessors(Header, ".outer", OuterLoopPreds);
 | |
| 
 | |
|   // Update dominator information (set, immdom, domtree, and domfrontier)
 | |
|   UpdateDomInfoForRevectoredPreds(NewBB, OuterLoopPreds);
 | |
| 
 | |
|   // Create the new outer loop.
 | |
|   Loop *NewOuter = new Loop();
 | |
| 
 | |
|   LoopInfo &LI = getAnalysis<LoopInfo>();
 | |
| 
 | |
|   // Change the parent loop to use the outer loop as its child now.
 | |
|   if (Loop *Parent = L->getParentLoop())
 | |
|     Parent->replaceChildLoopWith(L, NewOuter);
 | |
|   else
 | |
|     LI.changeTopLevelLoop(L, NewOuter);
 | |
| 
 | |
|   // This block is going to be our new header block: add it to this loop and all
 | |
|   // parent loops.
 | |
|   NewOuter->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
 | |
| 
 | |
|   // L is now a subloop of our outer loop.
 | |
|   NewOuter->addChildLoop(L);
 | |
| 
 | |
|   for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
 | |
|     NewOuter->addBlockEntry(L->getBlocks()[i]);
 | |
| 
 | |
|   // Determine which blocks should stay in L and which should be moved out to
 | |
|   // the Outer loop now.
 | |
|   DominatorSet &DS = getAnalysis<DominatorSet>();
 | |
|   std::set<BasicBlock*> BlocksInL;
 | |
|   for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); PI!=E; ++PI)
 | |
|     if (DS.dominates(Header, *PI))
 | |
|       AddBlockAndPredsToSet(*PI, Header, BlocksInL);
 | |
| 
 | |
| 
 | |
|   // Scan all of the loop children of L, moving them to OuterLoop if they are
 | |
|   // not part of the inner loop.
 | |
|   for (Loop::iterator I = L->begin(); I != L->end(); )
 | |
|     if (BlocksInL.count((*I)->getHeader()))
 | |
|       ++I;   // Loop remains in L
 | |
|     else
 | |
|       NewOuter->addChildLoop(L->removeChildLoop(I));
 | |
| 
 | |
|   // Now that we know which blocks are in L and which need to be moved to
 | |
|   // OuterLoop, move any blocks that need it.
 | |
|   for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
 | |
|     BasicBlock *BB = L->getBlocks()[i];
 | |
|     if (!BlocksInL.count(BB)) {
 | |
|       // Move this block to the parent, updating the exit blocks sets
 | |
|       L->removeBlockFromLoop(BB);
 | |
|       if (LI[BB] == L)
 | |
|         LI.changeLoopFor(BB, NewOuter);
 | |
|       --i;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return NewOuter;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// InsertUniqueBackedgeBlock - This method is called when the specified loop
 | |
| /// has more than one backedge in it.  If this occurs, revector all of these
 | |
| /// backedges to target a new basic block and have that block branch to the loop
 | |
| /// header.  This ensures that loops have exactly one backedge.
 | |
| ///
 | |
| void LoopSimplify::InsertUniqueBackedgeBlock(Loop *L) {
 | |
|   assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
 | |
| 
 | |
|   // Get information about the loop
 | |
|   BasicBlock *Preheader = L->getLoopPreheader();
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   Function *F = Header->getParent();
 | |
| 
 | |
|   // Figure out which basic blocks contain back-edges to the loop header.
 | |
|   std::vector<BasicBlock*> BackedgeBlocks;
 | |
|   for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I)
 | |
|     if (*I != Preheader) BackedgeBlocks.push_back(*I);
 | |
| 
 | |
|   // Create and insert the new backedge block...
 | |
|   BasicBlock *BEBlock = new BasicBlock(Header->getName()+".backedge", F);
 | |
|   BranchInst *BETerminator = new BranchInst(Header, BEBlock);
 | |
| 
 | |
|   // Move the new backedge block to right after the last backedge block.
 | |
|   Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
 | |
|   F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
 | |
|   
 | |
|   // Now that the block has been inserted into the function, create PHI nodes in
 | |
|   // the backedge block which correspond to any PHI nodes in the header block.
 | |
|   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
 | |
|     PHINode *PN = cast<PHINode>(I);
 | |
|     PHINode *NewPN = new PHINode(PN->getType(), PN->getName()+".be",
 | |
|                                  BETerminator);
 | |
|     NewPN->reserveOperandSpace(BackedgeBlocks.size());
 | |
|     if (AA) AA->copyValue(PN, NewPN);
 | |
| 
 | |
|     // Loop over the PHI node, moving all entries except the one for the
 | |
|     // preheader over to the new PHI node.
 | |
|     unsigned PreheaderIdx = ~0U;
 | |
|     bool HasUniqueIncomingValue = true;
 | |
|     Value *UniqueValue = 0;
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|       BasicBlock *IBB = PN->getIncomingBlock(i);
 | |
|       Value *IV = PN->getIncomingValue(i);
 | |
|       if (IBB == Preheader) {
 | |
|         PreheaderIdx = i;
 | |
|       } else {
 | |
|         NewPN->addIncoming(IV, IBB);
 | |
|         if (HasUniqueIncomingValue) {
 | |
|           if (UniqueValue == 0)
 | |
|             UniqueValue = IV;
 | |
|           else if (UniqueValue != IV)
 | |
|             HasUniqueIncomingValue = false;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|       
 | |
|     // Delete all of the incoming values from the old PN except the preheader's
 | |
|     assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
 | |
|     if (PreheaderIdx != 0) {
 | |
|       PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
 | |
|       PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
 | |
|     }
 | |
|     // Nuke all entries except the zero'th.
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
 | |
|       PN->removeIncomingValue(e-i, false);
 | |
| 
 | |
|     // Finally, add the newly constructed PHI node as the entry for the BEBlock.
 | |
|     PN->addIncoming(NewPN, BEBlock);
 | |
| 
 | |
|     // As an optimization, if all incoming values in the new PhiNode (which is a
 | |
|     // subset of the incoming values of the old PHI node) have the same value,
 | |
|     // eliminate the PHI Node.
 | |
|     if (HasUniqueIncomingValue) {
 | |
|       NewPN->replaceAllUsesWith(UniqueValue);
 | |
|       if (AA) AA->deleteValue(NewPN);
 | |
|       BEBlock->getInstList().erase(NewPN);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now that all of the PHI nodes have been inserted and adjusted, modify the
 | |
|   // backedge blocks to just to the BEBlock instead of the header.
 | |
|   for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
 | |
|     TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
 | |
|     for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
 | |
|       if (TI->getSuccessor(Op) == Header)
 | |
|         TI->setSuccessor(Op, BEBlock);
 | |
|   }
 | |
| 
 | |
|   //===--- Update all analyses which we must preserve now -----------------===//
 | |
| 
 | |
|   // Update Loop Information - we know that this block is now in the current
 | |
|   // loop and all parent loops.
 | |
|   L->addBasicBlockToLoop(BEBlock, getAnalysis<LoopInfo>());
 | |
| 
 | |
|   // Update dominator information (set, immdom, domtree, and domfrontier)
 | |
|   UpdateDomInfoForRevectoredPreds(BEBlock, BackedgeBlocks);
 | |
| }
 | |
| 
 | |
| /// UpdateDomInfoForRevectoredPreds - This method is used to update the four
 | |
| /// different kinds of dominator information (dominator sets, immediate
 | |
| /// dominators, dominator trees, and dominance frontiers) after a new block has
 | |
| /// been added to the CFG.
 | |
| ///
 | |
| /// This only supports the case when an existing block (known as "NewBBSucc"),
 | |
| /// had some of its predecessors factored into a new basic block.  This
 | |
| /// transformation inserts a new basic block ("NewBB"), with a single
 | |
| /// unconditional branch to NewBBSucc, and moves some predecessors of
 | |
| /// "NewBBSucc" to now branch to NewBB.  These predecessors are listed in
 | |
| /// PredBlocks, even though they are the same as
 | |
| /// pred_begin(NewBB)/pred_end(NewBB).
 | |
| ///
 | |
| void LoopSimplify::UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
 | |
|                                          std::vector<BasicBlock*> &PredBlocks) {
 | |
|   assert(!PredBlocks.empty() && "No predblocks??");
 | |
|   assert(succ_begin(NewBB) != succ_end(NewBB) &&
 | |
|          ++succ_begin(NewBB) == succ_end(NewBB) &&
 | |
|          "NewBB should have a single successor!");
 | |
|   BasicBlock *NewBBSucc = *succ_begin(NewBB);
 | |
|   DominatorSet &DS = getAnalysis<DominatorSet>();
 | |
| 
 | |
|   // Update dominator information...  The blocks that dominate NewBB are the
 | |
|   // intersection of the dominators of predecessors, plus the block itself.
 | |
|   //
 | |
|   DominatorSet::DomSetType NewBBDomSet = DS.getDominators(PredBlocks[0]);
 | |
|   for (unsigned i = 1, e = PredBlocks.size(); i != e; ++i)
 | |
|     set_intersect(NewBBDomSet, DS.getDominators(PredBlocks[i]));
 | |
|   NewBBDomSet.insert(NewBB);  // All blocks dominate themselves...
 | |
|   DS.addBasicBlock(NewBB, NewBBDomSet);
 | |
| 
 | |
|   // The newly inserted basic block will dominate existing basic blocks iff the
 | |
|   // PredBlocks dominate all of the non-pred blocks.  If all predblocks dominate
 | |
|   // the non-pred blocks, then they all must be the same block!
 | |
|   //
 | |
|   bool NewBBDominatesNewBBSucc = true;
 | |
|   {
 | |
|     BasicBlock *OnePred = PredBlocks[0];
 | |
|     for (unsigned i = 1, e = PredBlocks.size(); i != e; ++i)
 | |
|       if (PredBlocks[i] != OnePred) {
 | |
|         NewBBDominatesNewBBSucc = false;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|     if (NewBBDominatesNewBBSucc)
 | |
|       for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc);
 | |
|            PI != E; ++PI)
 | |
|         if (*PI != NewBB && !DS.dominates(NewBBSucc, *PI)) {
 | |
|           NewBBDominatesNewBBSucc = false;
 | |
|           break;
 | |
|         }
 | |
|   }
 | |
| 
 | |
|   // The other scenario where the new block can dominate its successors are when
 | |
|   // all predecessors of NewBBSucc that are not NewBB are dominated by NewBBSucc
 | |
|   // already.
 | |
|   if (!NewBBDominatesNewBBSucc) {
 | |
|     NewBBDominatesNewBBSucc = true;
 | |
|     for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc);
 | |
|          PI != E; ++PI)
 | |
|       if (*PI != NewBB && !DS.dominates(NewBBSucc, *PI)) {
 | |
|         NewBBDominatesNewBBSucc = false;
 | |
|         break;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // If NewBB dominates some blocks, then it will dominate all blocks that
 | |
|   // NewBBSucc does.
 | |
|   if (NewBBDominatesNewBBSucc) {
 | |
|     BasicBlock *PredBlock = PredBlocks[0];
 | |
|     Function *F = NewBB->getParent();
 | |
|     for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
 | |
|       if (DS.dominates(NewBBSucc, I))
 | |
|         DS.addDominator(I, NewBB);
 | |
|   }
 | |
| 
 | |
|   // Update immediate dominator information if we have it...
 | |
|   BasicBlock *NewBBIDom = 0;
 | |
|   if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
 | |
|     // To find the immediate dominator of the new exit node, we trace up the
 | |
|     // immediate dominators of a predecessor until we find a basic block that
 | |
|     // dominates the exit block.
 | |
|     //
 | |
|     BasicBlock *Dom = PredBlocks[0];  // Some random predecessor...
 | |
|     while (!NewBBDomSet.count(Dom)) {  // Loop until we find a dominator...
 | |
|       assert(Dom != 0 && "No shared dominator found???");
 | |
|       Dom = ID->get(Dom);
 | |
|     }
 | |
| 
 | |
|     // Set the immediate dominator now...
 | |
|     ID->addNewBlock(NewBB, Dom);
 | |
|     NewBBIDom = Dom;   // Reuse this if calculating DominatorTree info...
 | |
| 
 | |
|     // If NewBB strictly dominates other blocks, we need to update their idom's
 | |
|     // now.  The only block that need adjustment is the NewBBSucc block, whose
 | |
|     // idom should currently be set to PredBlocks[0].
 | |
|     if (NewBBDominatesNewBBSucc)
 | |
|       ID->setImmediateDominator(NewBBSucc, NewBB);
 | |
|   }
 | |
| 
 | |
|   // Update DominatorTree information if it is active.
 | |
|   if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>()) {
 | |
|     // If we don't have ImmediateDominator info around, calculate the idom as
 | |
|     // above.
 | |
|     DominatorTree::Node *NewBBIDomNode;
 | |
|     if (NewBBIDom) {
 | |
|       NewBBIDomNode = DT->getNode(NewBBIDom);
 | |
|     } else {
 | |
|       NewBBIDomNode = DT->getNode(PredBlocks[0]); // Random pred
 | |
|       while (!NewBBDomSet.count(NewBBIDomNode->getBlock())) {
 | |
|         NewBBIDomNode = NewBBIDomNode->getIDom();
 | |
|         assert(NewBBIDomNode && "No shared dominator found??");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Create the new dominator tree node... and set the idom of NewBB.
 | |
|     DominatorTree::Node *NewBBNode = DT->createNewNode(NewBB, NewBBIDomNode);
 | |
| 
 | |
|     // If NewBB strictly dominates other blocks, then it is now the immediate
 | |
|     // dominator of NewBBSucc.  Update the dominator tree as appropriate.
 | |
|     if (NewBBDominatesNewBBSucc) {
 | |
|       DominatorTree::Node *NewBBSuccNode = DT->getNode(NewBBSucc);
 | |
|       DT->changeImmediateDominator(NewBBSuccNode, NewBBNode);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update dominance frontier information...
 | |
|   if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
 | |
|     // If NewBB dominates NewBBSucc, then DF(NewBB) is now going to be the
 | |
|     // DF(PredBlocks[0]) without the stuff that the new block does not dominate
 | |
|     // a predecessor of.
 | |
|     if (NewBBDominatesNewBBSucc) {
 | |
|       DominanceFrontier::iterator DFI = DF->find(PredBlocks[0]);
 | |
|       if (DFI != DF->end()) {
 | |
|         DominanceFrontier::DomSetType Set = DFI->second;
 | |
|         // Filter out stuff in Set that we do not dominate a predecessor of.
 | |
|         for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
 | |
|                E = Set.end(); SetI != E;) {
 | |
|           bool DominatesPred = false;
 | |
|           for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI);
 | |
|                PI != E; ++PI)
 | |
|             if (DS.dominates(NewBB, *PI))
 | |
|               DominatesPred = true;
 | |
|           if (!DominatesPred)
 | |
|             Set.erase(SetI++);
 | |
|           else
 | |
|             ++SetI;
 | |
|         }
 | |
| 
 | |
|         DF->addBasicBlock(NewBB, Set);
 | |
|       }
 | |
| 
 | |
|     } else {
 | |
|       // DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate
 | |
|       // NewBBSucc, but it does dominate itself (and there is an edge (NewBB ->
 | |
|       // NewBBSucc)).  NewBBSucc is the single successor of NewBB.
 | |
|       DominanceFrontier::DomSetType NewDFSet;
 | |
|       NewDFSet.insert(NewBBSucc);
 | |
|       DF->addBasicBlock(NewBB, NewDFSet);
 | |
|     }
 | |
| 
 | |
|     // Now we must loop over all of the dominance frontiers in the function,
 | |
|     // replacing occurrences of NewBBSucc with NewBB in some cases.  All
 | |
|     // blocks that dominate a block in PredBlocks and contained NewBBSucc in
 | |
|     // their dominance frontier must be updated to contain NewBB instead.
 | |
|     //
 | |
|     for (unsigned i = 0, e = PredBlocks.size(); i != e; ++i) {
 | |
|       BasicBlock *Pred = PredBlocks[i];
 | |
|       // Get all of the dominators of the predecessor...
 | |
|       const DominatorSet::DomSetType &PredDoms = DS.getDominators(Pred);
 | |
|       for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
 | |
|              PDE = PredDoms.end(); PDI != PDE; ++PDI) {
 | |
|         BasicBlock *PredDom = *PDI;
 | |
|         
 | |
|         // If the NewBBSucc node is in DF(PredDom), then PredDom didn't
 | |
|         // dominate NewBBSucc but did dominate a predecessor of it.  Now we
 | |
|         // change this entry to include NewBB in the DF instead of NewBBSucc.
 | |
|         DominanceFrontier::iterator DFI = DF->find(PredDom);
 | |
|         assert(DFI != DF->end() && "No dominance frontier for node?");
 | |
|         if (DFI->second.count(NewBBSucc)) {
 | |
|           // If NewBBSucc should not stay in our dominator frontier, remove it.
 | |
|           // We remove it unless there is a predecessor of NewBBSucc that we
 | |
|           // dominate, but we don't strictly dominate NewBBSucc.
 | |
|           bool ShouldRemove = true;
 | |
|           if (PredDom == NewBBSucc || !DS.dominates(PredDom, NewBBSucc)) {
 | |
|             // Okay, we know that PredDom does not strictly dominate NewBBSucc.
 | |
|             // Check to see if it dominates any predecessors of NewBBSucc.
 | |
|             for (pred_iterator PI = pred_begin(NewBBSucc),
 | |
|                    E = pred_end(NewBBSucc); PI != E; ++PI)
 | |
|               if (DS.dominates(PredDom, *PI)) {
 | |
|                 ShouldRemove = false;
 | |
|                 break;
 | |
|               }
 | |
|           }
 | |
|             
 | |
|           if (ShouldRemove)
 | |
|             DF->removeFromFrontier(DFI, NewBBSucc);
 | |
|           DF->addToFrontier(DFI, NewBB);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 |