mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@7209 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1335 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1335 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- Writer.cpp - Library for converting LLVM code to C ----------------===//
 | |
| //
 | |
| // This library converts LLVM code to C code, compilable by GCC.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Assembly/CWriter.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/SymbolTable.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/SlotCalculator.h"
 | |
| #include "llvm/Analysis/FindUsedTypes.h"
 | |
| #include "llvm/Analysis/ConstantsScanner.h"
 | |
| #include "llvm/Support/InstVisitor.h"
 | |
| #include "llvm/Support/InstIterator.h"
 | |
| #include "llvm/Support/CallSite.h"
 | |
| #include "Support/StringExtras.h"
 | |
| #include "Support/STLExtras.h"
 | |
| #include <algorithm>
 | |
| #include <set>
 | |
| #include <sstream>
 | |
| 
 | |
| namespace {
 | |
|   class CWriter : public Pass, public InstVisitor<CWriter> {
 | |
|     std::ostream &Out; 
 | |
|     SlotCalculator *Table;
 | |
|     const Module *TheModule;
 | |
|     std::map<const Type *, std::string> TypeNames;
 | |
|     std::set<const Value*> MangledGlobals;
 | |
|     bool needsMalloc, emittedInvoke;
 | |
| 
 | |
|     std::map<const ConstantFP *, unsigned> FPConstantMap;
 | |
|   public:
 | |
|     CWriter(std::ostream &o) : Out(o) {}
 | |
| 
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesAll();
 | |
|       AU.addRequired<FindUsedTypes>();
 | |
|     }
 | |
| 
 | |
|     virtual bool run(Module &M) {
 | |
|       // Initialize
 | |
|       Table = new SlotCalculator(&M, false);
 | |
|       TheModule = &M;
 | |
| 
 | |
|       // Ensure that all structure types have names...
 | |
|       bool Changed = nameAllUsedStructureTypes(M);
 | |
| 
 | |
|       // Run...
 | |
|       printModule(&M);
 | |
| 
 | |
|       // Free memory...
 | |
|       delete Table;
 | |
|       TypeNames.clear();
 | |
|       MangledGlobals.clear();
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     std::ostream &printType(std::ostream &Out, const Type *Ty,
 | |
|                             const std::string &VariableName = "",
 | |
|                             bool IgnoreName = false, bool namedContext = true);
 | |
| 
 | |
|     void writeOperand(Value *Operand);
 | |
|     void writeOperandInternal(Value *Operand);
 | |
| 
 | |
|     std::string getValueName(const Value *V);
 | |
| 
 | |
|   private :
 | |
|     bool nameAllUsedStructureTypes(Module &M);
 | |
|     void printModule(Module *M);
 | |
|     void printSymbolTable(const SymbolTable &ST);
 | |
|     void printContainedStructs(const Type *Ty, std::set<const StructType *> &);
 | |
|     void printFunctionSignature(const Function *F, bool Prototype);
 | |
| 
 | |
|     void printFunction(Function *);
 | |
| 
 | |
|     void printConstant(Constant *CPV);
 | |
|     void printConstantArray(ConstantArray *CPA);
 | |
| 
 | |
|     // isInlinableInst - Attempt to inline instructions into their uses to build
 | |
|     // trees as much as possible.  To do this, we have to consistently decide
 | |
|     // what is acceptable to inline, so that variable declarations don't get
 | |
|     // printed and an extra copy of the expr is not emitted.
 | |
|     //
 | |
|     static bool isInlinableInst(const Instruction &I) {
 | |
|       // Must be an expression, must be used exactly once.  If it is dead, we
 | |
|       // emit it inline where it would go.
 | |
|       if (I.getType() == Type::VoidTy || I.use_size() != 1 ||
 | |
|           isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) || 
 | |
|           isa<LoadInst>(I)) // Don't inline a load across a store!
 | |
|         return false;
 | |
| 
 | |
|       // Only inline instruction it it's use is in the same BB as the inst.
 | |
|       return I.getParent() == cast<Instruction>(I.use_back())->getParent();
 | |
|     }
 | |
| 
 | |
|     // isDirectAlloca - Define fixed sized allocas in the entry block as direct
 | |
|     // variables which are accessed with the & operator.  This causes GCC to
 | |
|     // generate significantly better code than to emit alloca calls directly.
 | |
|     //
 | |
|     static const AllocaInst *isDirectAlloca(const Value *V) {
 | |
|       const AllocaInst *AI = dyn_cast<AllocaInst>(V);
 | |
|       if (!AI) return false;
 | |
|       if (AI->isArrayAllocation())
 | |
|         return 0;   // FIXME: we can also inline fixed size array allocas!
 | |
|       if (AI->getParent() != &AI->getParent()->getParent()->getEntryNode())
 | |
|         return 0;
 | |
|       return AI;
 | |
|     }
 | |
| 
 | |
|     // Instruction visitation functions
 | |
|     friend class InstVisitor<CWriter>;
 | |
| 
 | |
|     void visitReturnInst(ReturnInst &I);
 | |
|     void visitBranchInst(BranchInst &I);
 | |
|     void visitSwitchInst(SwitchInst &I);
 | |
|     void visitInvokeInst(InvokeInst &I);
 | |
| 
 | |
|     void visitPHINode(PHINode &I);
 | |
|     void visitBinaryOperator(Instruction &I);
 | |
| 
 | |
|     void visitCastInst (CastInst &I);
 | |
|     void visitCallInst (CallInst &I);
 | |
|     void visitCallSite (CallSite CS);
 | |
|     void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); }
 | |
| 
 | |
|     void visitMallocInst(MallocInst &I);
 | |
|     void visitAllocaInst(AllocaInst &I);
 | |
|     void visitFreeInst  (FreeInst   &I);
 | |
|     void visitLoadInst  (LoadInst   &I);
 | |
|     void visitStoreInst (StoreInst  &I);
 | |
|     void visitGetElementPtrInst(GetElementPtrInst &I);
 | |
|     void visitVarArgInst(VarArgInst &I);
 | |
| 
 | |
|     void visitInstruction(Instruction &I) {
 | |
|       std::cerr << "C Writer does not know about " << I;
 | |
|       abort();
 | |
|     }
 | |
| 
 | |
|     void outputLValue(Instruction *I) {
 | |
|       Out << "  " << getValueName(I) << " = ";
 | |
|     }
 | |
|     void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
 | |
|                             unsigned Indent);
 | |
|     void printIndexingExpression(Value *Ptr, User::op_iterator I,
 | |
|                                  User::op_iterator E);
 | |
|   };
 | |
| }
 | |
| 
 | |
| // We dont want identifier names with ., space, -  in them. 
 | |
| // So we replace them with _
 | |
| static std::string makeNameProper(std::string x) {
 | |
|   std::string tmp;
 | |
|   for (std::string::iterator sI = x.begin(), sEnd = x.end(); sI != sEnd; sI++)
 | |
|     switch (*sI) {
 | |
|     case '.': tmp += "d_"; break;
 | |
|     case ' ': tmp += "s_"; break;
 | |
|     case '-': tmp += "D_"; break;
 | |
|     default:  tmp += *sI;
 | |
|     }
 | |
| 
 | |
|   return tmp;
 | |
| }
 | |
| 
 | |
| std::string CWriter::getValueName(const Value *V) {
 | |
|   if (V->hasName()) { // Print out the label if it exists...
 | |
|     
 | |
|     // Name mangling occurs as follows:
 | |
|     // - If V is not a global, mangling always occurs.
 | |
|     // - Otherwise, mangling occurs when any of the following are true:
 | |
|     //   1) V has internal linkage
 | |
|     //   2) V's name would collide if it is not mangled.
 | |
|     //
 | |
|     
 | |
|     if(const GlobalValue* gv = dyn_cast<GlobalValue>(V)) {
 | |
|       if(!gv->hasInternalLinkage() && !MangledGlobals.count(gv)) {
 | |
|         // No internal linkage, name will not collide -> no mangling.
 | |
|         return makeNameProper(gv->getName());
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Non-global, or global with internal linkage / colliding name -> mangle.
 | |
|     return "l" + utostr(V->getType()->getUniqueID()) + "_" +
 | |
|       makeNameProper(V->getName());      
 | |
|   }
 | |
| 
 | |
|   int Slot = Table->getValSlot(V);
 | |
|   assert(Slot >= 0 && "Invalid value!");
 | |
|   return "ltmp_" + itostr(Slot) + "_" + utostr(V->getType()->getUniqueID());
 | |
| }
 | |
| 
 | |
| // A pointer type should not use parens around *'s alone, e.g., (**)
 | |
| inline bool ptrTypeNameNeedsParens(const std::string &NameSoFar) {
 | |
|   return (NameSoFar.find_last_not_of('*') != std::string::npos);
 | |
| }
 | |
| 
 | |
| // Pass the Type* and the variable name and this prints out the variable
 | |
| // declaration.
 | |
| //
 | |
| std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
 | |
|                                  const std::string &NameSoFar,
 | |
|                                  bool IgnoreName, bool namedContext) {
 | |
|   if (Ty->isPrimitiveType())
 | |
|     switch (Ty->getPrimitiveID()) {
 | |
|     case Type::VoidTyID:   return Out << "void "               << NameSoFar;
 | |
|     case Type::BoolTyID:   return Out << "bool "               << NameSoFar;
 | |
|     case Type::UByteTyID:  return Out << "unsigned char "      << NameSoFar;
 | |
|     case Type::SByteTyID:  return Out << "signed char "        << NameSoFar;
 | |
|     case Type::UShortTyID: return Out << "unsigned short "     << NameSoFar;
 | |
|     case Type::ShortTyID:  return Out << "short "              << NameSoFar;
 | |
|     case Type::UIntTyID:   return Out << "unsigned "           << NameSoFar;
 | |
|     case Type::IntTyID:    return Out << "int "                << NameSoFar;
 | |
|     case Type::ULongTyID:  return Out << "unsigned long long " << NameSoFar;
 | |
|     case Type::LongTyID:   return Out << "signed long long "   << NameSoFar;
 | |
|     case Type::FloatTyID:  return Out << "float "              << NameSoFar;
 | |
|     case Type::DoubleTyID: return Out << "double "             << NameSoFar;
 | |
|     default :
 | |
|       std::cerr << "Unknown primitive type: " << Ty << "\n";
 | |
|       abort();
 | |
|     }
 | |
|   
 | |
|   // Check to see if the type is named.
 | |
|   if (!IgnoreName || isa<OpaqueType>(Ty)) {
 | |
|     std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
 | |
|     if (I != TypeNames.end()) {
 | |
|       return Out << I->second << " " << NameSoFar;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   switch (Ty->getPrimitiveID()) {
 | |
|   case Type::FunctionTyID: {
 | |
|     const FunctionType *MTy = cast<FunctionType>(Ty);
 | |
|     std::stringstream FunctionInnards; 
 | |
|     FunctionInnards << " (" << NameSoFar << ") (";
 | |
|     for (FunctionType::ParamTypes::const_iterator
 | |
|            I = MTy->getParamTypes().begin(),
 | |
|            E = MTy->getParamTypes().end(); I != E; ++I) {
 | |
|       if (I != MTy->getParamTypes().begin())
 | |
|         FunctionInnards << ", ";
 | |
|       printType(FunctionInnards, *I, "");
 | |
|     }
 | |
|     if (MTy->isVarArg()) {
 | |
|       if (!MTy->getParamTypes().empty()) 
 | |
|     	FunctionInnards << ", ...";
 | |
|     } else if (MTy->getParamTypes().empty()) {
 | |
|       FunctionInnards << "void";
 | |
|     }
 | |
|     FunctionInnards << ")";
 | |
|     std::string tstr = FunctionInnards.str();
 | |
|     printType(Out, MTy->getReturnType(), tstr);
 | |
|     return Out;
 | |
|   }
 | |
|   case Type::StructTyID: {
 | |
|     const StructType *STy = cast<StructType>(Ty);
 | |
|     Out << NameSoFar + " {\n";
 | |
|     unsigned Idx = 0;
 | |
|     for (StructType::ElementTypes::const_iterator
 | |
|            I = STy->getElementTypes().begin(),
 | |
|            E = STy->getElementTypes().end(); I != E; ++I) {
 | |
|       Out << "  ";
 | |
|       printType(Out, *I, "field" + utostr(Idx++));
 | |
|       Out << ";\n";
 | |
|     }
 | |
|     return Out << "}";
 | |
|   }  
 | |
| 
 | |
|   case Type::PointerTyID: {
 | |
|     const PointerType *PTy = cast<PointerType>(Ty);
 | |
|     std::string ptrName = "*" + NameSoFar;
 | |
| 
 | |
|     // Do not need parens around "* NameSoFar" if NameSoFar consists only
 | |
|     // of zero or more '*' chars *and* this is not an unnamed pointer type
 | |
|     // such as the result type in a cast statement.  Otherwise, enclose in ( ).
 | |
|     if (ptrTypeNameNeedsParens(NameSoFar) || !namedContext || 
 | |
|         PTy->getElementType()->getPrimitiveID() == Type::ArrayTyID)
 | |
|       ptrName = "(" + ptrName + ")";    // 
 | |
| 
 | |
|     return printType(Out, PTy->getElementType(), ptrName);
 | |
|   }
 | |
| 
 | |
|   case Type::ArrayTyID: {
 | |
|     const ArrayType *ATy = cast<ArrayType>(Ty);
 | |
|     unsigned NumElements = ATy->getNumElements();
 | |
|     return printType(Out, ATy->getElementType(),
 | |
|                      NameSoFar + "[" + utostr(NumElements) + "]");
 | |
|   }
 | |
| 
 | |
|   case Type::OpaqueTyID: {
 | |
|     static int Count = 0;
 | |
|     std::string TyName = "struct opaque_" + itostr(Count++);
 | |
|     assert(TypeNames.find(Ty) == TypeNames.end());
 | |
|     TypeNames[Ty] = TyName;
 | |
|     return Out << TyName << " " << NameSoFar;
 | |
|   }
 | |
|   default:
 | |
|     assert(0 && "Unhandled case in getTypeProps!");
 | |
|     abort();
 | |
|   }
 | |
| 
 | |
|   return Out;
 | |
| }
 | |
| 
 | |
| void CWriter::printConstantArray(ConstantArray *CPA) {
 | |
| 
 | |
|   // As a special case, print the array as a string if it is an array of
 | |
|   // ubytes or an array of sbytes with positive values.
 | |
|   // 
 | |
|   const Type *ETy = CPA->getType()->getElementType();
 | |
|   bool isString = (ETy == Type::SByteTy || ETy == Type::UByteTy);
 | |
| 
 | |
|   // Make sure the last character is a null char, as automatically added by C
 | |
|   if (isString && (CPA->getNumOperands() == 0 ||
 | |
|                    !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
 | |
|     isString = false;
 | |
|   
 | |
|   if (isString) {
 | |
|     Out << "\"";
 | |
|     // Keep track of whether the last number was a hexadecimal escape
 | |
|     bool LastWasHex = false;
 | |
| 
 | |
|     // Do not include the last character, which we know is null
 | |
|     for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
 | |
|       unsigned char C = (ETy == Type::SByteTy) ?
 | |
|         (unsigned char)cast<ConstantSInt>(CPA->getOperand(i))->getValue() :
 | |
|         (unsigned char)cast<ConstantUInt>(CPA->getOperand(i))->getValue();
 | |
|       
 | |
|       // Print it out literally if it is a printable character.  The only thing
 | |
|       // to be careful about is when the last letter output was a hex escape
 | |
|       // code, in which case we have to be careful not to print out hex digits
 | |
|       // explicitly (the C compiler thinks it is a continuation of the previous
 | |
|       // character, sheesh...)
 | |
|       //
 | |
|       if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
 | |
|         LastWasHex = false;
 | |
|         if (C == '"' || C == '\\')
 | |
|           Out << "\\" << C;
 | |
|         else
 | |
|           Out << C;
 | |
|       } else {
 | |
|         LastWasHex = false;
 | |
|         switch (C) {
 | |
|         case '\n': Out << "\\n"; break;
 | |
|         case '\t': Out << "\\t"; break;
 | |
|         case '\r': Out << "\\r"; break;
 | |
|         case '\v': Out << "\\v"; break;
 | |
|         case '\a': Out << "\\a"; break;
 | |
|         case '\"': Out << "\\\""; break;
 | |
|         case '\'': Out << "\\\'"; break;           
 | |
|         default:
 | |
|           Out << "\\x";
 | |
|           Out << (char)(( C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
 | |
|           Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
 | |
|           LastWasHex = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     Out << "\"";
 | |
|   } else {
 | |
|     Out << "{";
 | |
|     if (CPA->getNumOperands()) {
 | |
|       Out << " ";
 | |
|       printConstant(cast<Constant>(CPA->getOperand(0)));
 | |
|       for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
 | |
|         Out << ", ";
 | |
|         printConstant(cast<Constant>(CPA->getOperand(i)));
 | |
|       }
 | |
|     }
 | |
|     Out << " }";
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// FPCSafeToPrint - Returns true if we may assume that CFP may be
 | |
| /// written out textually as a double (rather than as a reference to a
 | |
| /// stack-allocated variable). We decide this by converting CFP to a
 | |
| /// string and back into a double, and then checking whether the
 | |
| /// conversion results in a bit-equal double to the original value of
 | |
| /// CFP. This depends on us and the target C compiler agreeing on the
 | |
| /// conversion process (which is pretty likely since we only deal in
 | |
| /// IEEE FP.) This is adapted from similar code in
 | |
| /// lib/VMCore/AsmWriter.cpp:WriteConstantInt().
 | |
| static bool FPCSafeToPrint (const ConstantFP *CFP) {
 | |
|   std::string StrVal = ftostr(CFP->getValue());
 | |
|   // Check to make sure that the stringized number is not some string like
 | |
|   // "Inf" or NaN, that atof will accept, but the lexer will not.  Check that
 | |
|   // the string matches the "[-+]?[0-9]" regex.
 | |
|   if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
 | |
|       ((StrVal[0] == '-' || StrVal[0] == '+') &&
 | |
|        (StrVal[1] >= '0' && StrVal[1] <= '9')))
 | |
|     // Reparse stringized version!
 | |
|     return (atof(StrVal.c_str()) == CFP->getValue());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // printConstant - The LLVM Constant to C Constant converter.
 | |
| void CWriter::printConstant(Constant *CPV) {
 | |
|   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
 | |
|     switch (CE->getOpcode()) {
 | |
|     case Instruction::Cast:
 | |
|       Out << "((";
 | |
|       printType(Out, CPV->getType());
 | |
|       Out << ")";
 | |
|       printConstant(CE->getOperand(0));
 | |
|       Out << ")";
 | |
|       return;
 | |
| 
 | |
|     case Instruction::GetElementPtr:
 | |
|       Out << "(&(";
 | |
|       printIndexingExpression(CE->getOperand(0),
 | |
|                               CPV->op_begin()+1, CPV->op_end());
 | |
|       Out << "))";
 | |
|       return;
 | |
|     case Instruction::Add:
 | |
|       Out << "(";
 | |
|       printConstant(CE->getOperand(0));
 | |
|       Out << " + ";
 | |
|       printConstant(CE->getOperand(1));
 | |
|       Out << ")";
 | |
|       return;
 | |
|     case Instruction::Sub:
 | |
|       Out << "(";
 | |
|       printConstant(CE->getOperand(0));
 | |
|       Out << " - ";
 | |
|       printConstant(CE->getOperand(1));
 | |
|       Out << ")";
 | |
|       return;
 | |
| 
 | |
|     default:
 | |
|       std::cerr << "CWriter Error: Unhandled constant expression: "
 | |
|                 << CE << "\n";
 | |
|       abort();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   switch (CPV->getType()->getPrimitiveID()) {
 | |
|   case Type::BoolTyID:
 | |
|     Out << (CPV == ConstantBool::False ? "0" : "1"); break;
 | |
|   case Type::SByteTyID:
 | |
|   case Type::ShortTyID:
 | |
|     Out << cast<ConstantSInt>(CPV)->getValue(); break;
 | |
|   case Type::IntTyID:
 | |
|     if ((int)cast<ConstantSInt>(CPV)->getValue() == (int)0x80000000)
 | |
|       Out << "((int)0x80000000)";   // Handle MININT specially to avoid warning
 | |
|     else
 | |
|       Out << cast<ConstantSInt>(CPV)->getValue();
 | |
|     break;
 | |
| 
 | |
|   case Type::LongTyID:
 | |
|     Out << cast<ConstantSInt>(CPV)->getValue() << "ll"; break;
 | |
| 
 | |
|   case Type::UByteTyID:
 | |
|   case Type::UShortTyID:
 | |
|     Out << cast<ConstantUInt>(CPV)->getValue(); break;
 | |
|   case Type::UIntTyID:
 | |
|     Out << cast<ConstantUInt>(CPV)->getValue() << "u"; break;
 | |
|   case Type::ULongTyID:
 | |
|     Out << cast<ConstantUInt>(CPV)->getValue() << "ull"; break;
 | |
| 
 | |
|   case Type::FloatTyID:
 | |
|   case Type::DoubleTyID: {
 | |
|     ConstantFP *FPC = cast<ConstantFP>(CPV);
 | |
|     std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
 | |
|     if (I != FPConstantMap.end()) {
 | |
|       // Because of FP precision problems we must load from a stack allocated
 | |
|       // value that holds the value in hex.
 | |
|       Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" : "double")
 | |
|           << "*)&FloatConstant" << I->second << ")";
 | |
|     } else {
 | |
|       if (FPCSafeToPrint (FPC)) {
 | |
|         Out << ftostr (FPC->getValue ());
 | |
|       } else {
 | |
|         Out << FPC->getValue(); // Who knows? Give it our best shot...
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::ArrayTyID:
 | |
|     printConstantArray(cast<ConstantArray>(CPV));
 | |
|     break;
 | |
| 
 | |
|   case Type::StructTyID: {
 | |
|     Out << "{";
 | |
|     if (CPV->getNumOperands()) {
 | |
|       Out << " ";
 | |
|       printConstant(cast<Constant>(CPV->getOperand(0)));
 | |
|       for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
 | |
|         Out << ", ";
 | |
|         printConstant(cast<Constant>(CPV->getOperand(i)));
 | |
|       }
 | |
|     }
 | |
|     Out << " }";
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::PointerTyID:
 | |
|     if (isa<ConstantPointerNull>(CPV)) {
 | |
|       Out << "((";
 | |
|       printType(Out, CPV->getType());
 | |
|       Out << ")/*NULL*/0)";
 | |
|       break;
 | |
|     } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CPV)) {
 | |
|       writeOperand(CPR->getValue());
 | |
|       break;
 | |
|     }
 | |
|     // FALL THROUGH
 | |
|   default:
 | |
|     std::cerr << "Unknown constant type: " << CPV << "\n";
 | |
|     abort();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CWriter::writeOperandInternal(Value *Operand) {
 | |
|   if (Instruction *I = dyn_cast<Instruction>(Operand))
 | |
|     if (isInlinableInst(*I) && !isDirectAlloca(I)) {
 | |
|       // Should we inline this instruction to build a tree?
 | |
|       Out << "(";
 | |
|       visit(*I);
 | |
|       Out << ")";    
 | |
|       return;
 | |
|     }
 | |
|   
 | |
|   if (Operand->hasName()) {  
 | |
|     Out << getValueName(Operand);
 | |
|   } else if (Constant *CPV = dyn_cast<Constant>(Operand)) {
 | |
|     printConstant(CPV); 
 | |
|   } else {
 | |
|     int Slot = Table->getValSlot(Operand);
 | |
|     assert(Slot >= 0 && "Malformed LLVM!");
 | |
|     Out << "ltmp_" << Slot << "_" << Operand->getType()->getUniqueID();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CWriter::writeOperand(Value *Operand) {
 | |
|   if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
 | |
|     Out << "(&";  // Global variables are references as their addresses by llvm
 | |
| 
 | |
|   writeOperandInternal(Operand);
 | |
| 
 | |
|   if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
 | |
|     Out << ")";
 | |
| }
 | |
| 
 | |
| // nameAllUsedStructureTypes - If there are structure types in the module that
 | |
| // are used but do not have names assigned to them in the symbol table yet then
 | |
| // we assign them names now.
 | |
| //
 | |
| bool CWriter::nameAllUsedStructureTypes(Module &M) {
 | |
|   // Get a set of types that are used by the program...
 | |
|   std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
 | |
| 
 | |
|   // Loop over the module symbol table, removing types from UT that are already
 | |
|   // named.
 | |
|   //
 | |
|   SymbolTable &MST = M.getSymbolTable();
 | |
|   if (MST.find(Type::TypeTy) != MST.end())
 | |
|     for (SymbolTable::type_iterator I = MST.type_begin(Type::TypeTy),
 | |
|            E = MST.type_end(Type::TypeTy); I != E; ++I)
 | |
|       UT.erase(cast<Type>(I->second));
 | |
| 
 | |
|   // UT now contains types that are not named.  Loop over it, naming structure
 | |
|   // types.
 | |
|   //
 | |
|   bool Changed = false;
 | |
|   for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
 | |
|        I != E; ++I)
 | |
|     if (const StructType *ST = dyn_cast<StructType>(*I)) {
 | |
|       ((Value*)ST)->setName("unnamed", &MST);
 | |
|       Changed = true;
 | |
|     }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| // generateCompilerSpecificCode - This is where we add conditional compilation
 | |
| // directives to cater to specific compilers as need be.
 | |
| //
 | |
| static void generateCompilerSpecificCode(std::ostream& Out) {
 | |
|   // Alloca is hard to get, and we don't want to include stdlib.h here...
 | |
|   Out << "/* get a declaration for alloca */\n"
 | |
|       << "#ifdef sun\n"
 | |
|       << "extern void *__builtin_alloca(unsigned long);\n"
 | |
|       << "#define alloca(x) __builtin_alloca(x)\n"
 | |
|       << "#else\n"
 | |
|       << "#ifndef __FreeBSD__\n"
 | |
|       << "#include <alloca.h>\n"
 | |
|       << "#endif\n"
 | |
|       << "#endif\n\n";
 | |
| 
 | |
|   // We output GCC specific attributes to preserve 'linkonce'ness on globals.
 | |
|   // If we aren't being compiled with GCC, just drop these attributes.
 | |
|   Out << "#ifndef __GNUC__  /* Can only support \"linkonce\" vars with GCC */\n"
 | |
|       << "#define __attribute__(X)\n"
 | |
|       << "#endif\n";
 | |
| }
 | |
| 
 | |
| void CWriter::printModule(Module *M) {
 | |
|   // Calculate which global values have names that will collide when we throw
 | |
|   // away type information.
 | |
|   {  // Scope to delete the FoundNames set when we are done with it...
 | |
|     std::set<std::string> FoundNames;
 | |
|     for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
 | |
|       if (I->hasName())                      // If the global has a name...
 | |
|         if (FoundNames.count(I->getName()))  // And the name is already used
 | |
|           MangledGlobals.insert(I);          // Mangle the name
 | |
|         else
 | |
|           FoundNames.insert(I->getName());   // Otherwise, keep track of name
 | |
| 
 | |
|     for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
 | |
|       if (I->hasName())                      // If the global has a name...
 | |
|         if (FoundNames.count(I->getName()))  // And the name is already used
 | |
|           MangledGlobals.insert(I);          // Mangle the name
 | |
|         else
 | |
|           FoundNames.insert(I->getName());   // Otherwise, keep track of name
 | |
|   }
 | |
| 
 | |
|   // get declaration for alloca
 | |
|   Out << "/* Provide Declarations */\n";
 | |
|   Out << "#include <stdarg.h>\n";
 | |
|   Out << "#include <setjmp.h>\n";
 | |
|   generateCompilerSpecificCode(Out);
 | |
|   
 | |
|   // Provide a definition for `bool' if not compiling with a C++ compiler.
 | |
|   Out << "\n"
 | |
|       << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
 | |
|     
 | |
|       << "\n\n/* Support for floating point constants */\n"
 | |
|       << "typedef unsigned long long ConstantDoubleTy;\n"
 | |
|       << "typedef unsigned int        ConstantFloatTy;\n"
 | |
|     
 | |
|       << "\n\n/* Support for the invoke instruction */\n"
 | |
|       << "extern struct __llvm_jmpbuf_list_t {\n"
 | |
|       << "  jmp_buf buf; struct __llvm_jmpbuf_list_t *next;\n"
 | |
|       << "} *__llvm_jmpbuf_list;\n"
 | |
| 
 | |
|       << "\n\n/* Global Declarations */\n";
 | |
| 
 | |
|   // First output all the declarations for the program, because C requires
 | |
|   // Functions & globals to be declared before they are used.
 | |
|   //
 | |
| 
 | |
|   // Loop over the symbol table, emitting all named constants...
 | |
|   printSymbolTable(M->getSymbolTable());
 | |
| 
 | |
|   // Global variable declarations...
 | |
|   if (!M->gempty()) {
 | |
|     Out << "\n/* External Global Variable Declarations */\n";
 | |
|     for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I) {
 | |
|       if (I->hasExternalLinkage()) {
 | |
|         Out << "extern ";
 | |
|         printType(Out, I->getType()->getElementType(), getValueName(I));
 | |
|         Out << ";\n";
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Function declarations
 | |
|   if (!M->empty()) {
 | |
|     Out << "\n/* Function Declarations */\n";
 | |
|     needsMalloc = true;
 | |
|     for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) {
 | |
|       // If the function is external and the name collides don't print it.
 | |
|       // Sometimes the bytecode likes to have multiple "declarations" for
 | |
|       // external functions
 | |
|       if ((I->hasInternalLinkage() || !MangledGlobals.count(I)) &&
 | |
|           !I->getIntrinsicID()) {
 | |
|         printFunctionSignature(I, true);
 | |
|         Out << ";\n";
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Print Malloc prototype if needed
 | |
|   if (needsMalloc) {
 | |
|     Out << "\n/* Malloc to make sun happy */\n";
 | |
|     Out << "extern void * malloc();\n\n";
 | |
|   }
 | |
| 
 | |
|   // Output the global variable declarations
 | |
|   if (!M->gempty()) {
 | |
|     Out << "\n\n/* Global Variable Declarations */\n";
 | |
|     for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
 | |
|       if (!I->isExternal()) {
 | |
|         Out << "extern ";
 | |
|         printType(Out, I->getType()->getElementType(), getValueName(I));
 | |
|       
 | |
|         Out << ";\n";
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // Output the global variable definitions and contents...
 | |
|   if (!M->gempty()) {
 | |
|     Out << "\n\n/* Global Variable Definitions and Initialization */\n";
 | |
|     for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
 | |
|       if (!I->isExternal()) {
 | |
|         if (I->hasInternalLinkage())
 | |
|           Out << "static ";
 | |
|         printType(Out, I->getType()->getElementType(), getValueName(I));
 | |
|         if (I->hasLinkOnceLinkage())
 | |
|           Out << " __attribute__((common))";
 | |
|         if (!I->getInitializer()->isNullValue()) {
 | |
|           Out << " = " ;
 | |
|           writeOperand(I->getInitializer());
 | |
|         }
 | |
|         Out << ";\n";
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // Output all of the functions...
 | |
|   emittedInvoke = false;
 | |
|   if (!M->empty()) {
 | |
|     Out << "\n\n/* Function Bodies */\n";
 | |
|     for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
 | |
|       printFunction(I);
 | |
|   }
 | |
| 
 | |
|   // If the program included an invoke instruction, we need to output the
 | |
|   // support code for it here!
 | |
|   if (emittedInvoke) {
 | |
|     Out << "\n/* More support for the invoke instruction */\n"
 | |
|         << "struct __llvm_jmpbuf_list_t *__llvm_jmpbuf_list "
 | |
|         << "__attribute__((common)) = 0;\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// printSymbolTable - Run through symbol table looking for type names.  If a
 | |
| /// type name is found, emit it's declaration...
 | |
| ///
 | |
| void CWriter::printSymbolTable(const SymbolTable &ST) {
 | |
|   // If there are no type names, exit early.
 | |
|   if (ST.find(Type::TypeTy) == ST.end())
 | |
|     return;
 | |
| 
 | |
|   // We are only interested in the type plane of the symbol table...
 | |
|   SymbolTable::type_const_iterator I   = ST.type_begin(Type::TypeTy);
 | |
|   SymbolTable::type_const_iterator End = ST.type_end(Type::TypeTy);
 | |
|   
 | |
|   // Print out forward declarations for structure types before anything else!
 | |
|   Out << "/* Structure forward decls */\n";
 | |
|   for (; I != End; ++I)
 | |
|     if (const Type *STy = dyn_cast<StructType>(I->second)) {
 | |
|       std::string Name = "struct l_" + makeNameProper(I->first);
 | |
|       Out << Name << ";\n";
 | |
|       TypeNames.insert(std::make_pair(STy, Name));
 | |
|     }
 | |
| 
 | |
|   Out << "\n";
 | |
| 
 | |
|   // Now we can print out typedefs...
 | |
|   Out << "/* Typedefs */\n";
 | |
|   for (I = ST.type_begin(Type::TypeTy); I != End; ++I) {
 | |
|     const Type *Ty = cast<Type>(I->second);
 | |
|     std::string Name = "l_" + makeNameProper(I->first);
 | |
|     Out << "typedef ";
 | |
|     printType(Out, Ty, Name);
 | |
|     Out << ";\n";
 | |
|   }
 | |
| 
 | |
|   Out << "\n";
 | |
| 
 | |
|   // Keep track of which structures have been printed so far...
 | |
|   std::set<const StructType *> StructPrinted;
 | |
| 
 | |
|   // Loop over all structures then push them into the stack so they are
 | |
|   // printed in the correct order.
 | |
|   //
 | |
|   Out << "/* Structure contents */\n";
 | |
|   for (I = ST.type_begin(Type::TypeTy); I != End; ++I)
 | |
|     if (const StructType *STy = dyn_cast<StructType>(I->second))
 | |
|       printContainedStructs(STy, StructPrinted);
 | |
| }
 | |
| 
 | |
| // Push the struct onto the stack and recursively push all structs
 | |
| // this one depends on.
 | |
| void CWriter::printContainedStructs(const Type *Ty,
 | |
|                                     std::set<const StructType*> &StructPrinted){
 | |
|   if (const StructType *STy = dyn_cast<StructType>(Ty)) {
 | |
|     //Check to see if we have already printed this struct
 | |
|     if (StructPrinted.count(STy) == 0) {
 | |
|       // Print all contained types first...
 | |
|       for (StructType::ElementTypes::const_iterator
 | |
|              I = STy->getElementTypes().begin(),
 | |
|              E = STy->getElementTypes().end(); I != E; ++I) {
 | |
|         const Type *Ty1 = I->get();
 | |
|         if (isa<StructType>(Ty1) || isa<ArrayType>(Ty1))
 | |
|           printContainedStructs(*I, StructPrinted);
 | |
|       }
 | |
|       
 | |
|       //Print structure type out..
 | |
|       StructPrinted.insert(STy);
 | |
|       std::string Name = TypeNames[STy];  
 | |
|       printType(Out, STy, Name, true);
 | |
|       Out << ";\n\n";
 | |
|     }
 | |
| 
 | |
|     // If it is an array, check contained types and continue
 | |
|   } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)){
 | |
|     const Type *Ty1 = ATy->getElementType();
 | |
|     if (isa<StructType>(Ty1) || isa<ArrayType>(Ty1))
 | |
|       printContainedStructs(Ty1, StructPrinted);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
 | |
|   // If the program provides its own malloc prototype we don't need
 | |
|   // to include the general one.  
 | |
|   if (getValueName(F) == "malloc")
 | |
|     needsMalloc = false;
 | |
| 
 | |
|   if (F->hasInternalLinkage()) Out << "static ";
 | |
|   if (F->hasLinkOnceLinkage()) Out << "inline ";
 | |
|   
 | |
|   // Loop over the arguments, printing them...
 | |
|   const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
 | |
|   
 | |
|   std::stringstream FunctionInnards; 
 | |
|     
 | |
|   // Print out the name...
 | |
|   FunctionInnards << getValueName(F) << "(";
 | |
|     
 | |
|   if (!F->isExternal()) {
 | |
|     if (!F->aempty()) {
 | |
|       std::string ArgName;
 | |
|       if (F->abegin()->hasName() || !Prototype)
 | |
|         ArgName = getValueName(F->abegin());
 | |
|       printType(FunctionInnards, F->afront().getType(), ArgName);
 | |
|       for (Function::const_aiterator I = ++F->abegin(), E = F->aend();
 | |
|            I != E; ++I) {
 | |
|         FunctionInnards << ", ";
 | |
|         if (I->hasName() || !Prototype)
 | |
|           ArgName = getValueName(I);
 | |
|         else 
 | |
|           ArgName = "";
 | |
|         printType(FunctionInnards, I->getType(), ArgName);
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     // Loop over the arguments, printing them...
 | |
|     for (FunctionType::ParamTypes::const_iterator I = 
 | |
| 	   FT->getParamTypes().begin(),
 | |
| 	   E = FT->getParamTypes().end(); I != E; ++I) {
 | |
|       if (I != FT->getParamTypes().begin()) FunctionInnards << ", ";
 | |
|       printType(FunctionInnards, *I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Finish printing arguments... if this is a vararg function, print the ...,
 | |
|   // unless there are no known types, in which case, we just emit ().
 | |
|   //
 | |
|   if (FT->isVarArg() && !FT->getParamTypes().empty()) {
 | |
|     if (FT->getParamTypes().size()) FunctionInnards << ", ";
 | |
|     FunctionInnards << "...";  // Output varargs portion of signature!
 | |
|   }
 | |
|   FunctionInnards << ")";
 | |
|   // Print out the return type and the entire signature for that matter
 | |
|   printType(Out, F->getReturnType(), FunctionInnards.str());
 | |
| }
 | |
| 
 | |
| void CWriter::printFunction(Function *F) {
 | |
|   if (F->isExternal()) return;
 | |
| 
 | |
|   Table->incorporateFunction(F);
 | |
| 
 | |
|   printFunctionSignature(F, false);
 | |
|   Out << " {\n";
 | |
| 
 | |
|   // print local variable information for the function
 | |
|   for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
 | |
|     if (const AllocaInst *AI = isDirectAlloca(*I)) {
 | |
|       Out << "  ";
 | |
|       printType(Out, AI->getAllocatedType(), getValueName(AI));
 | |
|       Out << ";    /* Address exposed local */\n";
 | |
|     } else if ((*I)->getType() != Type::VoidTy && !isInlinableInst(**I)) {
 | |
|       Out << "  ";
 | |
|       printType(Out, (*I)->getType(), getValueName(*I));
 | |
|       Out << ";\n";
 | |
|       
 | |
|       if (isa<PHINode>(*I)) {  // Print out PHI node temporaries as well...
 | |
|         Out << "  ";
 | |
|         printType(Out, (*I)->getType(), getValueName(*I)+"__PHI_TEMPORARY");
 | |
|         Out << ";\n";
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   Out << "\n";
 | |
| 
 | |
|   // Scan the function for floating point constants.  If any FP constant is used
 | |
|   // in the function, we want to redirect it here so that we do not depend on
 | |
|   // the precision of the printed form, unless the printed form preserves
 | |
|   // precision.
 | |
|   //
 | |
|   unsigned FPCounter = 0;
 | |
|   for (constant_iterator I = constant_begin(F), E = constant_end(F); I != E;++I)
 | |
|     if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
 | |
|       if ((!FPCSafeToPrint(FPC)) // Do not put in FPConstantMap if safe.
 | |
| 	  && (FPConstantMap.find(FPC) == FPConstantMap.end())) {
 | |
|         double Val = FPC->getValue();
 | |
|         
 | |
|         FPConstantMap[FPC] = FPCounter;  // Number the FP constants
 | |
| 
 | |
|         if (FPC->getType() == Type::DoubleTy)
 | |
|           Out << "  const ConstantDoubleTy FloatConstant" << FPCounter++
 | |
|               << " = 0x" << std::hex << *(unsigned long long*)&Val << std::dec
 | |
|               << ";    /* " << Val << " */\n";
 | |
|         else if (FPC->getType() == Type::FloatTy) {
 | |
|           float fVal = Val;
 | |
|           Out << "  const ConstantFloatTy FloatConstant" << FPCounter++
 | |
|               << " = 0x" << std::hex << *(unsigned*)&fVal << std::dec
 | |
|               << ";    /* " << Val << " */\n";
 | |
|         } else
 | |
|           assert(0 && "Unknown float type!");
 | |
|       }
 | |
| 
 | |
|   Out << "\n";
 | |
|  
 | |
|   // print the basic blocks
 | |
|   for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
 | |
|     BasicBlock *Prev = BB->getPrev();
 | |
| 
 | |
|     // Don't print the label for the basic block if there are no uses, or if the
 | |
|     // only terminator use is the precessor basic block's terminator.  We have
 | |
|     // to scan the use list because PHI nodes use basic blocks too but do not
 | |
|     // require a label to be generated.
 | |
|     //
 | |
|     bool NeedsLabel = false;
 | |
|     for (Value::use_iterator UI = BB->use_begin(), UE = BB->use_end();
 | |
|          UI != UE; ++UI)
 | |
|       if (TerminatorInst *TI = dyn_cast<TerminatorInst>(*UI))
 | |
|         if (TI != Prev->getTerminator() ||
 | |
|             isa<SwitchInst>(Prev->getTerminator())) {
 | |
|           NeedsLabel = true;
 | |
|           break;        
 | |
|         }
 | |
| 
 | |
|     if (NeedsLabel) Out << getValueName(BB) << ":\n";
 | |
| 
 | |
|     // Output all of the instructions in the basic block...
 | |
|     for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E; ++II){
 | |
|       if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
 | |
|         if (II->getType() != Type::VoidTy)
 | |
|           outputLValue(II);
 | |
|         else
 | |
|           Out << "  ";
 | |
|         visit(*II);
 | |
|         Out << ";\n";
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Don't emit prefix or suffix for the terminator...
 | |
|     visit(*BB->getTerminator());
 | |
|   }
 | |
|   
 | |
|   Out << "}\n\n";
 | |
|   Table->purgeFunction();
 | |
|   FPConstantMap.clear();
 | |
| }
 | |
| 
 | |
| // Specific Instruction type classes... note that all of the casts are
 | |
| // neccesary because we use the instruction classes as opaque types...
 | |
| //
 | |
| void CWriter::visitReturnInst(ReturnInst &I) {
 | |
|   // Don't output a void return if this is the last basic block in the function
 | |
|   if (I.getNumOperands() == 0 && 
 | |
|       &*--I.getParent()->getParent()->end() == I.getParent() &&
 | |
|       !I.getParent()->size() == 1) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Out << "  return";
 | |
|   if (I.getNumOperands()) {
 | |
|     Out << " ";
 | |
|     writeOperand(I.getOperand(0));
 | |
|   }
 | |
|   Out << ";\n";
 | |
| }
 | |
| 
 | |
| void CWriter::visitSwitchInst(SwitchInst &SI) {
 | |
|   Out << "  switch (";
 | |
|   writeOperand(SI.getOperand(0));
 | |
|   Out << ") {\n  default:\n";
 | |
|   printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
 | |
|   Out << ";\n";
 | |
|   for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
 | |
|     Out << "  case ";
 | |
|     writeOperand(SI.getOperand(i));
 | |
|     Out << ":\n";
 | |
|     BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
 | |
|     printBranchToBlock(SI.getParent(), Succ, 2);
 | |
|     if (Succ == SI.getParent()->getNext())
 | |
|       Out << "    break;\n";
 | |
|   }
 | |
|   Out << "  }\n";
 | |
| }
 | |
| 
 | |
| void CWriter::visitInvokeInst(InvokeInst &II) {
 | |
|   Out << "  {\n"
 | |
|       << "    struct __llvm_jmpbuf_list_t Entry;\n"
 | |
|       << "    Entry.next = __llvm_jmpbuf_list;\n"
 | |
|       << "    if (setjmp(Entry.buf)) {\n"
 | |
|       << "      __llvm_jmpbuf_list = Entry.next;\n";
 | |
|   printBranchToBlock(II.getParent(), II.getExceptionalDest(), 4);
 | |
|   Out << "    }\n"
 | |
|       << "    __llvm_jmpbuf_list = &Entry;\n"
 | |
|       << "    ";
 | |
|   visitCallSite(&II);
 | |
|   Out << ";\n"
 | |
|       << "    __llvm_jmpbuf_list = Entry.next;\n"
 | |
|       << "  }\n";
 | |
|   printBranchToBlock(II.getParent(), II.getNormalDest(), 0);
 | |
|   emittedInvoke = true;
 | |
| }
 | |
| 
 | |
| 
 | |
| static bool isGotoCodeNeccessary(BasicBlock *From, BasicBlock *To) {
 | |
|   // If PHI nodes need copies, we need the copy code...
 | |
|   if (isa<PHINode>(To->front()) ||
 | |
|       From->getNext() != To)      // Not directly successor, need goto
 | |
|     return true;
 | |
| 
 | |
|   // Otherwise we don't need the code.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
 | |
|                                  unsigned Indent) {
 | |
|   for (BasicBlock::iterator I = Succ->begin();
 | |
|        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
 | |
|     //  now we have to do the printing
 | |
|     Out << std::string(Indent, ' ');
 | |
|     Out << "  " << getValueName(I) << "__PHI_TEMPORARY = ";
 | |
|     writeOperand(PN->getIncomingValue(PN->getBasicBlockIndex(CurBB)));
 | |
|     Out << ";   /* for PHI node */\n";
 | |
|   }
 | |
| 
 | |
|   if (CurBB->getNext() != Succ) {
 | |
|     Out << std::string(Indent, ' ') << "  goto ";
 | |
|     writeOperand(Succ);
 | |
|     Out << ";\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Brach instruction printing - Avoid printing out a brach to a basic block that
 | |
| // immediately succeeds the current one.
 | |
| //
 | |
| void CWriter::visitBranchInst(BranchInst &I) {
 | |
|   if (I.isConditional()) {
 | |
|     if (isGotoCodeNeccessary(I.getParent(), I.getSuccessor(0))) {
 | |
|       Out << "  if (";
 | |
|       writeOperand(I.getCondition());
 | |
|       Out << ") {\n";
 | |
|       
 | |
|       printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
 | |
|       
 | |
|       if (isGotoCodeNeccessary(I.getParent(), I.getSuccessor(1))) {
 | |
|         Out << "  } else {\n";
 | |
|         printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
 | |
|       }
 | |
|     } else {
 | |
|       // First goto not neccesary, assume second one is...
 | |
|       Out << "  if (!";
 | |
|       writeOperand(I.getCondition());
 | |
|       Out << ") {\n";
 | |
| 
 | |
|       printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
 | |
|     }
 | |
| 
 | |
|     Out << "  }\n";
 | |
|   } else {
 | |
|     printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
 | |
|   }
 | |
|   Out << "\n";
 | |
| }
 | |
| 
 | |
| // PHI nodes get copied into temporary values at the end of predecessor basic
 | |
| // blocks.  We now need to copy these temporary values into the REAL value for
 | |
| // the PHI.
 | |
| void CWriter::visitPHINode(PHINode &I) {
 | |
|   writeOperand(&I);
 | |
|   Out << "__PHI_TEMPORARY";
 | |
| }
 | |
| 
 | |
| 
 | |
| void CWriter::visitBinaryOperator(Instruction &I) {
 | |
|   // binary instructions, shift instructions, setCond instructions.
 | |
|   assert(!isa<PointerType>(I.getType()));
 | |
| 
 | |
|   // We must cast the results of binary operations which might be promoted.
 | |
|   bool needsCast = false;
 | |
|   if ((I.getType() == Type::UByteTy) || (I.getType() == Type::SByteTy)
 | |
|       || (I.getType() == Type::UShortTy) || (I.getType() == Type::ShortTy)
 | |
|       || (I.getType() == Type::FloatTy)) {
 | |
|     needsCast = true;
 | |
|     Out << "((";
 | |
|     printType(Out, I.getType(), "", false, false);
 | |
|     Out << ")(";
 | |
|   }
 | |
|       
 | |
|   writeOperand(I.getOperand(0));
 | |
| 
 | |
|   switch (I.getOpcode()) {
 | |
|   case Instruction::Add: Out << " + "; break;
 | |
|   case Instruction::Sub: Out << " - "; break;
 | |
|   case Instruction::Mul: Out << "*"; break;
 | |
|   case Instruction::Div: Out << "/"; break;
 | |
|   case Instruction::Rem: Out << "%"; break;
 | |
|   case Instruction::And: Out << " & "; break;
 | |
|   case Instruction::Or: Out << " | "; break;
 | |
|   case Instruction::Xor: Out << " ^ "; break;
 | |
|   case Instruction::SetEQ: Out << " == "; break;
 | |
|   case Instruction::SetNE: Out << " != "; break;
 | |
|   case Instruction::SetLE: Out << " <= "; break;
 | |
|   case Instruction::SetGE: Out << " >= "; break;
 | |
|   case Instruction::SetLT: Out << " < "; break;
 | |
|   case Instruction::SetGT: Out << " > "; break;
 | |
|   case Instruction::Shl : Out << " << "; break;
 | |
|   case Instruction::Shr : Out << " >> "; break;
 | |
|   default: std::cerr << "Invalid operator type!" << I; abort();
 | |
|   }
 | |
| 
 | |
|   writeOperand(I.getOperand(1));
 | |
| 
 | |
|   if (needsCast) {
 | |
|     Out << "))";
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CWriter::visitCastInst(CastInst &I) {
 | |
|   if (I.getType() == Type::BoolTy) {
 | |
|     Out << "(";
 | |
|     writeOperand(I.getOperand(0));
 | |
|     Out << " != 0)";
 | |
|     return;
 | |
|   }
 | |
|   Out << "(";
 | |
|   printType(Out, I.getType(), "", /*ignoreName*/false, /*namedContext*/false);
 | |
|   Out << ")";
 | |
|   if (isa<PointerType>(I.getType())&&I.getOperand(0)->getType()->isIntegral() ||
 | |
|       isa<PointerType>(I.getOperand(0)->getType())&&I.getType()->isIntegral()) {
 | |
|     // Avoid "cast to pointer from integer of different size" warnings
 | |
|     Out << "(long)";  
 | |
|   }
 | |
|   
 | |
|   writeOperand(I.getOperand(0));
 | |
| }
 | |
| 
 | |
| void CWriter::visitCallInst(CallInst &I) {
 | |
|   // Handle intrinsic function calls first...
 | |
|   if (Function *F = I.getCalledFunction())
 | |
|     if (LLVMIntrinsic::ID ID = (LLVMIntrinsic::ID)F->getIntrinsicID()) {
 | |
|       switch (ID) {
 | |
|       default:  assert(0 && "Unknown LLVM intrinsic!");
 | |
|       case LLVMIntrinsic::va_start: 
 | |
|         Out << "va_start((va_list)*";
 | |
|         writeOperand(I.getOperand(1));
 | |
|         Out << ", ";
 | |
|         // Output the last argument to the enclosing function...
 | |
|         writeOperand(&I.getParent()->getParent()->aback());
 | |
|         Out << ")";
 | |
|         return;
 | |
|       case LLVMIntrinsic::va_end:
 | |
|         Out << "va_end((va_list)*";
 | |
|         writeOperand(I.getOperand(1));
 | |
|         Out << ")";
 | |
|         return;
 | |
|       case LLVMIntrinsic::va_copy:
 | |
|         Out << "va_copy((va_list)*";
 | |
|         writeOperand(I.getOperand(1));
 | |
|         Out << ", (va_list)";
 | |
|         writeOperand(I.getOperand(2));
 | |
|         Out << ")";
 | |
|         return;
 | |
|         
 | |
|       case LLVMIntrinsic::setjmp:
 | |
|         Out << "setjmp(*(jmp_buf*)";
 | |
|         writeOperand(I.getOperand(1));
 | |
|         Out << ")";
 | |
|         return;
 | |
|       case LLVMIntrinsic::longjmp:
 | |
|         Out << "longjmp(*(jmp_buf*)";
 | |
|         writeOperand(I.getOperand(1));
 | |
|         Out << ", ";
 | |
|         writeOperand(I.getOperand(2));
 | |
|         Out << ")";
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   visitCallSite(&I);
 | |
| }
 | |
| 
 | |
| void CWriter::visitCallSite(CallSite CS) {
 | |
|   const PointerType  *PTy   = cast<PointerType>(CS.getCalledValue()->getType());
 | |
|   const FunctionType *FTy   = cast<FunctionType>(PTy->getElementType());
 | |
|   const Type         *RetTy = FTy->getReturnType();
 | |
|   
 | |
|   writeOperand(CS.getCalledValue());
 | |
|   Out << "(";
 | |
| 
 | |
|   if (CS.arg_begin() != CS.arg_end()) {
 | |
|     CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
 | |
|     writeOperand(*AI);
 | |
| 
 | |
|     for (++AI; AI != AE; ++AI) {
 | |
|       Out << ", ";
 | |
|       writeOperand(*AI);
 | |
|     }
 | |
|   }
 | |
|   Out << ")";
 | |
| }  
 | |
| 
 | |
| void CWriter::visitMallocInst(MallocInst &I) {
 | |
|   Out << "(";
 | |
|   printType(Out, I.getType());
 | |
|   Out << ")malloc(sizeof(";
 | |
|   printType(Out, I.getType()->getElementType());
 | |
|   Out << ")";
 | |
| 
 | |
|   if (I.isArrayAllocation()) {
 | |
|     Out << " * " ;
 | |
|     writeOperand(I.getOperand(0));
 | |
|   }
 | |
|   Out << ")";
 | |
| }
 | |
| 
 | |
| void CWriter::visitAllocaInst(AllocaInst &I) {
 | |
|   Out << "(";
 | |
|   printType(Out, I.getType());
 | |
|   Out << ") alloca(sizeof(";
 | |
|   printType(Out, I.getType()->getElementType());
 | |
|   Out << ")";
 | |
|   if (I.isArrayAllocation()) {
 | |
|     Out << " * " ;
 | |
|     writeOperand(I.getOperand(0));
 | |
|   }
 | |
|   Out << ")";
 | |
| }
 | |
| 
 | |
| void CWriter::visitFreeInst(FreeInst &I) {
 | |
|   Out << "free(";
 | |
|   writeOperand(I.getOperand(0));
 | |
|   Out << ")";
 | |
| }
 | |
| 
 | |
| void CWriter::printIndexingExpression(Value *Ptr, User::op_iterator I,
 | |
|                                       User::op_iterator E) {
 | |
|   bool HasImplicitAddress = false;
 | |
|   // If accessing a global value with no indexing, avoid *(&GV) syndrome
 | |
|   if (GlobalValue *V = dyn_cast<GlobalValue>(Ptr)) {
 | |
|     HasImplicitAddress = true;
 | |
|   } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Ptr)) {
 | |
|     HasImplicitAddress = true;
 | |
|     Ptr = CPR->getValue();         // Get to the global...
 | |
|   } else if (isDirectAlloca(Ptr)) {
 | |
|     HasImplicitAddress = true;
 | |
|   }
 | |
| 
 | |
|   if (I == E) {
 | |
|     if (!HasImplicitAddress)
 | |
|       Out << "*";  // Implicit zero first argument: '*x' is equivalent to 'x[0]'
 | |
| 
 | |
|     writeOperandInternal(Ptr);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   const Constant *CI = dyn_cast<Constant>(I);
 | |
|   if (HasImplicitAddress && (!CI || !CI->isNullValue()))
 | |
|     Out << "(&";
 | |
| 
 | |
|   writeOperandInternal(Ptr);
 | |
| 
 | |
|   if (HasImplicitAddress && (!CI || !CI->isNullValue())) {
 | |
|     Out << ")";
 | |
|     HasImplicitAddress = false;  // HIA is only true if we haven't addressed yet
 | |
|   }
 | |
| 
 | |
|   assert(!HasImplicitAddress || (CI && CI->isNullValue()) &&
 | |
|          "Can only have implicit address with direct accessing");
 | |
| 
 | |
|   if (HasImplicitAddress) {
 | |
|     ++I;
 | |
|   } else if (CI && CI->isNullValue() && I+1 != E) {
 | |
|     // Print out the -> operator if possible...
 | |
|     if ((*(I+1))->getType() == Type::UByteTy) {
 | |
|       Out << (HasImplicitAddress ? "." : "->");
 | |
|       Out << "field" << cast<ConstantUInt>(*(I+1))->getValue();
 | |
|       I += 2;
 | |
|     } 
 | |
|   }
 | |
| 
 | |
|   for (; I != E; ++I)
 | |
|     if ((*I)->getType() == Type::LongTy) {
 | |
|       Out << "[";
 | |
|       writeOperand(*I);
 | |
|       Out << "]";
 | |
|     } else {
 | |
|       Out << ".field" << cast<ConstantUInt>(*I)->getValue();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void CWriter::visitLoadInst(LoadInst &I) {
 | |
|   Out << "*";
 | |
|   writeOperand(I.getOperand(0));
 | |
| }
 | |
| 
 | |
| void CWriter::visitStoreInst(StoreInst &I) {
 | |
|   Out << "*";
 | |
|   writeOperand(I.getPointerOperand());
 | |
|   Out << " = ";
 | |
|   writeOperand(I.getOperand(0));
 | |
| }
 | |
| 
 | |
| void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
 | |
|   Out << "&";
 | |
|   printIndexingExpression(I.getPointerOperand(), I.idx_begin(), I.idx_end());
 | |
| }
 | |
| 
 | |
| void CWriter::visitVarArgInst(VarArgInst &I) {
 | |
|   Out << "va_arg((va_list)*";
 | |
|   writeOperand(I.getOperand(0));
 | |
|   Out << ", ";
 | |
|   printType(Out, I.getType(), "", /*ignoreName*/false, /*namedContext*/false);
 | |
|   Out << ")";  
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                       External Interface declaration
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| Pass *createWriteToCPass(std::ostream &o) { return new CWriter(o); }
 |