mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	Header files will be on the way. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@9298 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			357 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			357 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- ReadConst.cpp - Code to constants and constant pools ---------------===//
 | |
| // 
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements functionality to deserialize constants and entire 
 | |
| // constant pools.
 | |
| // 
 | |
| // Note that this library should be as fast as possible, reentrant, and 
 | |
| // thread-safe!!
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "ReaderInternals.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include <algorithm>
 | |
| 
 | |
| const Type *BytecodeParser::parseTypeConstant(const unsigned char *&Buf,
 | |
| 					      const unsigned char *EndBuf) {
 | |
|   unsigned PrimType;
 | |
|   if (read_vbr(Buf, EndBuf, PrimType)) throw Error_readvbr;
 | |
| 
 | |
|   const Type *Val = 0;
 | |
|   if ((Val = Type::getPrimitiveType((Type::PrimitiveID)PrimType)))
 | |
|     return Val;
 | |
|   
 | |
|   switch (PrimType) {
 | |
|   case Type::FunctionTyID: {
 | |
|     unsigned Typ;
 | |
|     if (read_vbr(Buf, EndBuf, Typ)) return Val;
 | |
|     const Type *RetType = getType(Typ);
 | |
| 
 | |
|     unsigned NumParams;
 | |
|     if (read_vbr(Buf, EndBuf, NumParams)) return Val;
 | |
| 
 | |
|     std::vector<const Type*> Params;
 | |
|     while (NumParams--) {
 | |
|       if (read_vbr(Buf, EndBuf, Typ)) return Val;
 | |
|       Params.push_back(getType(Typ));
 | |
|     }
 | |
| 
 | |
|     bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
 | |
|     if (isVarArg) Params.pop_back();
 | |
| 
 | |
|     return FunctionType::get(RetType, Params, isVarArg);
 | |
|   }
 | |
|   case Type::ArrayTyID: {
 | |
|     unsigned ElTyp;
 | |
|     if (read_vbr(Buf, EndBuf, ElTyp)) return Val;
 | |
|     const Type *ElementType = getType(ElTyp);
 | |
| 
 | |
|     unsigned NumElements;
 | |
|     if (read_vbr(Buf, EndBuf, NumElements)) return Val;
 | |
| 
 | |
|     BCR_TRACE(5, "Array Type Constant #" << ElTyp << " size=" 
 | |
|               << NumElements << "\n");
 | |
|     return ArrayType::get(ElementType, NumElements);
 | |
|   }
 | |
|   case Type::StructTyID: {
 | |
|     unsigned Typ;
 | |
|     std::vector<const Type*> Elements;
 | |
| 
 | |
|     if (read_vbr(Buf, EndBuf, Typ)) return Val;
 | |
|     while (Typ) {         // List is terminated by void/0 typeid
 | |
|       Elements.push_back(getType(Typ));
 | |
|       if (read_vbr(Buf, EndBuf, Typ)) return Val;
 | |
|     }
 | |
| 
 | |
|     return StructType::get(Elements);
 | |
|   }
 | |
|   case Type::PointerTyID: {
 | |
|     unsigned ElTyp;
 | |
|     if (read_vbr(Buf, EndBuf, ElTyp)) return Val;
 | |
|     BCR_TRACE(5, "Pointer Type Constant #" << ElTyp << "\n");
 | |
|     return PointerType::get(getType(ElTyp));
 | |
|   }
 | |
| 
 | |
|   case Type::OpaqueTyID: {
 | |
|     return OpaqueType::get();
 | |
|   }
 | |
| 
 | |
|   default:
 | |
|     std::cerr << __FILE__ << ":" << __LINE__
 | |
|               << ": Don't know how to deserialize"
 | |
|               << " primitive Type " << PrimType << "\n";
 | |
|     return Val;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // parseTypeConstants - We have to use this weird code to handle recursive
 | |
| // types.  We know that recursive types will only reference the current slab of
 | |
| // values in the type plane, but they can forward reference types before they
 | |
| // have been read.  For example, Type #0 might be '{ Ty#1 }' and Type #1 might
 | |
| // be 'Ty#0*'.  When reading Type #0, type number one doesn't exist.  To fix
 | |
| // this ugly problem, we pessimistically insert an opaque type for each type we
 | |
| // are about to read.  This means that forward references will resolve to
 | |
| // something and when we reread the type later, we can replace the opaque type
 | |
| // with a new resolved concrete type.
 | |
| //
 | |
| void debug_type_tables();
 | |
| void BytecodeParser::parseTypeConstants(const unsigned char *&Buf,
 | |
|                                         const unsigned char *EndBuf,
 | |
| 					TypeValuesListTy &Tab,
 | |
| 					unsigned NumEntries) {
 | |
|   assert(Tab.size() == 0 && "should not have read type constants in before!");
 | |
| 
 | |
|   // Insert a bunch of opaque types to be resolved later...
 | |
|   for (unsigned i = 0; i < NumEntries; ++i)
 | |
|     Tab.push_back(OpaqueType::get());
 | |
| 
 | |
|   // Loop through reading all of the types.  Forward types will make use of the
 | |
|   // opaque types just inserted.
 | |
|   //
 | |
|   for (unsigned i = 0; i < NumEntries; ++i) {
 | |
|     const Type *NewTy = parseTypeConstant(Buf, EndBuf), *OldTy = Tab[i].get();
 | |
|     if (NewTy == 0) throw std::string("Parsed invalid type.");
 | |
|     BCR_TRACE(4, "#" << i << ": Read Type Constant: '" << NewTy <<
 | |
|               "' Replacing: " << OldTy << "\n");
 | |
| 
 | |
|     // Don't insertValue the new type... instead we want to replace the opaque
 | |
|     // type with the new concrete value...
 | |
|     //
 | |
| 
 | |
|     // Refine the abstract type to the new type.  This causes all uses of the
 | |
|     // abstract type to use the newty.  This also will cause the opaque type
 | |
|     // to be deleted...
 | |
|     //
 | |
|     ((DerivedType*)Tab[i].get())->refineAbstractTypeTo(NewTy);
 | |
| 
 | |
|     // This should have replace the old opaque type with the new type in the
 | |
|     // value table... or with a preexisting type that was already in the system
 | |
|     assert(Tab[i] != OldTy && "refineAbstractType didn't work!");
 | |
|   }
 | |
| 
 | |
|   BCR_TRACE(5, "Resulting types:\n");
 | |
|   for (unsigned i = 0; i < NumEntries; ++i) {
 | |
|     BCR_TRACE(5, (void*)Tab[i].get() << " - " << Tab[i].get() << "\n");
 | |
|   }
 | |
|   debug_type_tables();
 | |
| }
 | |
| 
 | |
| 
 | |
| Constant *BytecodeParser::parseConstantValue(const unsigned char *&Buf,
 | |
|                                              const unsigned char *EndBuf,
 | |
|                                              const Type *Ty) {
 | |
| 
 | |
|   // We must check for a ConstantExpr before switching by type because
 | |
|   // a ConstantExpr can be of any type, and has no explicit value.
 | |
|   // 
 | |
|   unsigned isExprNumArgs;               // 0 if not expr; numArgs if is expr
 | |
|   if (read_vbr(Buf, EndBuf, isExprNumArgs)) throw Error_readvbr;
 | |
|   if (isExprNumArgs) {
 | |
|     // FIXME: Encoding of constant exprs could be much more compact!
 | |
|     unsigned Opcode;
 | |
|     std::vector<Constant*> ArgVec;
 | |
|     ArgVec.reserve(isExprNumArgs);
 | |
|     if (read_vbr(Buf, EndBuf, Opcode)) throw Error_readvbr;
 | |
| 
 | |
|     // Read the slot number and types of each of the arguments
 | |
|     for (unsigned i = 0; i != isExprNumArgs; ++i) {
 | |
|       unsigned ArgValSlot, ArgTypeSlot;
 | |
|       if (read_vbr(Buf, EndBuf, ArgValSlot)) throw Error_readvbr;
 | |
|       if (read_vbr(Buf, EndBuf, ArgTypeSlot)) throw Error_readvbr;
 | |
|       const Type *ArgTy = getType(ArgTypeSlot);
 | |
|       
 | |
|       BCR_TRACE(4, "CE Arg " << i << ": Type: '" << *ArgTy << "'  slot: "
 | |
|                 << ArgValSlot << "\n");
 | |
|       
 | |
|       // Get the arg value from its slot if it exists, otherwise a placeholder
 | |
|       ArgVec.push_back(getConstantValue(ArgTy, ArgValSlot));
 | |
|     }
 | |
|     
 | |
|     // Construct a ConstantExpr of the appropriate kind
 | |
|     if (isExprNumArgs == 1) {           // All one-operand expressions
 | |
|       assert(Opcode == Instruction::Cast);
 | |
|       return ConstantExpr::getCast(ArgVec[0], Ty);
 | |
|     } else if (Opcode == Instruction::GetElementPtr) { // GetElementPtr
 | |
|       std::vector<Constant*> IdxList(ArgVec.begin()+1, ArgVec.end());
 | |
|       return ConstantExpr::getGetElementPtr(ArgVec[0], IdxList);
 | |
|     } else {                            // All other 2-operand expressions
 | |
|       return ConstantExpr::get(Opcode, ArgVec[0], ArgVec[1]);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Ok, not an ConstantExpr.  We now know how to read the given type...
 | |
|   switch (Ty->getPrimitiveID()) {
 | |
|   case Type::BoolTyID: {
 | |
|     unsigned Val;
 | |
|     if (read_vbr(Buf, EndBuf, Val)) throw Error_readvbr;
 | |
|     if (Val != 0 && Val != 1) throw std::string("Invalid boolean value read.");
 | |
|     return ConstantBool::get(Val == 1);
 | |
|   }
 | |
| 
 | |
|   case Type::UByteTyID:   // Unsigned integer types...
 | |
|   case Type::UShortTyID:
 | |
|   case Type::UIntTyID: {
 | |
|     unsigned Val;
 | |
|     if (read_vbr(Buf, EndBuf, Val)) throw Error_readvbr;
 | |
|     if (!ConstantUInt::isValueValidForType(Ty, Val)) 
 | |
|       throw std::string("Invalid unsigned byte/short/int read.");
 | |
|     return ConstantUInt::get(Ty, Val);
 | |
|   }
 | |
| 
 | |
|   case Type::ULongTyID: {
 | |
|     uint64_t Val;
 | |
|     if (read_vbr(Buf, EndBuf, Val)) throw Error_readvbr;
 | |
|     return ConstantUInt::get(Ty, Val);
 | |
|   }
 | |
| 
 | |
|   case Type::SByteTyID:   // Signed integer types...
 | |
|   case Type::ShortTyID:
 | |
|   case Type::IntTyID: {
 | |
|   case Type::LongTyID:
 | |
|     int64_t Val;
 | |
|     if (read_vbr(Buf, EndBuf, Val)) throw Error_readvbr;
 | |
|     if (!ConstantSInt::isValueValidForType(Ty, Val)) 
 | |
|       throw std::string("Invalid signed byte/short/int/long read.");
 | |
|     return ConstantSInt::get(Ty, Val);
 | |
|   }
 | |
| 
 | |
|   case Type::FloatTyID: {
 | |
|     float F;
 | |
|     if (input_data(Buf, EndBuf, &F, &F+1)) throw Error_inputdata;
 | |
|     return ConstantFP::get(Ty, F);
 | |
|   }
 | |
| 
 | |
|   case Type::DoubleTyID: {
 | |
|     double Val;
 | |
|     if (input_data(Buf, EndBuf, &Val, &Val+1)) throw Error_inputdata;
 | |
|     return ConstantFP::get(Ty, Val);
 | |
|   }
 | |
| 
 | |
|   case Type::TypeTyID:
 | |
|     throw std::string("Type constants shouldn't live in constant table!");
 | |
| 
 | |
|   case Type::ArrayTyID: {
 | |
|     const ArrayType *AT = cast<ArrayType>(Ty);
 | |
|     unsigned NumElements = AT->getNumElements();
 | |
| 
 | |
|     std::vector<Constant*> Elements;
 | |
|     while (NumElements--) {   // Read all of the elements of the constant.
 | |
|       unsigned Slot;
 | |
|       if (read_vbr(Buf, EndBuf, Slot)) throw Error_readvbr;
 | |
|       Elements.push_back(getConstantValue(AT->getElementType(), Slot));
 | |
|     }
 | |
|     return ConstantArray::get(AT, Elements);
 | |
|   }
 | |
| 
 | |
|   case Type::StructTyID: {
 | |
|     const StructType *ST = cast<StructType>(Ty);
 | |
|     const StructType::ElementTypes &ET = ST->getElementTypes();
 | |
| 
 | |
|     std::vector<Constant *> Elements;
 | |
|     for (unsigned i = 0; i < ET.size(); ++i) {
 | |
|       unsigned Slot;
 | |
|       if (read_vbr(Buf, EndBuf, Slot)) throw Error_readvbr;
 | |
|       Elements.push_back(getConstantValue(ET[i], Slot));
 | |
|     }
 | |
| 
 | |
|     return ConstantStruct::get(ST, Elements);
 | |
|   }    
 | |
| 
 | |
|   case Type::PointerTyID: {  // ConstantPointerRef value...
 | |
|     const PointerType *PT = cast<PointerType>(Ty);
 | |
|     unsigned Slot;
 | |
|     if (read_vbr(Buf, EndBuf, Slot)) throw Error_readvbr;
 | |
|     BCR_TRACE(4, "CPR: Type: '" << Ty << "'  slot: " << Slot << "\n");
 | |
|     
 | |
|     // Check to see if we have already read this global variable...
 | |
|     Value *Val = getValue(PT, Slot, false);
 | |
|     GlobalValue *GV;
 | |
|     if (Val) {
 | |
|       if (!(GV = dyn_cast<GlobalValue>(Val))) 
 | |
|         throw std::string("Value of ConstantPointerRef not in ValueTable!");
 | |
|       BCR_TRACE(5, "Value Found in ValueTable!\n");
 | |
|     } else if (RevisionNum > 0) {
 | |
|       // Revision #0 could have forward references to globals that were weird.
 | |
|       // We got rid of this in subsequent revs.
 | |
|       throw std::string("Forward references to globals not allowed.");
 | |
|     } else {         // Nope... find or create a forward ref. for it
 | |
|       GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(PT, Slot));
 | |
|       
 | |
|       if (I != GlobalRefs.end()) {
 | |
|         BCR_TRACE(5, "Previous forward ref found!\n");
 | |
|         GV = cast<GlobalValue>(I->second);
 | |
|       } else {
 | |
|         BCR_TRACE(5, "Creating new forward ref to a global variable!\n");
 | |
|         
 | |
|         // Create a placeholder for the global variable reference...
 | |
|         GlobalVariable *GVar =
 | |
|           new GlobalVariable(PT->getElementType(), false,
 | |
|                              GlobalValue::InternalLinkage);
 | |
|         
 | |
|         // Keep track of the fact that we have a forward ref to recycle it
 | |
|         GlobalRefs.insert(std::make_pair(std::make_pair(PT, Slot), GVar));
 | |
|         
 | |
|         // Must temporarily push this value into the module table...
 | |
|         TheModule->getGlobalList().push_back(GVar);
 | |
|         GV = GVar;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     return ConstantPointerRef::get(GV);
 | |
|   }
 | |
| 
 | |
|   default:
 | |
|     throw std::string("Don't know how to deserialize constant value of type '"+
 | |
|                       Ty->getDescription());
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BytecodeParser::ParseGlobalTypes(const unsigned char *&Buf,
 | |
|                                       const unsigned char *EndBuf) {
 | |
|   ValueTable T;
 | |
|   ParseConstantPool(Buf, EndBuf, T, ModuleTypeValues);
 | |
| }
 | |
| 
 | |
| void BytecodeParser::ParseConstantPool(const unsigned char *&Buf,
 | |
|                                        const unsigned char *EndBuf,
 | |
|                                        ValueTable &Tab, 
 | |
|                                        TypeValuesListTy &TypeTab) {
 | |
|   while (Buf < EndBuf) {
 | |
|     unsigned NumEntries, Typ;
 | |
| 
 | |
|     if (read_vbr(Buf, EndBuf, NumEntries) ||
 | |
|         read_vbr(Buf, EndBuf, Typ)) throw Error_readvbr;
 | |
|     if (Typ == Type::TypeTyID) {
 | |
|       BCR_TRACE(3, "Type: 'type'  NumEntries: " << NumEntries << "\n");
 | |
|       parseTypeConstants(Buf, EndBuf, TypeTab, NumEntries);
 | |
|     } else {
 | |
|       const Type *Ty = getType(Typ);
 | |
|       BCR_TRACE(3, "Type: '" << *Ty << "'  NumEntries: " << NumEntries << "\n");
 | |
| 
 | |
|       for (unsigned i = 0; i < NumEntries; ++i) {
 | |
|         Constant *C = parseConstantValue(Buf, EndBuf, Ty);
 | |
|         assert(C && "parseConstantValue returned NULL!");
 | |
|         BCR_TRACE(4, "Read Constant: '" << *C << "'\n");
 | |
|         unsigned Slot = insertValue(C, Typ, Tab);
 | |
| 
 | |
|         // If we are reading a function constant table, make sure that we adjust
 | |
|         // the slot number to be the real global constant number.
 | |
|         //
 | |
|         if (&Tab != &ModuleValues && Typ < ModuleValues.size())
 | |
|           Slot += ModuleValues[Typ]->size();
 | |
|         ResolveReferencesToValue(C, Slot);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (Buf > EndBuf) throw std::string("Read past end of buffer.");
 | |
| }
 |