mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@9426 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			333 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			333 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- InstrForest.cpp - Build instruction forest for inst selection -----===//
 | 
						|
// 
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  The key goal is to group instructions into a single
 | 
						|
//  tree if one or more of them might be potentially combined into a single
 | 
						|
//  complex instruction in the target machine.
 | 
						|
//  Since this grouping is completely machine-independent, we do it as
 | 
						|
//  aggressive as possible to exploit any possible target instructions.
 | 
						|
//  In particular, we group two instructions O and I if:
 | 
						|
//      (1) Instruction O computes an operand used by instruction I,
 | 
						|
//  and (2) O and I are part of the same basic block,
 | 
						|
//  and (3) O has only a single use, viz., I.
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Constant.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/iTerminators.h"
 | 
						|
#include "llvm/iMemory.h"
 | 
						|
#include "llvm/Type.h"
 | 
						|
#include "llvm/CodeGen/InstrForest.h"
 | 
						|
#include "llvm/CodeGen/MachineCodeForInstruction.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "Support/STLExtras.h"
 | 
						|
#include "Config/alloca.h"
 | 
						|
 | 
						|
//------------------------------------------------------------------------ 
 | 
						|
// class InstrTreeNode
 | 
						|
//------------------------------------------------------------------------ 
 | 
						|
 | 
						|
void
 | 
						|
InstrTreeNode::dump(int dumpChildren, int indent) const {
 | 
						|
  dumpNode(indent);
 | 
						|
  
 | 
						|
  if (dumpChildren) {
 | 
						|
    if (LeftChild)
 | 
						|
      LeftChild->dump(dumpChildren, indent+1);
 | 
						|
    if (RightChild)
 | 
						|
      RightChild->dump(dumpChildren, indent+1);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
InstructionNode::InstructionNode(Instruction* I)
 | 
						|
  : InstrTreeNode(NTInstructionNode, I), codeIsFoldedIntoParent(false)
 | 
						|
{
 | 
						|
  opLabel = I->getOpcode();
 | 
						|
 | 
						|
  // Distinguish special cases of some instructions such as Ret and Br
 | 
						|
  // 
 | 
						|
  if (opLabel == Instruction::Ret && cast<ReturnInst>(I)->getReturnValue()) {
 | 
						|
    opLabel = RetValueOp;              	 // ret(value) operation
 | 
						|
  }
 | 
						|
  else if (opLabel ==Instruction::Br && !cast<BranchInst>(I)->isUnconditional())
 | 
						|
  {
 | 
						|
    opLabel = BrCondOp;		// br(cond) operation
 | 
						|
  } else if (opLabel >= Instruction::SetEQ && opLabel <= Instruction::SetGT) {
 | 
						|
    opLabel = SetCCOp;		// common label for all SetCC ops
 | 
						|
  } else if (opLabel == Instruction::Alloca && I->getNumOperands() > 0) {
 | 
						|
    opLabel = AllocaN;		 // Alloca(ptr, N) operation
 | 
						|
  } else if (opLabel == Instruction::GetElementPtr &&
 | 
						|
             cast<GetElementPtrInst>(I)->hasIndices()) {
 | 
						|
    opLabel = opLabel + 100;		 // getElem with index vector
 | 
						|
  } else if (opLabel == Instruction::Xor &&
 | 
						|
             BinaryOperator::isNot(I)) {
 | 
						|
    opLabel = (I->getType() == Type::BoolTy)?  NotOp  // boolean Not operator
 | 
						|
      : BNotOp; // bitwise Not operator
 | 
						|
  } else if (opLabel == Instruction::And || opLabel == Instruction::Or ||
 | 
						|
             opLabel == Instruction::Xor) {
 | 
						|
    // Distinguish bitwise operators from logical operators!
 | 
						|
    if (I->getType() != Type::BoolTy)
 | 
						|
      opLabel = opLabel + 100;	 // bitwise operator
 | 
						|
  } else if (opLabel == Instruction::Cast) {
 | 
						|
    const Type *ITy = I->getType();
 | 
						|
    switch(ITy->getPrimitiveID())
 | 
						|
    {
 | 
						|
    case Type::BoolTyID:    opLabel = ToBoolTy;    break;
 | 
						|
    case Type::UByteTyID:   opLabel = ToUByteTy;   break;
 | 
						|
    case Type::SByteTyID:   opLabel = ToSByteTy;   break;
 | 
						|
    case Type::UShortTyID:  opLabel = ToUShortTy;  break;
 | 
						|
    case Type::ShortTyID:   opLabel = ToShortTy;   break;
 | 
						|
    case Type::UIntTyID:    opLabel = ToUIntTy;    break;
 | 
						|
    case Type::IntTyID:     opLabel = ToIntTy;     break;
 | 
						|
    case Type::ULongTyID:   opLabel = ToULongTy;   break;
 | 
						|
    case Type::LongTyID:    opLabel = ToLongTy;    break;
 | 
						|
    case Type::FloatTyID:   opLabel = ToFloatTy;   break;
 | 
						|
    case Type::DoubleTyID:  opLabel = ToDoubleTy;  break;
 | 
						|
    case Type::ArrayTyID:   opLabel = ToArrayTy;   break;
 | 
						|
    case Type::PointerTyID: opLabel = ToPointerTy; break;
 | 
						|
    default:
 | 
						|
      // Just use `Cast' opcode otherwise. It's probably ignored.
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
InstructionNode::dumpNode(int indent) const {
 | 
						|
  for (int i=0; i < indent; i++)
 | 
						|
    std::cerr << "    ";
 | 
						|
  std::cerr << getInstruction()->getOpcodeName()
 | 
						|
            << " [label " << getOpLabel() << "]" << "\n";
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
VRegListNode::dumpNode(int indent) const {
 | 
						|
  for (int i=0; i < indent; i++)
 | 
						|
    std::cerr << "    ";
 | 
						|
  
 | 
						|
  std::cerr << "List" << "\n";
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
VRegNode::dumpNode(int indent) const {
 | 
						|
  for (int i=0; i < indent; i++)
 | 
						|
    std::cerr << "    ";
 | 
						|
  
 | 
						|
  std::cerr << "VReg " << getValue() << "\t(type "
 | 
						|
            << (int) getValue()->getValueType() << ")" << "\n";
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
ConstantNode::dumpNode(int indent) const {
 | 
						|
  for (int i=0; i < indent; i++)
 | 
						|
    std::cerr << "    ";
 | 
						|
  
 | 
						|
  std::cerr << "Constant " << getValue() << "\t(type "
 | 
						|
            << (int) getValue()->getValueType() << ")" << "\n";
 | 
						|
}
 | 
						|
 | 
						|
void LabelNode::dumpNode(int indent) const {
 | 
						|
  for (int i=0; i < indent; i++)
 | 
						|
    std::cerr << "    ";
 | 
						|
  
 | 
						|
  std::cerr << "Label " << getValue() << "\n";
 | 
						|
}
 | 
						|
 | 
						|
//------------------------------------------------------------------------
 | 
						|
// class InstrForest
 | 
						|
// 
 | 
						|
// A forest of instruction trees, usually for a single method.
 | 
						|
//------------------------------------------------------------------------ 
 | 
						|
 | 
						|
InstrForest::InstrForest(Function *F) {
 | 
						|
  for (Function::iterator BB = F->begin(), FE = F->end(); BB != FE; ++BB) {
 | 
						|
    for(BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | 
						|
      buildTreeForInstruction(I);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
InstrForest::~InstrForest() {
 | 
						|
  for_each(treeRoots.begin(), treeRoots.end(), deleter<InstructionNode>);
 | 
						|
}
 | 
						|
 | 
						|
void InstrForest::dump() const {
 | 
						|
  for (const_root_iterator I = roots_begin(); I != roots_end(); ++I)
 | 
						|
    (*I)->dump(/*dumpChildren*/ 1, /*indent*/ 0);
 | 
						|
}
 | 
						|
 | 
						|
inline void InstrForest::eraseRoot(InstructionNode* node) {
 | 
						|
  for (RootSet::reverse_iterator RI=treeRoots.rbegin(), RE=treeRoots.rend();
 | 
						|
       RI != RE; ++RI)
 | 
						|
    if (*RI == node)
 | 
						|
      treeRoots.erase(RI.base()-1);
 | 
						|
}
 | 
						|
 | 
						|
inline void InstrForest::noteTreeNodeForInstr(Instruction *instr,
 | 
						|
                                              InstructionNode *treeNode) {
 | 
						|
  (*this)[instr] = treeNode;
 | 
						|
  treeRoots.push_back(treeNode);	// mark node as root of a new tree
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
inline void InstrForest::setLeftChild(InstrTreeNode *parent,
 | 
						|
                                      InstrTreeNode *child) {
 | 
						|
  parent->LeftChild = child;
 | 
						|
  child->Parent = parent;
 | 
						|
  if (InstructionNode* instrNode = dyn_cast<InstructionNode>(child))
 | 
						|
    eraseRoot(instrNode); // no longer a tree root
 | 
						|
}
 | 
						|
 | 
						|
inline void InstrForest::setRightChild(InstrTreeNode *parent,
 | 
						|
                                       InstrTreeNode *child) {
 | 
						|
  parent->RightChild = child;
 | 
						|
  child->Parent = parent;
 | 
						|
  if (InstructionNode* instrNode = dyn_cast<InstructionNode>(child))
 | 
						|
    eraseRoot(instrNode); // no longer a tree root
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
InstructionNode* InstrForest::buildTreeForInstruction(Instruction *instr) {
 | 
						|
  InstructionNode *treeNode = getTreeNodeForInstr(instr);
 | 
						|
  if (treeNode) {
 | 
						|
    // treeNode has already been constructed for this instruction
 | 
						|
    assert(treeNode->getInstruction() == instr);
 | 
						|
    return treeNode;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Otherwise, create a new tree node for this instruction.
 | 
						|
  // 
 | 
						|
  treeNode = new InstructionNode(instr);
 | 
						|
  noteTreeNodeForInstr(instr, treeNode);
 | 
						|
  
 | 
						|
  if (instr->getOpcode() == Instruction::Call) {
 | 
						|
    // Operands of call instruction
 | 
						|
    return treeNode;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If the instruction has more than 2 instruction operands,
 | 
						|
  // then we need to create artificial list nodes to hold them.
 | 
						|
  // (Note that we only count operands that get tree nodes, and not
 | 
						|
  // others such as branch labels for a branch or switch instruction.)
 | 
						|
  //
 | 
						|
  // To do this efficiently, we'll walk all operands, build treeNodes
 | 
						|
  // for all appropriate operands and save them in an array.  We then
 | 
						|
  // insert children at the end, creating list nodes where needed.
 | 
						|
  // As a performance optimization, allocate a child array only
 | 
						|
  // if a fixed array is too small.
 | 
						|
  // 
 | 
						|
  int numChildren = 0;
 | 
						|
  InstrTreeNode** childArray = new InstrTreeNode*[instr->getNumOperands()];
 | 
						|
  
 | 
						|
  //
 | 
						|
  // Walk the operands of the instruction
 | 
						|
  // 
 | 
						|
  for (Instruction::op_iterator O = instr->op_begin(); O!=instr->op_end(); ++O)
 | 
						|
    {
 | 
						|
      Value* operand = *O;
 | 
						|
      
 | 
						|
      // Check if the operand is a data value, not an branch label, type,
 | 
						|
      // method or module.  If the operand is an address type (i.e., label
 | 
						|
      // or method) that is used in an non-branching operation, e.g., `add'.
 | 
						|
      // that should be considered a data value.
 | 
						|
    
 | 
						|
      // Check latter condition here just to simplify the next IF.
 | 
						|
      bool includeAddressOperand =
 | 
						|
	(isa<BasicBlock>(operand) || isa<Function>(operand))
 | 
						|
	&& !instr->isTerminator();
 | 
						|
    
 | 
						|
      if (includeAddressOperand || isa<Instruction>(operand) ||
 | 
						|
	  isa<Constant>(operand) || isa<Argument>(operand) ||
 | 
						|
	  isa<GlobalVariable>(operand))
 | 
						|
      {
 | 
						|
        // This operand is a data value
 | 
						|
	
 | 
						|
        // An instruction that computes the incoming value is added as a
 | 
						|
        // child of the current instruction if:
 | 
						|
        //   the value has only a single use
 | 
						|
        //   AND both instructions are in the same basic block.
 | 
						|
        //   AND the current instruction is not a PHI (because the incoming
 | 
						|
        //		value is conceptually in a predecessor block,
 | 
						|
        //		even though it may be in the same static block)
 | 
						|
        // 
 | 
						|
        // (Note that if the value has only a single use (viz., `instr'),
 | 
						|
        //  the def of the value can be safely moved just before instr
 | 
						|
        //  and therefore it is safe to combine these two instructions.)
 | 
						|
        // 
 | 
						|
        // In all other cases, the virtual register holding the value
 | 
						|
        // is used directly, i.e., made a child of the instruction node.
 | 
						|
        // 
 | 
						|
        InstrTreeNode* opTreeNode;
 | 
						|
        if (isa<Instruction>(operand) && operand->hasOneUse() &&
 | 
						|
            cast<Instruction>(operand)->getParent() == instr->getParent() &&
 | 
						|
            instr->getOpcode() != Instruction::PHI &&
 | 
						|
            instr->getOpcode() != Instruction::Call)
 | 
						|
        {
 | 
						|
          // Recursively create a treeNode for it.
 | 
						|
          opTreeNode = buildTreeForInstruction((Instruction*)operand);
 | 
						|
        } else if (Constant *CPV = dyn_cast<Constant>(operand)) {
 | 
						|
          // Create a leaf node for a constant
 | 
						|
          opTreeNode = new ConstantNode(CPV);
 | 
						|
        } else {
 | 
						|
          // Create a leaf node for the virtual register
 | 
						|
          opTreeNode = new VRegNode(operand);
 | 
						|
        }
 | 
						|
 | 
						|
        childArray[numChildren++] = opTreeNode;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  
 | 
						|
  //-------------------------------------------------------------------- 
 | 
						|
  // Add any selected operands as children in the tree.
 | 
						|
  // Certain instructions can have more than 2 in some instances (viz.,
 | 
						|
  // a CALL or a memory access -- LOAD, STORE, and GetElemPtr -- to an
 | 
						|
  // array or struct). Make the operands of every such instruction into
 | 
						|
  // a right-leaning binary tree with the operand nodes at the leaves
 | 
						|
  // and VRegList nodes as internal nodes.
 | 
						|
  //-------------------------------------------------------------------- 
 | 
						|
  
 | 
						|
  InstrTreeNode *parent = treeNode;
 | 
						|
  
 | 
						|
  if (numChildren > 2) {
 | 
						|
    unsigned instrOpcode = treeNode->getInstruction()->getOpcode();
 | 
						|
    assert(instrOpcode == Instruction::PHI ||
 | 
						|
           instrOpcode == Instruction::Call ||
 | 
						|
           instrOpcode == Instruction::Load ||
 | 
						|
           instrOpcode == Instruction::Store ||
 | 
						|
           instrOpcode == Instruction::GetElementPtr);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Insert the first child as a direct child
 | 
						|
  if (numChildren >= 1)
 | 
						|
    setLeftChild(parent, childArray[0]);
 | 
						|
 | 
						|
  int n;
 | 
						|
  
 | 
						|
  // Create a list node for children 2 .. N-1, if any
 | 
						|
  for (n = numChildren-1; n >= 2; n--) {
 | 
						|
    // We have more than two children
 | 
						|
    InstrTreeNode *listNode = new VRegListNode();
 | 
						|
    setRightChild(parent, listNode);
 | 
						|
    setLeftChild(listNode, childArray[numChildren - n]);
 | 
						|
    parent = listNode;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Now insert the last remaining child (if any).
 | 
						|
  if (numChildren >= 2) {
 | 
						|
    assert(n == 1);
 | 
						|
    setRightChild(parent, childArray[numChildren - 1]);
 | 
						|
  }
 | 
						|
 | 
						|
  delete [] childArray;
 | 
						|
  return treeNode;
 | 
						|
}
 |