mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-25 00:33:15 +00:00
e96cc775e4
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60500 91177308-0d34-0410-b5e6-96231b3b80d8
644 lines
24 KiB
C++
644 lines
24 KiB
C++
//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements a top-down list scheduler, using standard algorithms.
|
|
// The basic approach uses a priority queue of available nodes to schedule.
|
|
// One at a time, nodes are taken from the priority queue (thus in priority
|
|
// order), checked for legality to schedule, and emitted if legal.
|
|
//
|
|
// Nodes may not be legal to schedule either due to structural hazards (e.g.
|
|
// pipeline or resource constraints) or because an input to the instruction has
|
|
// not completed execution.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "post-RA-sched"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
|
|
#include "llvm/CodeGen/LatencyPriorityQueue.h"
|
|
#include "llvm/CodeGen/SchedulerRegistry.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include <map>
|
|
#include <climits>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumStalls, "Number of pipeline stalls");
|
|
|
|
static cl::opt<bool>
|
|
EnableAntiDepBreaking("break-anti-dependencies",
|
|
cl::desc("Break scheduling anti-dependencies"),
|
|
cl::init(false));
|
|
|
|
namespace {
|
|
class VISIBILITY_HIDDEN PostRAScheduler : public MachineFunctionPass {
|
|
public:
|
|
static char ID;
|
|
PostRAScheduler() : MachineFunctionPass(&ID) {}
|
|
|
|
const char *getPassName() const {
|
|
return "Post RA top-down list latency scheduler";
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &Fn);
|
|
};
|
|
char PostRAScheduler::ID = 0;
|
|
|
|
class VISIBILITY_HIDDEN SchedulePostRATDList : public ScheduleDAGInstrs {
|
|
/// AvailableQueue - The priority queue to use for the available SUnits.
|
|
///
|
|
LatencyPriorityQueue AvailableQueue;
|
|
|
|
/// PendingQueue - This contains all of the instructions whose operands have
|
|
/// been issued, but their results are not ready yet (due to the latency of
|
|
/// the operation). Once the operands becomes available, the instruction is
|
|
/// added to the AvailableQueue.
|
|
std::vector<SUnit*> PendingQueue;
|
|
|
|
/// Topo - A topological ordering for SUnits.
|
|
ScheduleDAGTopologicalSort Topo;
|
|
|
|
public:
|
|
SchedulePostRATDList(MachineBasicBlock *mbb, const TargetMachine &tm)
|
|
: ScheduleDAGInstrs(mbb, tm), Topo(SUnits) {}
|
|
|
|
void Schedule();
|
|
|
|
private:
|
|
void ReleaseSucc(SUnit *SU, SUnit *SuccSU, bool isChain);
|
|
void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
|
|
void ListScheduleTopDown();
|
|
bool BreakAntiDependencies();
|
|
};
|
|
}
|
|
|
|
bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
|
|
DOUT << "PostRAScheduler\n";
|
|
|
|
// Loop over all of the basic blocks
|
|
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
|
|
MBB != MBBe; ++MBB) {
|
|
|
|
SchedulePostRATDList Scheduler(MBB, Fn.getTarget());
|
|
|
|
Scheduler.Run();
|
|
|
|
Scheduler.EmitSchedule();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Schedule - Schedule the DAG using list scheduling.
|
|
void SchedulePostRATDList::Schedule() {
|
|
DOUT << "********** List Scheduling **********\n";
|
|
|
|
// Build scheduling units.
|
|
BuildSchedUnits();
|
|
|
|
if (EnableAntiDepBreaking) {
|
|
if (BreakAntiDependencies()) {
|
|
// We made changes. Update the dependency graph.
|
|
// Theoretically we could update the graph in place:
|
|
// When a live range is changed to use a different register, remove
|
|
// the def's anti-dependence *and* output-dependence edges due to
|
|
// that register, and add new anti-dependence and output-dependence
|
|
// edges based on the next live range of the register.
|
|
SUnits.clear();
|
|
BuildSchedUnits();
|
|
}
|
|
}
|
|
|
|
AvailableQueue.initNodes(SUnits);
|
|
|
|
ListScheduleTopDown();
|
|
|
|
AvailableQueue.releaseState();
|
|
}
|
|
|
|
/// getInstrOperandRegClass - Return register class of the operand of an
|
|
/// instruction of the specified TargetInstrDesc.
|
|
static const TargetRegisterClass*
|
|
getInstrOperandRegClass(const TargetRegisterInfo *TRI,
|
|
const TargetInstrInfo *TII, const TargetInstrDesc &II,
|
|
unsigned Op) {
|
|
if (Op >= II.getNumOperands())
|
|
return NULL;
|
|
if (II.OpInfo[Op].isLookupPtrRegClass())
|
|
return TII->getPointerRegClass();
|
|
return TRI->getRegClass(II.OpInfo[Op].RegClass);
|
|
}
|
|
|
|
/// BreakAntiDependencies - Identifiy anti-dependencies along the critical path
|
|
/// of the ScheduleDAG and break them by renaming registers.
|
|
///
|
|
bool SchedulePostRATDList::BreakAntiDependencies() {
|
|
// The code below assumes that there is at least one instruction,
|
|
// so just duck out immediately if the block is empty.
|
|
if (BB->empty()) return false;
|
|
|
|
Topo.InitDAGTopologicalSorting();
|
|
|
|
// Compute a critical path for the DAG.
|
|
SUnit *Max = 0;
|
|
std::vector<SDep *> CriticalPath(SUnits.size());
|
|
for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
|
|
E = Topo.end(); I != E; ++I) {
|
|
SUnit *SU = &SUnits[*I];
|
|
for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
|
|
P != PE; ++P) {
|
|
SUnit *PredSU = P->Dep;
|
|
// This assumes that there's no delay for reusing registers.
|
|
unsigned PredLatency = (P->isCtrl && P->Reg != 0) ? 1 : PredSU->Latency;
|
|
unsigned PredTotalLatency = PredSU->CycleBound + PredLatency;
|
|
if (SU->CycleBound < PredTotalLatency ||
|
|
(SU->CycleBound == PredTotalLatency && !P->isAntiDep)) {
|
|
SU->CycleBound = PredTotalLatency;
|
|
CriticalPath[*I] = &*P;
|
|
}
|
|
}
|
|
// Keep track of the node at the end of the critical path.
|
|
if (!Max || SU->CycleBound + SU->Latency > Max->CycleBound + Max->Latency)
|
|
Max = SU;
|
|
}
|
|
|
|
DOUT << "Critical path has total latency "
|
|
<< (Max ? Max->CycleBound + Max->Latency : 0) << "\n";
|
|
|
|
// Walk the critical path from the bottom up. Collect all anti-dependence
|
|
// edges on the critical path. Skip anti-dependencies between SUnits that
|
|
// are connected with other edges, since such units won't be able to be
|
|
// scheduled past each other anyway.
|
|
//
|
|
// The heuristic is that edges on the critical path are more important to
|
|
// break than other edges. And since there are a limited number of
|
|
// registers, we don't want to waste them breaking edges that aren't
|
|
// important.
|
|
//
|
|
// TODO: Instructions with multiple defs could have multiple
|
|
// anti-dependencies. The current code here only knows how to break one
|
|
// edge per instruction. Note that we'd have to be able to break all of
|
|
// the anti-dependencies in an instruction in order to be effective.
|
|
BitVector AllocatableSet = TRI->getAllocatableSet(*MF);
|
|
DenseMap<MachineInstr *, unsigned> CriticalAntiDeps;
|
|
for (SUnit *SU = Max; CriticalPath[SU->NodeNum];
|
|
SU = CriticalPath[SU->NodeNum]->Dep) {
|
|
SDep *Edge = CriticalPath[SU->NodeNum];
|
|
SUnit *NextSU = Edge->Dep;
|
|
unsigned AntiDepReg = Edge->Reg;
|
|
// Only consider anti-dependence edges.
|
|
if (!Edge->isAntiDep)
|
|
continue;
|
|
assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
|
|
// Don't break anti-dependencies on non-allocatable registers.
|
|
if (!AllocatableSet.test(AntiDepReg))
|
|
continue;
|
|
// If the SUnit has other dependencies on the SUnit that it
|
|
// anti-depends on, don't bother breaking the anti-dependency.
|
|
// Also, if there are dependencies on other SUnits with the
|
|
// same register as the anti-dependency, don't attempt to
|
|
// break it.
|
|
for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
|
|
P != PE; ++P)
|
|
if (P->Dep == NextSU ?
|
|
(!P->isAntiDep || P->Reg != AntiDepReg) :
|
|
(!P->isCtrl && !P->isAntiDep && P->Reg == AntiDepReg)) {
|
|
AntiDepReg = 0;
|
|
break;
|
|
}
|
|
if (AntiDepReg != 0)
|
|
CriticalAntiDeps[SU->getInstr()] = AntiDepReg;
|
|
}
|
|
|
|
// For live regs that are only used in one register class in a live range,
|
|
// the register class. If the register is not live, the corresponding value
|
|
// is null. If the register is live but used in multiple register classes,
|
|
// the corresponding value is -1 casted to a pointer.
|
|
const TargetRegisterClass *
|
|
Classes[TargetRegisterInfo::FirstVirtualRegister] = {};
|
|
|
|
// Map registers to all their references within a live range.
|
|
std::multimap<unsigned, MachineOperand *> RegRefs;
|
|
|
|
// The index of the most recent kill (proceding bottom-up), or -1 if
|
|
// the register is not live.
|
|
unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister];
|
|
std::fill(KillIndices, array_endof(KillIndices), -1);
|
|
// The index of the most recent def (proceding bottom up), or -1 if
|
|
// the register is live.
|
|
unsigned DefIndices[TargetRegisterInfo::FirstVirtualRegister];
|
|
std::fill(DefIndices, array_endof(DefIndices), BB->size());
|
|
|
|
// Determine the live-out physregs for this block.
|
|
if (!BB->empty() && BB->back().getDesc().isReturn())
|
|
// In a return block, examine the function live-out regs.
|
|
for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
|
|
E = MRI.liveout_end(); I != E; ++I) {
|
|
unsigned Reg = *I;
|
|
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
KillIndices[Reg] = BB->size();
|
|
DefIndices[Reg] = -1;
|
|
// Repeat, for all aliases.
|
|
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
|
|
unsigned AliasReg = *Alias;
|
|
Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
KillIndices[AliasReg] = BB->size();
|
|
DefIndices[AliasReg] = -1;
|
|
}
|
|
}
|
|
else
|
|
// In a non-return block, examine the live-in regs of all successors.
|
|
for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
|
|
SE = BB->succ_end(); SI != SE; ++SI)
|
|
for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
|
|
E = (*SI)->livein_end(); I != E; ++I) {
|
|
unsigned Reg = *I;
|
|
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
KillIndices[Reg] = BB->size();
|
|
DefIndices[Reg] = -1;
|
|
// Repeat, for all aliases.
|
|
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
|
|
unsigned AliasReg = *Alias;
|
|
Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
KillIndices[AliasReg] = BB->size();
|
|
DefIndices[AliasReg] = -1;
|
|
}
|
|
}
|
|
|
|
// Consider callee-saved registers as live-out, since we're running after
|
|
// prologue/epilogue insertion so there's no way to add additional
|
|
// saved registers.
|
|
//
|
|
// TODO: If the callee saves and restores these, then we can potentially
|
|
// use them between the save and the restore. To do that, we could scan
|
|
// the exit blocks to see which of these registers are defined.
|
|
// Alternatively, calle-saved registers that aren't saved and restored
|
|
// could be marked live-in in every block.
|
|
for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
|
|
unsigned Reg = *I;
|
|
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
KillIndices[Reg] = BB->size();
|
|
DefIndices[Reg] = -1;
|
|
// Repeat, for all aliases.
|
|
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
|
|
unsigned AliasReg = *Alias;
|
|
Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
KillIndices[AliasReg] = BB->size();
|
|
DefIndices[AliasReg] = -1;
|
|
}
|
|
}
|
|
|
|
// Consider this pattern:
|
|
// A = ...
|
|
// ... = A
|
|
// A = ...
|
|
// ... = A
|
|
// A = ...
|
|
// ... = A
|
|
// A = ...
|
|
// ... = A
|
|
// There are three anti-dependencies here, and without special care,
|
|
// we'd break all of them using the same register:
|
|
// A = ...
|
|
// ... = A
|
|
// B = ...
|
|
// ... = B
|
|
// B = ...
|
|
// ... = B
|
|
// B = ...
|
|
// ... = B
|
|
// because at each anti-dependence, B is the first register that
|
|
// isn't A which is free. This re-introduces anti-dependencies
|
|
// at all but one of the original anti-dependencies that we were
|
|
// trying to break. To avoid this, keep track of the most recent
|
|
// register that each register was replaced with, avoid avoid
|
|
// using it to repair an anti-dependence on the same register.
|
|
// This lets us produce this:
|
|
// A = ...
|
|
// ... = A
|
|
// B = ...
|
|
// ... = B
|
|
// C = ...
|
|
// ... = C
|
|
// B = ...
|
|
// ... = B
|
|
// This still has an anti-dependence on B, but at least it isn't on the
|
|
// original critical path.
|
|
//
|
|
// TODO: If we tracked more than one register here, we could potentially
|
|
// fix that remaining critical edge too. This is a little more involved,
|
|
// because unlike the most recent register, less recent registers should
|
|
// still be considered, though only if no other registers are available.
|
|
unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {};
|
|
|
|
// A registers defined and not used in an instruction. This is used for
|
|
// liveness tracking and is declared outside the loop only to avoid
|
|
// having it be re-allocated on each iteration.
|
|
DenseSet<unsigned> Defs;
|
|
|
|
// Attempt to break anti-dependence edges on the critical path. Walk the
|
|
// instructions from the bottom up, tracking information about liveness
|
|
// as we go to help determine which registers are available.
|
|
bool Changed = false;
|
|
unsigned Count = BB->size() - 1;
|
|
for (MachineBasicBlock::reverse_iterator I = BB->rbegin(), E = BB->rend();
|
|
I != E; ++I, --Count) {
|
|
MachineInstr *MI = &*I;
|
|
|
|
// Check if this instruction has an anti-dependence that we're
|
|
// interested in.
|
|
DenseMap<MachineInstr *, unsigned>::iterator C = CriticalAntiDeps.find(MI);
|
|
unsigned AntiDepReg = C != CriticalAntiDeps.end() ?
|
|
C->second : 0;
|
|
|
|
// Scan the register operands for this instruction and update
|
|
// Classes and RegRefs.
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg()) continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg == 0) continue;
|
|
const TargetRegisterClass *NewRC =
|
|
getInstrOperandRegClass(TRI, TII, MI->getDesc(), i);
|
|
|
|
// If this instruction has a use of AntiDepReg, breaking it
|
|
// is invalid.
|
|
if (MO.isUse() && AntiDepReg == Reg)
|
|
AntiDepReg = 0;
|
|
|
|
// For now, only allow the register to be changed if its register
|
|
// class is consistent across all uses.
|
|
if (!Classes[Reg] && NewRC)
|
|
Classes[Reg] = NewRC;
|
|
else if (!NewRC || Classes[Reg] != NewRC)
|
|
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
|
|
// Now check for aliases.
|
|
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
|
|
// If an alias of the reg is used during the live range, give up.
|
|
// Note that this allows us to skip checking if AntiDepReg
|
|
// overlaps with any of the aliases, among other things.
|
|
unsigned AliasReg = *Alias;
|
|
if (Classes[AliasReg]) {
|
|
Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
}
|
|
}
|
|
|
|
// If we're still willing to consider this register, note the reference.
|
|
if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
|
|
RegRefs.insert(std::make_pair(Reg, &MO));
|
|
}
|
|
|
|
// Determine AntiDepReg's register class, if it is live and is
|
|
// consistently used within a single class.
|
|
const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
|
|
assert((AntiDepReg == 0 || RC != NULL) &&
|
|
"Register should be live if it's causing an anti-dependence!");
|
|
if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
|
|
AntiDepReg = 0;
|
|
|
|
// Look for a suitable register to use to break the anti-depenence.
|
|
//
|
|
// TODO: Instead of picking the first free register, consider which might
|
|
// be the best.
|
|
if (AntiDepReg != 0) {
|
|
for (TargetRegisterClass::iterator R = RC->allocation_order_begin(*MF),
|
|
RE = RC->allocation_order_end(*MF); R != RE; ++R) {
|
|
unsigned NewReg = *R;
|
|
// Don't replace a register with itself.
|
|
if (NewReg == AntiDepReg) continue;
|
|
// Don't replace a register with one that was recently used to repair
|
|
// an anti-dependence with this AntiDepReg, because that would
|
|
// re-introduce that anti-dependence.
|
|
if (NewReg == LastNewReg[AntiDepReg]) continue;
|
|
// If NewReg is dead and NewReg's most recent def is not before
|
|
// AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
|
|
assert(((KillIndices[AntiDepReg] == -1u) != (DefIndices[AntiDepReg] == -1u)) &&
|
|
"Kill and Def maps aren't consistent for AntiDepReg!");
|
|
assert(((KillIndices[NewReg] == -1u) != (DefIndices[NewReg] == -1u)) &&
|
|
"Kill and Def maps aren't consistent for NewReg!");
|
|
if (KillIndices[NewReg] == -1u &&
|
|
KillIndices[AntiDepReg] <= DefIndices[NewReg]) {
|
|
DOUT << "Breaking anti-dependence edge on reg " << AntiDepReg
|
|
<< " with reg " << NewReg << "!\n";
|
|
|
|
// Update the references to the old register to refer to the new
|
|
// register.
|
|
std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
|
|
std::multimap<unsigned, MachineOperand *>::iterator>
|
|
Range = RegRefs.equal_range(AntiDepReg);
|
|
for (std::multimap<unsigned, MachineOperand *>::iterator
|
|
Q = Range.first, QE = Range.second; Q != QE; ++Q)
|
|
Q->second->setReg(NewReg);
|
|
|
|
// We just went back in time and modified history; the
|
|
// liveness information for the anti-depenence reg is now
|
|
// inconsistent. Set the state as if it were dead.
|
|
Classes[NewReg] = Classes[AntiDepReg];
|
|
DefIndices[NewReg] = DefIndices[AntiDepReg];
|
|
KillIndices[NewReg] = KillIndices[AntiDepReg];
|
|
|
|
Classes[AntiDepReg] = 0;
|
|
DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
|
|
KillIndices[AntiDepReg] = -1;
|
|
|
|
RegRefs.erase(AntiDepReg);
|
|
Changed = true;
|
|
LastNewReg[AntiDepReg] = NewReg;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Update liveness.
|
|
Defs.clear();
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg()) continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg == 0) continue;
|
|
if (MO.isDef())
|
|
Defs.insert(Reg);
|
|
else {
|
|
// Treat a use in the same instruction as a def as an extension of
|
|
// a live range.
|
|
Defs.erase(Reg);
|
|
// It wasn't previously live but now it is, this is a kill.
|
|
if (KillIndices[Reg] == -1u) {
|
|
KillIndices[Reg] = Count;
|
|
DefIndices[Reg] = -1u;
|
|
}
|
|
// Repeat, for all aliases.
|
|
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
|
|
unsigned AliasReg = *Alias;
|
|
Defs.erase(AliasReg);
|
|
if (KillIndices[AliasReg] == -1u) {
|
|
KillIndices[AliasReg] = Count;
|
|
DefIndices[AliasReg] = -1u;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Proceding upwards, registers that are defed but not used in this
|
|
// instruction are now dead.
|
|
for (DenseSet<unsigned>::iterator D = Defs.begin(), DE = Defs.end();
|
|
D != DE; ++D) {
|
|
unsigned Reg = *D;
|
|
DefIndices[Reg] = Count;
|
|
KillIndices[Reg] = -1;
|
|
Classes[Reg] = 0;
|
|
RegRefs.erase(Reg);
|
|
// Repeat, for all subregs.
|
|
for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
|
|
*Subreg; ++Subreg) {
|
|
unsigned SubregReg = *Subreg;
|
|
DefIndices[SubregReg] = Count;
|
|
KillIndices[SubregReg] = -1;
|
|
Classes[SubregReg] = 0;
|
|
RegRefs.erase(SubregReg);
|
|
}
|
|
}
|
|
}
|
|
assert(Count == -1u && "Count mismatch!");
|
|
|
|
return Changed;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top-Down Scheduling
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
|
|
/// the PendingQueue if the count reaches zero. Also update its cycle bound.
|
|
void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SUnit *SuccSU, bool isChain) {
|
|
--SuccSU->NumPredsLeft;
|
|
|
|
#ifndef NDEBUG
|
|
if (SuccSU->NumPredsLeft < 0) {
|
|
cerr << "*** Scheduling failed! ***\n";
|
|
SuccSU->dump(this);
|
|
cerr << " has been released too many times!\n";
|
|
assert(0);
|
|
}
|
|
#endif
|
|
|
|
// Compute how many cycles it will be before this actually becomes
|
|
// available. This is the max of the start time of all predecessors plus
|
|
// their latencies.
|
|
// If this is a token edge, we don't need to wait for the latency of the
|
|
// preceeding instruction (e.g. a long-latency load) unless there is also
|
|
// some other data dependence.
|
|
unsigned PredDoneCycle = SU->Cycle;
|
|
if (!isChain)
|
|
PredDoneCycle += SU->Latency;
|
|
else if (SU->Latency)
|
|
PredDoneCycle += 1;
|
|
SuccSU->CycleBound = std::max(SuccSU->CycleBound, PredDoneCycle);
|
|
|
|
if (SuccSU->NumPredsLeft == 0) {
|
|
PendingQueue.push_back(SuccSU);
|
|
}
|
|
}
|
|
|
|
/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
|
|
/// count of its successors. If a successor pending count is zero, add it to
|
|
/// the Available queue.
|
|
void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
|
|
DOUT << "*** Scheduling [" << CurCycle << "]: ";
|
|
DEBUG(SU->dump(this));
|
|
|
|
Sequence.push_back(SU);
|
|
SU->Cycle = CurCycle;
|
|
|
|
// Top down: release successors.
|
|
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I)
|
|
ReleaseSucc(SU, I->Dep, I->isCtrl);
|
|
|
|
SU->isScheduled = true;
|
|
AvailableQueue.ScheduledNode(SU);
|
|
}
|
|
|
|
/// ListScheduleTopDown - The main loop of list scheduling for top-down
|
|
/// schedulers.
|
|
void SchedulePostRATDList::ListScheduleTopDown() {
|
|
unsigned CurCycle = 0;
|
|
|
|
// All leaves to Available queue.
|
|
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
|
// It is available if it has no predecessors.
|
|
if (SUnits[i].Preds.empty()) {
|
|
AvailableQueue.push(&SUnits[i]);
|
|
SUnits[i].isAvailable = true;
|
|
}
|
|
}
|
|
|
|
// While Available queue is not empty, grab the node with the highest
|
|
// priority. If it is not ready put it back. Schedule the node.
|
|
Sequence.reserve(SUnits.size());
|
|
while (!AvailableQueue.empty() || !PendingQueue.empty()) {
|
|
// Check to see if any of the pending instructions are ready to issue. If
|
|
// so, add them to the available queue.
|
|
for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
|
|
if (PendingQueue[i]->CycleBound == CurCycle) {
|
|
AvailableQueue.push(PendingQueue[i]);
|
|
PendingQueue[i]->isAvailable = true;
|
|
PendingQueue[i] = PendingQueue.back();
|
|
PendingQueue.pop_back();
|
|
--i; --e;
|
|
} else {
|
|
assert(PendingQueue[i]->CycleBound > CurCycle && "Negative latency?");
|
|
}
|
|
}
|
|
|
|
// If there are no instructions available, don't try to issue anything.
|
|
if (AvailableQueue.empty()) {
|
|
++CurCycle;
|
|
continue;
|
|
}
|
|
|
|
SUnit *FoundSUnit = AvailableQueue.pop();
|
|
|
|
// If we found a node to schedule, do it now.
|
|
if (FoundSUnit) {
|
|
ScheduleNodeTopDown(FoundSUnit, CurCycle);
|
|
|
|
// If this is a pseudo-op node, we don't want to increment the current
|
|
// cycle.
|
|
if (FoundSUnit->Latency) // Don't increment CurCycle for pseudo-ops!
|
|
++CurCycle;
|
|
} else {
|
|
// Otherwise, we have a pipeline stall, but no other problem, just advance
|
|
// the current cycle and try again.
|
|
DOUT << "*** Advancing cycle, no work to do\n";
|
|
++NumStalls;
|
|
++CurCycle;
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
VerifySchedule(/*isBottomUp=*/false);
|
|
#endif
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Public Constructor Functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
FunctionPass *llvm::createPostRAScheduler() {
|
|
return new PostRAScheduler();
|
|
}
|