mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232998 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			506 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			506 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- FunctionLoweringInfo.cpp ------------------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This implements routines for translating functions from LLVM IR into
 | 
						|
// Machine IR.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/CodeGen/FunctionLoweringInfo.h"
 | 
						|
#include "llvm/ADT/PostOrderIterator.h"
 | 
						|
#include "llvm/CodeGen/Analysis.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineModuleInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DebugInfo.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetFrameLowering.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetLowering.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetSubtargetInfo.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "function-lowering-info"
 | 
						|
 | 
						|
/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
 | 
						|
/// PHI nodes or outside of the basic block that defines it, or used by a
 | 
						|
/// switch or atomic instruction, which may expand to multiple basic blocks.
 | 
						|
static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
 | 
						|
  if (I->use_empty()) return false;
 | 
						|
  if (isa<PHINode>(I)) return true;
 | 
						|
  const BasicBlock *BB = I->getParent();
 | 
						|
  for (const User *U : I->users())
 | 
						|
    if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
 | 
						|
      return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static ISD::NodeType getPreferredExtendForValue(const Value *V) {
 | 
						|
  // For the users of the source value being used for compare instruction, if
 | 
						|
  // the number of signed predicate is greater than unsigned predicate, we
 | 
						|
  // prefer to use SIGN_EXTEND.
 | 
						|
  //
 | 
						|
  // With this optimization, we would be able to reduce some redundant sign or
 | 
						|
  // zero extension instruction, and eventually more machine CSE opportunities
 | 
						|
  // can be exposed.
 | 
						|
  ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
 | 
						|
  unsigned NumOfSigned = 0, NumOfUnsigned = 0;
 | 
						|
  for (const User *U : V->users()) {
 | 
						|
    if (const auto *CI = dyn_cast<CmpInst>(U)) {
 | 
						|
      NumOfSigned += CI->isSigned();
 | 
						|
      NumOfUnsigned += CI->isUnsigned();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (NumOfSigned > NumOfUnsigned)
 | 
						|
    ExtendKind = ISD::SIGN_EXTEND;
 | 
						|
 | 
						|
  return ExtendKind;
 | 
						|
}
 | 
						|
 | 
						|
void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
 | 
						|
                               SelectionDAG *DAG) {
 | 
						|
  Fn = &fn;
 | 
						|
  MF = &mf;
 | 
						|
  TLI = MF->getSubtarget().getTargetLowering();
 | 
						|
  RegInfo = &MF->getRegInfo();
 | 
						|
 | 
						|
  // Check whether the function can return without sret-demotion.
 | 
						|
  SmallVector<ISD::OutputArg, 4> Outs;
 | 
						|
  GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI);
 | 
						|
  CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF,
 | 
						|
                                       Fn->isVarArg(), Outs, Fn->getContext());
 | 
						|
 | 
						|
  // Initialize the mapping of values to registers.  This is only set up for
 | 
						|
  // instruction values that are used outside of the block that defines
 | 
						|
  // them.
 | 
						|
  Function::const_iterator BB = Fn->begin(), EB = Fn->end();
 | 
						|
  for (; BB != EB; ++BB)
 | 
						|
    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
 | 
						|
         I != E; ++I) {
 | 
						|
      if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
 | 
						|
        // Static allocas can be folded into the initial stack frame adjustment.
 | 
						|
        if (AI->isStaticAlloca()) {
 | 
						|
          const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
 | 
						|
          Type *Ty = AI->getAllocatedType();
 | 
						|
          uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
 | 
						|
          unsigned Align =
 | 
						|
              std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty),
 | 
						|
                       AI->getAlignment());
 | 
						|
 | 
						|
          TySize *= CUI->getZExtValue();   // Get total allocated size.
 | 
						|
          if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
 | 
						|
 | 
						|
          StaticAllocaMap[AI] =
 | 
						|
            MF->getFrameInfo()->CreateStackObject(TySize, Align, false, AI);
 | 
						|
 | 
						|
        } else {
 | 
						|
          unsigned Align = std::max(
 | 
						|
              (unsigned)TLI->getDataLayout()->getPrefTypeAlignment(
 | 
						|
                AI->getAllocatedType()),
 | 
						|
              AI->getAlignment());
 | 
						|
          unsigned StackAlign =
 | 
						|
              MF->getSubtarget().getFrameLowering()->getStackAlignment();
 | 
						|
          if (Align <= StackAlign)
 | 
						|
            Align = 0;
 | 
						|
          // Inform the Frame Information that we have variable-sized objects.
 | 
						|
          MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1, AI);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Look for inline asm that clobbers the SP register.
 | 
						|
      if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
 | 
						|
        ImmutableCallSite CS(I);
 | 
						|
        if (isa<InlineAsm>(CS.getCalledValue())) {
 | 
						|
          unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
 | 
						|
          const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
 | 
						|
          std::vector<TargetLowering::AsmOperandInfo> Ops =
 | 
						|
              TLI->ParseConstraints(TRI, CS);
 | 
						|
          for (size_t I = 0, E = Ops.size(); I != E; ++I) {
 | 
						|
            TargetLowering::AsmOperandInfo &Op = Ops[I];
 | 
						|
            if (Op.Type == InlineAsm::isClobber) {
 | 
						|
              // Clobbers don't have SDValue operands, hence SDValue().
 | 
						|
              TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
 | 
						|
              std::pair<unsigned, const TargetRegisterClass *> PhysReg =
 | 
						|
                  TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
 | 
						|
                                                    Op.ConstraintVT);
 | 
						|
              if (PhysReg.first == SP)
 | 
						|
                MF->getFrameInfo()->setHasInlineAsmWithSPAdjust(true);
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Look for calls to the @llvm.va_start intrinsic. We can omit some
 | 
						|
      // prologue boilerplate for variadic functions that don't examine their
 | 
						|
      // arguments.
 | 
						|
      if (const auto *II = dyn_cast<IntrinsicInst>(I)) {
 | 
						|
        if (II->getIntrinsicID() == Intrinsic::vastart)
 | 
						|
          MF->getFrameInfo()->setHasVAStart(true);
 | 
						|
      }
 | 
						|
 | 
						|
      // If we have a musttail call in a variadic funciton, we need to ensure we
 | 
						|
      // forward implicit register parameters.
 | 
						|
      if (const auto *CI = dyn_cast<CallInst>(I)) {
 | 
						|
        if (CI->isMustTailCall() && Fn->isVarArg())
 | 
						|
          MF->getFrameInfo()->setHasMustTailInVarArgFunc(true);
 | 
						|
      }
 | 
						|
 | 
						|
      // Mark values used outside their block as exported, by allocating
 | 
						|
      // a virtual register for them.
 | 
						|
      if (isUsedOutsideOfDefiningBlock(I))
 | 
						|
        if (!isa<AllocaInst>(I) ||
 | 
						|
            !StaticAllocaMap.count(cast<AllocaInst>(I)))
 | 
						|
          InitializeRegForValue(I);
 | 
						|
 | 
						|
      // Collect llvm.dbg.declare information. This is done now instead of
 | 
						|
      // during the initial isel pass through the IR so that it is done
 | 
						|
      // in a predictable order.
 | 
						|
      if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) {
 | 
						|
        MachineModuleInfo &MMI = MF->getMMI();
 | 
						|
        DIVariable DIVar(DI->getVariable());
 | 
						|
        assert((!DIVar || DIVar.isVariable()) &&
 | 
						|
          "Variable in DbgDeclareInst should be either null or a DIVariable.");
 | 
						|
        if (MMI.hasDebugInfo() &&
 | 
						|
            DIVar &&
 | 
						|
            !DI->getDebugLoc().isUnknown()) {
 | 
						|
          // Don't handle byval struct arguments or VLAs, for example.
 | 
						|
          // Non-byval arguments are handled here (they refer to the stack
 | 
						|
          // temporary alloca at this point).
 | 
						|
          const Value *Address = DI->getAddress();
 | 
						|
          if (Address) {
 | 
						|
            if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
 | 
						|
              Address = BCI->getOperand(0);
 | 
						|
            if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
 | 
						|
              DenseMap<const AllocaInst *, int>::iterator SI =
 | 
						|
                StaticAllocaMap.find(AI);
 | 
						|
              if (SI != StaticAllocaMap.end()) { // Check for VLAs.
 | 
						|
                int FI = SI->second;
 | 
						|
                MMI.setVariableDbgInfo(DI->getVariable(), DI->getExpression(),
 | 
						|
                                       FI, DI->getDebugLoc());
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Decide the preferred extend type for a value.
 | 
						|
      PreferredExtendType[I] = getPreferredExtendForValue(I);
 | 
						|
    }
 | 
						|
 | 
						|
  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
 | 
						|
  // also creates the initial PHI MachineInstrs, though none of the input
 | 
						|
  // operands are populated.
 | 
						|
  for (BB = Fn->begin(); BB != EB; ++BB) {
 | 
						|
    MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
 | 
						|
    MBBMap[BB] = MBB;
 | 
						|
    MF->push_back(MBB);
 | 
						|
 | 
						|
    // Transfer the address-taken flag. This is necessary because there could
 | 
						|
    // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
 | 
						|
    // the first one should be marked.
 | 
						|
    if (BB->hasAddressTaken())
 | 
						|
      MBB->setHasAddressTaken();
 | 
						|
 | 
						|
    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
 | 
						|
    // appropriate.
 | 
						|
    for (BasicBlock::const_iterator I = BB->begin();
 | 
						|
         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
 | 
						|
      if (PN->use_empty()) continue;
 | 
						|
 | 
						|
      // Skip empty types
 | 
						|
      if (PN->getType()->isEmptyTy())
 | 
						|
        continue;
 | 
						|
 | 
						|
      DebugLoc DL = PN->getDebugLoc();
 | 
						|
      unsigned PHIReg = ValueMap[PN];
 | 
						|
      assert(PHIReg && "PHI node does not have an assigned virtual register!");
 | 
						|
 | 
						|
      SmallVector<EVT, 4> ValueVTs;
 | 
						|
      ComputeValueVTs(*TLI, PN->getType(), ValueVTs);
 | 
						|
      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
 | 
						|
        EVT VT = ValueVTs[vti];
 | 
						|
        unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
 | 
						|
        const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
 | 
						|
        for (unsigned i = 0; i != NumRegisters; ++i)
 | 
						|
          BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
 | 
						|
        PHIReg += NumRegisters;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Mark landing pad blocks.
 | 
						|
  for (BB = Fn->begin(); BB != EB; ++BB)
 | 
						|
    if (const InvokeInst *Invoke = dyn_cast<InvokeInst>(BB->getTerminator()))
 | 
						|
      MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
 | 
						|
}
 | 
						|
 | 
						|
/// clear - Clear out all the function-specific state. This returns this
 | 
						|
/// FunctionLoweringInfo to an empty state, ready to be used for a
 | 
						|
/// different function.
 | 
						|
void FunctionLoweringInfo::clear() {
 | 
						|
  assert(CatchInfoFound.size() == CatchInfoLost.size() &&
 | 
						|
         "Not all catch info was assigned to a landing pad!");
 | 
						|
 | 
						|
  MBBMap.clear();
 | 
						|
  ValueMap.clear();
 | 
						|
  StaticAllocaMap.clear();
 | 
						|
#ifndef NDEBUG
 | 
						|
  CatchInfoLost.clear();
 | 
						|
  CatchInfoFound.clear();
 | 
						|
#endif
 | 
						|
  LiveOutRegInfo.clear();
 | 
						|
  VisitedBBs.clear();
 | 
						|
  ArgDbgValues.clear();
 | 
						|
  ByValArgFrameIndexMap.clear();
 | 
						|
  RegFixups.clear();
 | 
						|
  StatepointStackSlots.clear();
 | 
						|
  PreferredExtendType.clear();
 | 
						|
}
 | 
						|
 | 
						|
/// CreateReg - Allocate a single virtual register for the given type.
 | 
						|
unsigned FunctionLoweringInfo::CreateReg(MVT VT) {
 | 
						|
  return RegInfo->createVirtualRegister(
 | 
						|
      MF->getSubtarget().getTargetLowering()->getRegClassFor(VT));
 | 
						|
}
 | 
						|
 | 
						|
/// CreateRegs - Allocate the appropriate number of virtual registers of
 | 
						|
/// the correctly promoted or expanded types.  Assign these registers
 | 
						|
/// consecutive vreg numbers and return the first assigned number.
 | 
						|
///
 | 
						|
/// In the case that the given value has struct or array type, this function
 | 
						|
/// will assign registers for each member or element.
 | 
						|
///
 | 
						|
unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) {
 | 
						|
  const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
 | 
						|
 | 
						|
  SmallVector<EVT, 4> ValueVTs;
 | 
						|
  ComputeValueVTs(*TLI, Ty, ValueVTs);
 | 
						|
 | 
						|
  unsigned FirstReg = 0;
 | 
						|
  for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
 | 
						|
    EVT ValueVT = ValueVTs[Value];
 | 
						|
    MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
 | 
						|
 | 
						|
    unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
 | 
						|
    for (unsigned i = 0; i != NumRegs; ++i) {
 | 
						|
      unsigned R = CreateReg(RegisterVT);
 | 
						|
      if (!FirstReg) FirstReg = R;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return FirstReg;
 | 
						|
}
 | 
						|
 | 
						|
/// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
 | 
						|
/// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
 | 
						|
/// the register's LiveOutInfo is for a smaller bit width, it is extended to
 | 
						|
/// the larger bit width by zero extension. The bit width must be no smaller
 | 
						|
/// than the LiveOutInfo's existing bit width.
 | 
						|
const FunctionLoweringInfo::LiveOutInfo *
 | 
						|
FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) {
 | 
						|
  if (!LiveOutRegInfo.inBounds(Reg))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
 | 
						|
  if (!LOI->IsValid)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (BitWidth > LOI->KnownZero.getBitWidth()) {
 | 
						|
    LOI->NumSignBits = 1;
 | 
						|
    LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth);
 | 
						|
    LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth);
 | 
						|
  }
 | 
						|
 | 
						|
  return LOI;
 | 
						|
}
 | 
						|
 | 
						|
/// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
 | 
						|
/// register based on the LiveOutInfo of its operands.
 | 
						|
void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
 | 
						|
  Type *Ty = PN->getType();
 | 
						|
  if (!Ty->isIntegerTy() || Ty->isVectorTy())
 | 
						|
    return;
 | 
						|
 | 
						|
  SmallVector<EVT, 1> ValueVTs;
 | 
						|
  ComputeValueVTs(*TLI, Ty, ValueVTs);
 | 
						|
  assert(ValueVTs.size() == 1 &&
 | 
						|
         "PHIs with non-vector integer types should have a single VT.");
 | 
						|
  EVT IntVT = ValueVTs[0];
 | 
						|
 | 
						|
  if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
 | 
						|
    return;
 | 
						|
  IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
 | 
						|
  unsigned BitWidth = IntVT.getSizeInBits();
 | 
						|
 | 
						|
  unsigned DestReg = ValueMap[PN];
 | 
						|
  if (!TargetRegisterInfo::isVirtualRegister(DestReg))
 | 
						|
    return;
 | 
						|
  LiveOutRegInfo.grow(DestReg);
 | 
						|
  LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
 | 
						|
 | 
						|
  Value *V = PN->getIncomingValue(0);
 | 
						|
  if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
 | 
						|
    DestLOI.NumSignBits = 1;
 | 
						|
    APInt Zero(BitWidth, 0);
 | 
						|
    DestLOI.KnownZero = Zero;
 | 
						|
    DestLOI.KnownOne = Zero;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | 
						|
    APInt Val = CI->getValue().zextOrTrunc(BitWidth);
 | 
						|
    DestLOI.NumSignBits = Val.getNumSignBits();
 | 
						|
    DestLOI.KnownZero = ~Val;
 | 
						|
    DestLOI.KnownOne = Val;
 | 
						|
  } else {
 | 
						|
    assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
 | 
						|
                                "CopyToReg node was created.");
 | 
						|
    unsigned SrcReg = ValueMap[V];
 | 
						|
    if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
 | 
						|
      DestLOI.IsValid = false;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
 | 
						|
    if (!SrcLOI) {
 | 
						|
      DestLOI.IsValid = false;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    DestLOI = *SrcLOI;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(DestLOI.KnownZero.getBitWidth() == BitWidth &&
 | 
						|
         DestLOI.KnownOne.getBitWidth() == BitWidth &&
 | 
						|
         "Masks should have the same bit width as the type.");
 | 
						|
 | 
						|
  for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
    Value *V = PN->getIncomingValue(i);
 | 
						|
    if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
 | 
						|
      DestLOI.NumSignBits = 1;
 | 
						|
      APInt Zero(BitWidth, 0);
 | 
						|
      DestLOI.KnownZero = Zero;
 | 
						|
      DestLOI.KnownOne = Zero;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | 
						|
      APInt Val = CI->getValue().zextOrTrunc(BitWidth);
 | 
						|
      DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
 | 
						|
      DestLOI.KnownZero &= ~Val;
 | 
						|
      DestLOI.KnownOne &= Val;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
 | 
						|
                                "its CopyToReg node was created.");
 | 
						|
    unsigned SrcReg = ValueMap[V];
 | 
						|
    if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
 | 
						|
      DestLOI.IsValid = false;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
 | 
						|
    if (!SrcLOI) {
 | 
						|
      DestLOI.IsValid = false;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
 | 
						|
    DestLOI.KnownZero &= SrcLOI->KnownZero;
 | 
						|
    DestLOI.KnownOne &= SrcLOI->KnownOne;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// setArgumentFrameIndex - Record frame index for the byval
 | 
						|
/// argument. This overrides previous frame index entry for this argument,
 | 
						|
/// if any.
 | 
						|
void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
 | 
						|
                                                 int FI) {
 | 
						|
  ByValArgFrameIndexMap[A] = FI;
 | 
						|
}
 | 
						|
 | 
						|
/// getArgumentFrameIndex - Get frame index for the byval argument.
 | 
						|
/// If the argument does not have any assigned frame index then 0 is
 | 
						|
/// returned.
 | 
						|
int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
 | 
						|
  DenseMap<const Argument *, int>::iterator I =
 | 
						|
    ByValArgFrameIndexMap.find(A);
 | 
						|
  if (I != ByValArgFrameIndexMap.end())
 | 
						|
    return I->second;
 | 
						|
  DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// ComputeUsesVAFloatArgument - Determine if any floating-point values are
 | 
						|
/// being passed to this variadic function, and set the MachineModuleInfo's
 | 
						|
/// usesVAFloatArgument flag if so. This flag is used to emit an undefined
 | 
						|
/// reference to _fltused on Windows, which will link in MSVCRT's
 | 
						|
/// floating-point support.
 | 
						|
void llvm::ComputeUsesVAFloatArgument(const CallInst &I,
 | 
						|
                                      MachineModuleInfo *MMI)
 | 
						|
{
 | 
						|
  FunctionType *FT = cast<FunctionType>(
 | 
						|
    I.getCalledValue()->getType()->getContainedType(0));
 | 
						|
  if (FT->isVarArg() && !MMI->usesVAFloatArgument()) {
 | 
						|
    for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
 | 
						|
      Type* T = I.getArgOperand(i)->getType();
 | 
						|
      for (po_iterator<Type*> i = po_begin(T), e = po_end(T);
 | 
						|
           i != e; ++i) {
 | 
						|
        if (i->isFloatingPointTy()) {
 | 
						|
          MMI->setUsesVAFloatArgument(true);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// AddLandingPadInfo - Extract the exception handling information from the
 | 
						|
/// landingpad instruction and add them to the specified machine module info.
 | 
						|
void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI,
 | 
						|
                             MachineBasicBlock *MBB) {
 | 
						|
  MMI.addPersonality(MBB,
 | 
						|
                     cast<Function>(I.getPersonalityFn()->stripPointerCasts()));
 | 
						|
 | 
						|
  if (I.isCleanup())
 | 
						|
    MMI.addCleanup(MBB);
 | 
						|
 | 
						|
  // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct,
 | 
						|
  //        but we need to do it this way because of how the DWARF EH emitter
 | 
						|
  //        processes the clauses.
 | 
						|
  for (unsigned i = I.getNumClauses(); i != 0; --i) {
 | 
						|
    Value *Val = I.getClause(i - 1);
 | 
						|
    if (I.isCatch(i - 1)) {
 | 
						|
      MMI.addCatchTypeInfo(MBB,
 | 
						|
                           dyn_cast<GlobalValue>(Val->stripPointerCasts()));
 | 
						|
    } else {
 | 
						|
      // Add filters in a list.
 | 
						|
      Constant *CVal = cast<Constant>(Val);
 | 
						|
      SmallVector<const GlobalValue*, 4> FilterList;
 | 
						|
      for (User::op_iterator
 | 
						|
             II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II)
 | 
						|
        FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
 | 
						|
 | 
						|
      MMI.addFilterTypeInfo(MBB, FilterList);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 |