mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	This reduces selectiondag time on kc++ from 5.43s to 4.98s (9%). More significantly, this speeds up the default ppc scheduler from ~1571ms to 1063ms, a 33% speedup. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@29743 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			903 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			903 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===----- ScheduleDAGList.cpp - Reg pressure reduction list scheduler ----===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by Evan Cheng and is distributed under the
 | |
| // University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements bottom-up and top-down register pressure reduction list
 | |
| // schedulers, using standard algorithms.  The basic approach uses a priority
 | |
| // queue of available nodes to schedule.  One at a time, nodes are taken from
 | |
| // the priority queue (thus in priority order), checked for legality to
 | |
| // schedule, and emitted if legal.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "sched"
 | |
| #include "llvm/CodeGen/ScheduleDAG.h"
 | |
| #include "llvm/CodeGen/SchedulerRegistry.h"
 | |
| #include "llvm/CodeGen/SSARegMap.h"
 | |
| #include "llvm/Target/MRegisterInfo.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/Visibility.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include <climits>
 | |
| #include <iostream>
 | |
| #include <queue>
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| static RegisterScheduler
 | |
|   burrListDAGScheduler("list-burr",
 | |
|                        "  Bottom-up register reduction list scheduling",
 | |
|                        createBURRListDAGScheduler);
 | |
| static RegisterScheduler
 | |
|   tdrListrDAGScheduler("list-tdrr",
 | |
|                        "  Top-down register reduction list scheduling",
 | |
|                        createTDRRListDAGScheduler);
 | |
| 
 | |
| namespace {
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// ScheduleDAGRRList - The actual register reduction list scheduler
 | |
| /// implementation.  This supports both top-down and bottom-up scheduling.
 | |
| ///
 | |
| 
 | |
| class VISIBILITY_HIDDEN ScheduleDAGRRList : public ScheduleDAG {
 | |
| private:
 | |
|   /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
 | |
|   /// it is top-down.
 | |
|   bool isBottomUp;
 | |
|   
 | |
|   /// AvailableQueue - The priority queue to use for the available SUnits.
 | |
|   ///
 | |
|   SchedulingPriorityQueue *AvailableQueue;
 | |
| 
 | |
| public:
 | |
|   ScheduleDAGRRList(SelectionDAG &dag, MachineBasicBlock *bb,
 | |
|                   const TargetMachine &tm, bool isbottomup,
 | |
|                   SchedulingPriorityQueue *availqueue)
 | |
|     : ScheduleDAG(dag, bb, tm), isBottomUp(isbottomup),
 | |
|       AvailableQueue(availqueue) {
 | |
|     }
 | |
| 
 | |
|   ~ScheduleDAGRRList() {
 | |
|     delete AvailableQueue;
 | |
|   }
 | |
| 
 | |
|   void Schedule();
 | |
| 
 | |
| private:
 | |
|   void ReleasePred(SUnit *PredSU, bool isChain, unsigned CurCycle);
 | |
|   void ReleaseSucc(SUnit *SuccSU, bool isChain, unsigned CurCycle);
 | |
|   void ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle);
 | |
|   void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
 | |
|   void ListScheduleTopDown();
 | |
|   void ListScheduleBottomUp();
 | |
|   void CommuteNodesToReducePressure();
 | |
| };
 | |
| }  // end anonymous namespace
 | |
| 
 | |
| 
 | |
| /// Schedule - Schedule the DAG using list scheduling.
 | |
| void ScheduleDAGRRList::Schedule() {
 | |
|   DEBUG(std::cerr << "********** List Scheduling **********\n");
 | |
|   
 | |
|   // Build scheduling units.
 | |
|   BuildSchedUnits();
 | |
| 
 | |
|   CalculateDepths();
 | |
|   CalculateHeights();
 | |
|   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
 | |
|           SUnits[su].dumpAll(&DAG));
 | |
| 
 | |
|   AvailableQueue->initNodes(SUnits);
 | |
| 
 | |
|   // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
 | |
|   if (isBottomUp)
 | |
|     ListScheduleBottomUp();
 | |
|   else
 | |
|     ListScheduleTopDown();
 | |
|   
 | |
|   AvailableQueue->releaseState();
 | |
| 
 | |
|   CommuteNodesToReducePressure();
 | |
|   
 | |
|   DEBUG(std::cerr << "*** Final schedule ***\n");
 | |
|   DEBUG(dumpSchedule());
 | |
|   DEBUG(std::cerr << "\n");
 | |
|   
 | |
|   // Emit in scheduled order
 | |
|   EmitSchedule();
 | |
| }
 | |
| 
 | |
| /// CommuteNodesToReducePressure - Is a node is two-address and commutable, and
 | |
| /// it is not the last use of its first operand, add it to the CommuteSet if
 | |
| /// possible. It will be commuted when it is translated to a MI.
 | |
| void ScheduleDAGRRList::CommuteNodesToReducePressure() {
 | |
|   std::set<SUnit *> OperandSeen;
 | |
|   for (unsigned i = Sequence.size()-1; i != 0; --i) {  // Ignore first node.
 | |
|     SUnit *SU = Sequence[i];
 | |
|     if (!SU) continue;
 | |
|     if (SU->isTwoAddress && SU->isCommutable) {
 | |
|       SDNode *OpN = SU->Node->getOperand(0).Val;
 | |
|       SUnit *OpSU = SUnitMap[OpN];
 | |
|       if (OpSU && OperandSeen.count(OpSU) == 1) {
 | |
|         // Ok, so SU is not the last use of OpSU, but SU is two-address so
 | |
|         // it will clobber OpSU. Try to commute it if possible.
 | |
|         bool DoCommute = true;
 | |
|         for (unsigned j = 1, e = SU->Node->getNumOperands(); j != e; ++j) {
 | |
|           OpN = SU->Node->getOperand(j).Val;
 | |
|           OpSU = SUnitMap[OpN];
 | |
|           if (OpSU && OperandSeen.count(OpSU) == 1) {
 | |
|             DoCommute = false;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         if (DoCommute)
 | |
|           CommuteSet.insert(SU->Node);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|          I != E; ++I) {
 | |
|       if (!I->second)
 | |
|         OperandSeen.insert(I->first);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Bottom-Up Scheduling
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static const TargetRegisterClass *getRegClass(SUnit *SU,
 | |
|                                               const TargetInstrInfo *TII,
 | |
|                                               const MRegisterInfo *MRI,
 | |
|                                               SSARegMap *RegMap) {
 | |
|   if (SU->Node->isTargetOpcode()) {
 | |
|     unsigned Opc = SU->Node->getTargetOpcode();
 | |
|     const TargetInstrDescriptor &II = TII->get(Opc);
 | |
|     return MRI->getRegClass(II.OpInfo->RegClass);
 | |
|   } else {
 | |
|     assert(SU->Node->getOpcode() == ISD::CopyFromReg);
 | |
|     unsigned SrcReg = cast<RegisterSDNode>(SU->Node->getOperand(1))->getReg();
 | |
|     if (MRegisterInfo::isVirtualRegister(SrcReg))
 | |
|       return RegMap->getRegClass(SrcReg);
 | |
|     else {
 | |
|       for (MRegisterInfo::regclass_iterator I = MRI->regclass_begin(),
 | |
|              E = MRI->regclass_end(); I != E; ++I)
 | |
|         if ((*I)->hasType(SU->Node->getValueType(0)) &&
 | |
|             (*I)->contains(SrcReg))
 | |
|           return *I;
 | |
|       assert(false && "Couldn't find register class for reg copy!");
 | |
|     }
 | |
|     return NULL;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static unsigned getNumResults(SUnit *SU) {
 | |
|   unsigned NumResults = 0;
 | |
|   for (unsigned i = 0, e = SU->Node->getNumValues(); i != e; ++i) {
 | |
|     MVT::ValueType VT = SU->Node->getValueType(i);
 | |
|     if (VT != MVT::Other && VT != MVT::Flag)
 | |
|       NumResults++;
 | |
|   }
 | |
|   return NumResults;
 | |
| }
 | |
| 
 | |
| /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
 | |
| /// the Available queue is the count reaches zero. Also update its cycle bound.
 | |
| void ScheduleDAGRRList::ReleasePred(SUnit *PredSU, bool isChain, 
 | |
|                                     unsigned CurCycle) {
 | |
|   // FIXME: the distance between two nodes is not always == the predecessor's
 | |
|   // latency. For example, the reader can very well read the register written
 | |
|   // by the predecessor later than the issue cycle. It also depends on the
 | |
|   // interrupt model (drain vs. freeze).
 | |
|   PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency);
 | |
| 
 | |
|   if (!isChain)
 | |
|     PredSU->NumSuccsLeft--;
 | |
|   else
 | |
|     PredSU->NumChainSuccsLeft--;
 | |
|   
 | |
| #ifndef NDEBUG
 | |
|   if (PredSU->NumSuccsLeft < 0 || PredSU->NumChainSuccsLeft < 0) {
 | |
|     std::cerr << "*** List scheduling failed! ***\n";
 | |
|     PredSU->dump(&DAG);
 | |
|     std::cerr << " has been released too many times!\n";
 | |
|     assert(0);
 | |
|   }
 | |
| #endif
 | |
|   
 | |
|   if ((PredSU->NumSuccsLeft + PredSU->NumChainSuccsLeft) == 0) {
 | |
|     // EntryToken has to go last!  Special case it here.
 | |
|     if (PredSU->Node->getOpcode() != ISD::EntryToken) {
 | |
|       PredSU->isAvailable = true;
 | |
|       AvailableQueue->push(PredSU);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
 | |
| /// count of its predecessors. If a predecessor pending count is zero, add it to
 | |
| /// the Available queue.
 | |
| void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
 | |
|   DEBUG(std::cerr << "*** Scheduling [" << CurCycle << "]: ");
 | |
|   DEBUG(SU->dump(&DAG));
 | |
|   SU->Cycle = CurCycle;
 | |
| 
 | |
|   AvailableQueue->ScheduledNode(SU);
 | |
|   Sequence.push_back(SU);
 | |
| 
 | |
|   // Bottom up: release predecessors
 | |
|   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I)
 | |
|     ReleasePred(I->first, I->second, CurCycle);
 | |
|   SU->isScheduled = true;
 | |
| }
 | |
| 
 | |
| /// isReady - True if node's lower cycle bound is less or equal to the current
 | |
| /// scheduling cycle. Always true if all nodes have uniform latency 1.
 | |
| static inline bool isReady(SUnit *SU, unsigned CurCycle) {
 | |
|   return SU->CycleBound <= CurCycle;
 | |
| }
 | |
| 
 | |
| /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
 | |
| /// schedulers.
 | |
| void ScheduleDAGRRList::ListScheduleBottomUp() {
 | |
|   unsigned CurCycle = 0;
 | |
|   // Add root to Available queue.
 | |
|   AvailableQueue->push(SUnitMap[DAG.getRoot().Val]);
 | |
| 
 | |
|   // While Available queue is not empty, grab the node with the highest
 | |
|   // priority. If it is not ready put it back. Schedule the node.
 | |
|   std::vector<SUnit*> NotReady;
 | |
|   SUnit *CurNode = NULL;
 | |
|   while (!AvailableQueue->empty()) {
 | |
|     SUnit *CurNode = AvailableQueue->pop();
 | |
|     while (CurNode && !isReady(CurNode, CurCycle)) {
 | |
|       NotReady.push_back(CurNode);
 | |
|       CurNode = AvailableQueue->pop();
 | |
|     }
 | |
|     
 | |
|     // Add the nodes that aren't ready back onto the available list.
 | |
|     AvailableQueue->push_all(NotReady);
 | |
|     NotReady.clear();
 | |
| 
 | |
|     if (CurNode != NULL)
 | |
|       ScheduleNodeBottomUp(CurNode, CurCycle);
 | |
|     CurCycle++;
 | |
|   }
 | |
| 
 | |
|   // Add entry node last
 | |
|   if (DAG.getEntryNode().Val != DAG.getRoot().Val) {
 | |
|     SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
 | |
|     Sequence.push_back(Entry);
 | |
|   }
 | |
| 
 | |
|   // Reverse the order if it is bottom up.
 | |
|   std::reverse(Sequence.begin(), Sequence.end());
 | |
|   
 | |
|   
 | |
| #ifndef NDEBUG
 | |
|   // Verify that all SUnits were scheduled.
 | |
|   bool AnyNotSched = false;
 | |
|   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | |
|     if (SUnits[i].NumSuccsLeft != 0 || SUnits[i].NumChainSuccsLeft != 0) {
 | |
|       if (!AnyNotSched)
 | |
|         std::cerr << "*** List scheduling failed! ***\n";
 | |
|       SUnits[i].dump(&DAG);
 | |
|       std::cerr << "has not been scheduled!\n";
 | |
|       AnyNotSched = true;
 | |
|     }
 | |
|   }
 | |
|   assert(!AnyNotSched);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Top-Down Scheduling
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
 | |
| /// the PendingQueue if the count reaches zero.
 | |
| void ScheduleDAGRRList::ReleaseSucc(SUnit *SuccSU, bool isChain, 
 | |
|                                     unsigned CurCycle) {
 | |
|   // FIXME: the distance between two nodes is not always == the predecessor's
 | |
|   // latency. For example, the reader can very well read the register written
 | |
|   // by the predecessor later than the issue cycle. It also depends on the
 | |
|   // interrupt model (drain vs. freeze).
 | |
|   SuccSU->CycleBound = std::max(SuccSU->CycleBound, CurCycle + SuccSU->Latency);
 | |
| 
 | |
|   if (!isChain)
 | |
|     SuccSU->NumPredsLeft--;
 | |
|   else
 | |
|     SuccSU->NumChainPredsLeft--;
 | |
|   
 | |
| #ifndef NDEBUG
 | |
|   if (SuccSU->NumPredsLeft < 0 || SuccSU->NumChainPredsLeft < 0) {
 | |
|     std::cerr << "*** List scheduling failed! ***\n";
 | |
|     SuccSU->dump(&DAG);
 | |
|     std::cerr << " has been released too many times!\n";
 | |
|     assert(0);
 | |
|   }
 | |
| #endif
 | |
|   
 | |
|   if ((SuccSU->NumPredsLeft + SuccSU->NumChainPredsLeft) == 0) {
 | |
|     SuccSU->isAvailable = true;
 | |
|     AvailableQueue->push(SuccSU);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
 | |
| /// count of its successors. If a successor pending count is zero, add it to
 | |
| /// the Available queue.
 | |
| void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
 | |
|   DEBUG(std::cerr << "*** Scheduling [" << CurCycle << "]: ");
 | |
|   DEBUG(SU->dump(&DAG));
 | |
|   SU->Cycle = CurCycle;
 | |
| 
 | |
|   AvailableQueue->ScheduledNode(SU);
 | |
|   Sequence.push_back(SU);
 | |
| 
 | |
|   // Top down: release successors
 | |
|   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I)
 | |
|     ReleaseSucc(I->first, I->second, CurCycle);
 | |
|   SU->isScheduled = true;
 | |
| }
 | |
| 
 | |
| void ScheduleDAGRRList::ListScheduleTopDown() {
 | |
|   unsigned CurCycle = 0;
 | |
|   SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
 | |
| 
 | |
|   // All leaves to Available queue.
 | |
|   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | |
|     // It is available if it has no predecessors.
 | |
|     if (SUnits[i].Preds.size() == 0 && &SUnits[i] != Entry) {
 | |
|       AvailableQueue->push(&SUnits[i]);
 | |
|       SUnits[i].isAvailable = true;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Emit the entry node first.
 | |
|   ScheduleNodeTopDown(Entry, CurCycle);
 | |
|   CurCycle++;
 | |
| 
 | |
|   // While Available queue is not empty, grab the node with the highest
 | |
|   // priority. If it is not ready put it back. Schedule the node.
 | |
|   std::vector<SUnit*> NotReady;
 | |
|   SUnit *CurNode = NULL;
 | |
|   while (!AvailableQueue->empty()) {
 | |
|     SUnit *CurNode = AvailableQueue->pop();
 | |
|     while (CurNode && !isReady(CurNode, CurCycle)) {
 | |
|       NotReady.push_back(CurNode);
 | |
|       CurNode = AvailableQueue->pop();
 | |
|     }
 | |
|     
 | |
|     // Add the nodes that aren't ready back onto the available list.
 | |
|     AvailableQueue->push_all(NotReady);
 | |
|     NotReady.clear();
 | |
| 
 | |
|     if (CurNode != NULL)
 | |
|       ScheduleNodeTopDown(CurNode, CurCycle);
 | |
|     CurCycle++;
 | |
|   }
 | |
|   
 | |
|   
 | |
| #ifndef NDEBUG
 | |
|   // Verify that all SUnits were scheduled.
 | |
|   bool AnyNotSched = false;
 | |
|   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | |
|     if (!SUnits[i].isScheduled) {
 | |
|       if (!AnyNotSched)
 | |
|         std::cerr << "*** List scheduling failed! ***\n";
 | |
|       SUnits[i].dump(&DAG);
 | |
|       std::cerr << "has not been scheduled!\n";
 | |
|       AnyNotSched = true;
 | |
|     }
 | |
|   }
 | |
|   assert(!AnyNotSched);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                RegReductionPriorityQueue Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
 | |
| // to reduce register pressure.
 | |
| // 
 | |
| namespace {
 | |
|   template<class SF>
 | |
|   class RegReductionPriorityQueue;
 | |
|   
 | |
|   /// Sorting functions for the Available queue.
 | |
|   struct bu_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
 | |
|     RegReductionPriorityQueue<bu_ls_rr_sort> *SPQ;
 | |
|     bu_ls_rr_sort(RegReductionPriorityQueue<bu_ls_rr_sort> *spq) : SPQ(spq) {}
 | |
|     bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
 | |
|     
 | |
|     bool operator()(const SUnit* left, const SUnit* right) const;
 | |
|   };
 | |
| 
 | |
|   struct td_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
 | |
|     RegReductionPriorityQueue<td_ls_rr_sort> *SPQ;
 | |
|     td_ls_rr_sort(RegReductionPriorityQueue<td_ls_rr_sort> *spq) : SPQ(spq) {}
 | |
|     td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
 | |
|     
 | |
|     bool operator()(const SUnit* left, const SUnit* right) const;
 | |
|   };
 | |
| }  // end anonymous namespace
 | |
| 
 | |
| namespace {
 | |
|   template<class SF>
 | |
|   class VISIBILITY_HIDDEN RegReductionPriorityQueue
 | |
|    : public SchedulingPriorityQueue {
 | |
|     std::priority_queue<SUnit*, std::vector<SUnit*>, SF> Queue;
 | |
| 
 | |
|   public:
 | |
|     RegReductionPriorityQueue() :
 | |
|     Queue(SF(this)) {}
 | |
|     
 | |
|     virtual void initNodes(std::vector<SUnit> &sunits) {}
 | |
|     virtual void releaseState() {}
 | |
|     
 | |
|     virtual int getSethiUllmanNumber(unsigned NodeNum) const {
 | |
|       return 0;
 | |
|     }
 | |
|     
 | |
|     bool empty() const { return Queue.empty(); }
 | |
|     
 | |
|     void push(SUnit *U) {
 | |
|       Queue.push(U);
 | |
|     }
 | |
|     void push_all(const std::vector<SUnit *> &Nodes) {
 | |
|       for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
 | |
|         Queue.push(Nodes[i]);
 | |
|     }
 | |
|     
 | |
|     SUnit *pop() {
 | |
|       if (empty()) return NULL;
 | |
|       SUnit *V = Queue.top();
 | |
|       Queue.pop();
 | |
|       return V;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   template<class SF>
 | |
|   class VISIBILITY_HIDDEN BURegReductionPriorityQueue
 | |
|    : public RegReductionPriorityQueue<SF> {
 | |
|     // SUnits - The SUnits for the current graph.
 | |
|     const std::vector<SUnit> *SUnits;
 | |
|     
 | |
|     // SethiUllmanNumbers - The SethiUllman number for each node.
 | |
|     std::vector<int> SethiUllmanNumbers;
 | |
| 
 | |
|   public:
 | |
|     BURegReductionPriorityQueue() {}
 | |
| 
 | |
|     void initNodes(std::vector<SUnit> &sunits) {
 | |
|       SUnits = &sunits;
 | |
|       // Add pseudo dependency edges for two-address nodes.
 | |
|       AddPseudoTwoAddrDeps();
 | |
|       // Calculate node priorities.
 | |
|       CalculatePriorities();
 | |
|     }
 | |
| 
 | |
|     void releaseState() {
 | |
|       SUnits = 0;
 | |
|       SethiUllmanNumbers.clear();
 | |
|     }
 | |
| 
 | |
|     int getSethiUllmanNumber(unsigned NodeNum) const {
 | |
|       assert(NodeNum < SethiUllmanNumbers.size());
 | |
|       return SethiUllmanNumbers[NodeNum];
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     void AddPseudoTwoAddrDeps();
 | |
|     void CalculatePriorities();
 | |
|     int CalcNodePriority(const SUnit *SU);
 | |
|   };
 | |
| 
 | |
| 
 | |
|   template<class SF>
 | |
|   class TDRegReductionPriorityQueue : public RegReductionPriorityQueue<SF> {
 | |
|     // SUnits - The SUnits for the current graph.
 | |
|     const std::vector<SUnit> *SUnits;
 | |
|     
 | |
|     // SethiUllmanNumbers - The SethiUllman number for each node.
 | |
|     std::vector<int> SethiUllmanNumbers;
 | |
| 
 | |
|   public:
 | |
|     TDRegReductionPriorityQueue() {}
 | |
| 
 | |
|     void initNodes(std::vector<SUnit> &sunits) {
 | |
|       SUnits = &sunits;
 | |
|       // Calculate node priorities.
 | |
|       CalculatePriorities();
 | |
|     }
 | |
| 
 | |
|     void releaseState() {
 | |
|       SUnits = 0;
 | |
|       SethiUllmanNumbers.clear();
 | |
|     }
 | |
| 
 | |
|     int getSethiUllmanNumber(unsigned NodeNum) const {
 | |
|       assert(NodeNum < SethiUllmanNumbers.size());
 | |
|       return SethiUllmanNumbers[NodeNum];
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     void CalculatePriorities();
 | |
|     int CalcNodePriority(const SUnit *SU);
 | |
|   };
 | |
| }
 | |
| 
 | |
| static bool isFloater(const SUnit *SU) {
 | |
|   if (SU->Node->isTargetOpcode()) {
 | |
|     if (SU->NumPreds == 0)
 | |
|       return true;
 | |
|     if (SU->NumPreds == 1) {
 | |
|       for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
 | |
|            I != E; ++I) {
 | |
|         if (I->second) continue;
 | |
| 
 | |
|         SUnit *PredSU = I->first;
 | |
|         unsigned Opc = PredSU->Node->getOpcode();
 | |
|         if (Opc != ISD::EntryToken && Opc != ISD::TokenFactor &&
 | |
|             Opc != ISD::CopyFromReg && Opc != ISD::CopyToReg)
 | |
|           return false;
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isSimpleFloaterUse(const SUnit *SU) {
 | |
|   unsigned NumOps = 0;
 | |
|   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->second) continue;
 | |
|     if (++NumOps > 1)
 | |
|       return false;
 | |
|     if (!isFloater(I->first))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Bottom up
 | |
| bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
 | |
|   unsigned LeftNum  = left->NodeNum;
 | |
|   unsigned RightNum = right->NodeNum;
 | |
|   bool LIsTarget = left->Node->isTargetOpcode();
 | |
|   bool RIsTarget = right->Node->isTargetOpcode();
 | |
|   int LPriority = SPQ->getSethiUllmanNumber(LeftNum);
 | |
|   int RPriority = SPQ->getSethiUllmanNumber(RightNum);
 | |
|   int LBonus = 0;
 | |
|   int RBonus = 0;
 | |
| 
 | |
|   // Schedule floaters (e.g. load from some constant address) and those nodes
 | |
|   // with a single predecessor each first. They maintain / reduce register
 | |
|   // pressure.
 | |
|   if (isFloater(left) || isSimpleFloaterUse(left))
 | |
|     LBonus += 2;
 | |
|   if (isFloater(right) || isSimpleFloaterUse(right))
 | |
|     RBonus += 2;
 | |
| 
 | |
|   // Special tie breaker: if two nodes share a operand, the one that use it
 | |
|   // as a def&use operand is preferred.
 | |
|   if (LIsTarget && RIsTarget) {
 | |
|     if (left->isTwoAddress && !right->isTwoAddress) {
 | |
|       SDNode *DUNode = left->Node->getOperand(0).Val;
 | |
|       if (DUNode->isOperand(right->Node))
 | |
|         LBonus += 2;
 | |
|     }
 | |
|     if (!left->isTwoAddress && right->isTwoAddress) {
 | |
|       SDNode *DUNode = right->Node->getOperand(0).Val;
 | |
|       if (DUNode->isOperand(left->Node))
 | |
|         RBonus += 2;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (LPriority+LBonus < RPriority+RBonus)
 | |
|     return true;
 | |
|   else if (LPriority+LBonus == RPriority+RBonus)
 | |
|     if (left->Height > right->Height)
 | |
|       return true;
 | |
|     else if (left->Height == right->Height)
 | |
|       if (left->Depth < right->Depth)
 | |
|         return true;
 | |
|       else if (left->Depth == right->Depth)
 | |
|         if (left->CycleBound > right->CycleBound) 
 | |
|           return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static inline bool isCopyFromLiveIn(const SUnit *SU) {
 | |
|   SDNode *N = SU->Node;
 | |
|   return N->getOpcode() == ISD::CopyFromReg &&
 | |
|     N->getOperand(N->getNumOperands()-1).getValueType() != MVT::Flag;
 | |
| }
 | |
| 
 | |
| // FIXME: This is probably too slow!
 | |
| static void isReachable(SUnit *SU, SUnit *TargetSU,
 | |
|                         std::set<SUnit *> &Visited, bool &Reached) {
 | |
|   if (Reached) return;
 | |
|   if (SU == TargetSU) {
 | |
|     Reached = true;
 | |
|     return;
 | |
|   }
 | |
|   if (!Visited.insert(SU).second) return;
 | |
| 
 | |
|   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E;
 | |
|        ++I)
 | |
|     isReachable(I->first, TargetSU, Visited, Reached);
 | |
| }
 | |
| 
 | |
| static bool isReachable(SUnit *SU, SUnit *TargetSU) {
 | |
|   std::set<SUnit *> Visited;
 | |
|   bool Reached = false;
 | |
|   isReachable(SU, TargetSU, Visited, Reached);
 | |
|   return Reached;
 | |
| }
 | |
| 
 | |
| static SUnit *getDefUsePredecessor(SUnit *SU) {
 | |
|   SDNode *DU = SU->Node->getOperand(0).Val;
 | |
|   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->second) continue;  // ignore chain preds
 | |
|     SUnit *PredSU = I->first;
 | |
|     if (PredSU->Node == DU)
 | |
|       return PredSU;
 | |
|   }
 | |
| 
 | |
|   // Must be flagged.
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| static bool canClobber(SUnit *SU, SUnit *Op) {
 | |
|   if (SU->isTwoAddress)
 | |
|     return Op == getDefUsePredecessor(SU);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
 | |
| /// it as a def&use operand. Add a pseudo control edge from it to the other
 | |
| /// node (if it won't create a cycle) so the two-address one will be scheduled
 | |
| /// first (lower in the schedule).
 | |
| template<class SF>
 | |
| void BURegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() {
 | |
|   for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
 | |
|     SUnit *SU = (SUnit *)&((*SUnits)[i]);
 | |
|     SDNode *Node = SU->Node;
 | |
|     if (!Node->isTargetOpcode())
 | |
|       continue;
 | |
| 
 | |
|     if (SU->isTwoAddress) {
 | |
|       SUnit *DUSU = getDefUsePredecessor(SU);
 | |
|       if (!DUSU) continue;
 | |
| 
 | |
|       for (SUnit::succ_iterator I = DUSU->Succs.begin(), E = DUSU->Succs.end();
 | |
|            I != E; ++I) {
 | |
|         if (I->second) continue;
 | |
|         SUnit *SuccSU = I->first;
 | |
|         if (SuccSU != SU &&
 | |
|             (!canClobber(SuccSU, DUSU) ||
 | |
|              (!SU->isCommutable && SuccSU->isCommutable))){
 | |
|           if (SuccSU->Depth == SU->Depth && !isReachable(SuccSU, SU)) {
 | |
|             DEBUG(std::cerr << "Adding an edge from SU # " << SU->NodeNum
 | |
|                   << " to SU #" << SuccSU->NodeNum << "\n");
 | |
|             if (SU->addPred(SuccSU, true))
 | |
|               SU->NumChainPredsLeft++;
 | |
|             if (SuccSU->addSucc(SU, true))
 | |
|               SuccSU->NumChainSuccsLeft++;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CalcNodePriority - Priority is the Sethi Ullman number. 
 | |
| /// Smaller number is the higher priority.
 | |
| template<class SF>
 | |
| int BURegReductionPriorityQueue<SF>::CalcNodePriority(const SUnit *SU) {
 | |
|   int &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
 | |
|   if (SethiUllmanNumber != 0)
 | |
|     return SethiUllmanNumber;
 | |
| 
 | |
|   unsigned Opc = SU->Node->getOpcode();
 | |
|   if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
 | |
|     SethiUllmanNumber = INT_MAX - 10;
 | |
|   else if (SU->NumSuccsLeft == 0)
 | |
|     // If SU does not have a use, i.e. it doesn't produce a value that would
 | |
|     // be consumed (e.g. store), then it terminates a chain of computation.
 | |
|     // Give it a small SethiUllman number so it will be scheduled right before its
 | |
|     // predecessors that it doesn't lengthen their live ranges.
 | |
|     SethiUllmanNumber = INT_MIN + 10;
 | |
|   // FIXME: remove this else if? It seems to reduce register spills but often
 | |
|   // ends up increasing runtime. Need to investigate.
 | |
|   else if (SU->NumPredsLeft == 0 &&
 | |
|            (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU)))
 | |
|     SethiUllmanNumber = INT_MAX - 10;
 | |
|   else {
 | |
|     int Extra = 0;
 | |
|     for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|          I != E; ++I) {
 | |
|       if (I->second) continue;  // ignore chain preds
 | |
|       SUnit *PredSU = I->first;
 | |
|       int PredSethiUllman = CalcNodePriority(PredSU);
 | |
|       if (PredSethiUllman > SethiUllmanNumber) {
 | |
|         SethiUllmanNumber = PredSethiUllman;
 | |
|         Extra = 0;
 | |
|       } else if (PredSethiUllman == SethiUllmanNumber && !I->second)
 | |
|         Extra++;
 | |
|     }
 | |
| 
 | |
|     SethiUllmanNumber += Extra;
 | |
|   }
 | |
|   
 | |
|   return SethiUllmanNumber;
 | |
| }
 | |
| 
 | |
| /// CalculatePriorities - Calculate priorities of all scheduling units.
 | |
| template<class SF>
 | |
| void BURegReductionPriorityQueue<SF>::CalculatePriorities() {
 | |
|   SethiUllmanNumbers.assign(SUnits->size(), 0);
 | |
|   
 | |
|   for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
 | |
|     CalcNodePriority(&(*SUnits)[i]);
 | |
| }
 | |
| 
 | |
| static unsigned SumOfUnscheduledPredsOfSuccs(const SUnit *SU) {
 | |
|   unsigned Sum = 0;
 | |
|   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     SUnit *SuccSU = I->first;
 | |
|     for (SUnit::const_pred_iterator II = SuccSU->Preds.begin(),
 | |
|          EE = SuccSU->Preds.end(); II != EE; ++II) {
 | |
|       SUnit *PredSU = II->first;
 | |
|       if (!PredSU->isScheduled)
 | |
|         Sum++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Sum;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Top down
 | |
| bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
 | |
|   unsigned LeftNum  = left->NodeNum;
 | |
|   unsigned RightNum = right->NodeNum;
 | |
|   int LPriority = SPQ->getSethiUllmanNumber(LeftNum);
 | |
|   int RPriority = SPQ->getSethiUllmanNumber(RightNum);
 | |
|   bool LIsTarget = left->Node->isTargetOpcode();
 | |
|   bool RIsTarget = right->Node->isTargetOpcode();
 | |
|   bool LIsFloater = LIsTarget && left->NumPreds == 0;
 | |
|   bool RIsFloater = RIsTarget && right->NumPreds == 0;
 | |
|   unsigned LBonus = (SumOfUnscheduledPredsOfSuccs(left) == 1) ? 2 : 0;
 | |
|   unsigned RBonus = (SumOfUnscheduledPredsOfSuccs(right) == 1) ? 2 : 0;
 | |
| 
 | |
|   if (left->NumSuccs == 0 && right->NumSuccs != 0)
 | |
|     return false;
 | |
|   else if (left->NumSuccs != 0 && right->NumSuccs == 0)
 | |
|     return true;
 | |
| 
 | |
|   // Special tie breaker: if two nodes share a operand, the one that use it
 | |
|   // as a def&use operand is preferred.
 | |
|   if (LIsTarget && RIsTarget) {
 | |
|     if (left->isTwoAddress && !right->isTwoAddress) {
 | |
|       SDNode *DUNode = left->Node->getOperand(0).Val;
 | |
|       if (DUNode->isOperand(right->Node))
 | |
|         RBonus += 2;
 | |
|     }
 | |
|     if (!left->isTwoAddress && right->isTwoAddress) {
 | |
|       SDNode *DUNode = right->Node->getOperand(0).Val;
 | |
|       if (DUNode->isOperand(left->Node))
 | |
|         LBonus += 2;
 | |
|     }
 | |
|   }
 | |
|   if (LIsFloater)
 | |
|     LBonus -= 2;
 | |
|   if (RIsFloater)
 | |
|     RBonus -= 2;
 | |
|   if (left->NumSuccs == 1)
 | |
|     LBonus += 2;
 | |
|   if (right->NumSuccs == 1)
 | |
|     RBonus += 2;
 | |
| 
 | |
|   if (LPriority+LBonus < RPriority+RBonus)
 | |
|     return true;
 | |
|   else if (LPriority == RPriority)
 | |
|     if (left->Depth < right->Depth)
 | |
|       return true;
 | |
|     else if (left->Depth == right->Depth)
 | |
|       if (left->NumSuccsLeft > right->NumSuccsLeft)
 | |
|         return true;
 | |
|       else if (left->NumSuccsLeft == right->NumSuccsLeft)
 | |
|         if (left->CycleBound > right->CycleBound) 
 | |
|           return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CalcNodePriority - Priority is the Sethi Ullman number. 
 | |
| /// Smaller number is the higher priority.
 | |
| template<class SF>
 | |
| int TDRegReductionPriorityQueue<SF>::CalcNodePriority(const SUnit *SU) {
 | |
|   int &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
 | |
|   if (SethiUllmanNumber != 0)
 | |
|     return SethiUllmanNumber;
 | |
| 
 | |
|   unsigned Opc = SU->Node->getOpcode();
 | |
|   if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
 | |
|     SethiUllmanNumber = INT_MAX - 10;
 | |
|   else if (SU->NumSuccsLeft == 0)
 | |
|     // If SU does not have a use, i.e. it doesn't produce a value that would
 | |
|     // be consumed (e.g. store), then it terminates a chain of computation.
 | |
|     // Give it a small SethiUllman number so it will be scheduled right before its
 | |
|     // predecessors that it doesn't lengthen their live ranges.
 | |
|     SethiUllmanNumber = INT_MIN + 10;
 | |
|   else if (SU->NumPredsLeft == 0 &&
 | |
|            (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU)))
 | |
|     SethiUllmanNumber = 1;
 | |
|   else {
 | |
|     int Extra = 0;
 | |
|     for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|          I != E; ++I) {
 | |
|       if (I->second) continue;  // ignore chain preds
 | |
|       SUnit *PredSU = I->first;
 | |
|       int PredSethiUllman = CalcNodePriority(PredSU);
 | |
|       if (PredSethiUllman > SethiUllmanNumber) {
 | |
|         SethiUllmanNumber = PredSethiUllman;
 | |
|         Extra = 0;
 | |
|       } else if (PredSethiUllman == SethiUllmanNumber && !I->second)
 | |
|         Extra++;
 | |
|     }
 | |
| 
 | |
|     SethiUllmanNumber += Extra;
 | |
|   }
 | |
|   
 | |
|   return SethiUllmanNumber;
 | |
| }
 | |
| 
 | |
| /// CalculatePriorities - Calculate priorities of all scheduling units.
 | |
| template<class SF>
 | |
| void TDRegReductionPriorityQueue<SF>::CalculatePriorities() {
 | |
|   SethiUllmanNumbers.assign(SUnits->size(), 0);
 | |
|   
 | |
|   for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
 | |
|     CalcNodePriority(&(*SUnits)[i]);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         Public Constructor Functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
 | |
|                                                     SelectionDAG *DAG,
 | |
|                                                     MachineBasicBlock *BB) {
 | |
|   return new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), true,
 | |
|                                new BURegReductionPriorityQueue<bu_ls_rr_sort>());
 | |
| }
 | |
| 
 | |
| llvm::ScheduleDAG* llvm::createTDRRListDAGScheduler(SelectionDAGISel *IS,
 | |
|                                                     SelectionDAG *DAG,
 | |
|                                                     MachineBasicBlock *BB) {
 | |
|   return new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), false,
 | |
|                                new TDRegReductionPriorityQueue<td_ls_rr_sort>());
 | |
| }
 | |
| 
 |