mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@6304 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1497 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1497 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- InstrScheduling.cpp - Generic Instruction Scheduling support -------===//
 | |
| //
 | |
| // This file implements the llvm/CodeGen/InstrScheduling.h interface, along with
 | |
| // generic support routines for instruction scheduling.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "SchedPriorities.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineCodeForInstruction.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/FunctionLiveVarInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/BasicBlock.h"
 | |
| #include "Support/CommandLine.h"
 | |
| #include <algorithm>
 | |
| 
 | |
| SchedDebugLevel_t SchedDebugLevel;
 | |
| 
 | |
| static cl::opt<SchedDebugLevel_t, true>
 | |
| SDL_opt("dsched", cl::Hidden, cl::location(SchedDebugLevel),
 | |
|         cl::desc("enable instruction scheduling debugging information"),
 | |
|         cl::values(
 | |
|  clEnumValN(Sched_NoDebugInfo,      "n", "disable debug output"),
 | |
|  clEnumValN(Sched_PrintMachineCode, "y", "print machine code after scheduling"),
 | |
|  clEnumValN(Sched_PrintSchedTrace,  "t", "print trace of scheduling actions"),
 | |
|  clEnumValN(Sched_PrintSchedGraphs, "g", "print scheduling graphs"),
 | |
|                    0));
 | |
| 
 | |
| 
 | |
| //************************* Internal Data Types *****************************/
 | |
| 
 | |
| class InstrSchedule;
 | |
| class SchedulingManager;
 | |
| 
 | |
| 
 | |
| //----------------------------------------------------------------------
 | |
| // class InstrGroup:
 | |
| // 
 | |
| // Represents a group of instructions scheduled to be issued
 | |
| // in a single cycle.
 | |
| //----------------------------------------------------------------------
 | |
| 
 | |
| class InstrGroup: public NonCopyable {
 | |
| public:
 | |
|   inline const SchedGraphNode* operator[](unsigned int slotNum) const {
 | |
|     assert(slotNum  < group.size());
 | |
|     return group[slotNum];
 | |
|   }
 | |
|   
 | |
| private:
 | |
|   friend class InstrSchedule;
 | |
|   
 | |
|   inline void	addInstr(const SchedGraphNode* node, unsigned int slotNum) {
 | |
|     assert(slotNum < group.size());
 | |
|     group[slotNum] = node;
 | |
|   }
 | |
|   
 | |
|   /*ctor*/	InstrGroup(unsigned int nslots)
 | |
|     : group(nslots, NULL) {}
 | |
|   
 | |
|   /*ctor*/	InstrGroup();		// disable: DO NOT IMPLEMENT
 | |
|   
 | |
| private:
 | |
|   std::vector<const SchedGraphNode*> group;
 | |
| };
 | |
| 
 | |
| 
 | |
| //----------------------------------------------------------------------
 | |
| // class ScheduleIterator:
 | |
| // 
 | |
| // Iterates over the machine instructions in the for a single basic block.
 | |
| // The schedule is represented by an InstrSchedule object.
 | |
| //----------------------------------------------------------------------
 | |
| 
 | |
| template<class _NodeType>
 | |
| class ScheduleIterator : public forward_iterator<_NodeType, ptrdiff_t> {
 | |
| private:
 | |
|   unsigned cycleNum;
 | |
|   unsigned slotNum;
 | |
|   const InstrSchedule& S;
 | |
| public:
 | |
|   typedef ScheduleIterator<_NodeType> _Self;
 | |
|   
 | |
|   /*ctor*/ inline ScheduleIterator(const InstrSchedule& _schedule,
 | |
| 				   unsigned _cycleNum,
 | |
| 				   unsigned _slotNum)
 | |
|     : cycleNum(_cycleNum), slotNum(_slotNum), S(_schedule) {
 | |
|     skipToNextInstr(); 
 | |
|   }
 | |
|   
 | |
|   /*ctor*/ inline ScheduleIterator(const _Self& x)
 | |
|     : cycleNum(x.cycleNum), slotNum(x.slotNum), S(x.S) {}
 | |
|   
 | |
|   inline bool operator==(const _Self& x) const {
 | |
|     return (slotNum == x.slotNum && cycleNum== x.cycleNum && &S==&x.S);
 | |
|   }
 | |
|   
 | |
|   inline bool operator!=(const _Self& x) const { return !operator==(x); }
 | |
|   
 | |
|   inline _NodeType* operator*() const {
 | |
|     assert(cycleNum < S.groups.size());
 | |
|     return (*S.groups[cycleNum])[slotNum];
 | |
|   }
 | |
|   inline _NodeType* operator->() const { return operator*(); }
 | |
|   
 | |
|          _Self& operator++();				// Preincrement
 | |
|   inline _Self operator++(int) {			// Postincrement
 | |
|     _Self tmp(*this); ++*this; return tmp; 
 | |
|   }
 | |
|   
 | |
|   static _Self begin(const InstrSchedule& _schedule);
 | |
|   static _Self end(  const InstrSchedule& _schedule);
 | |
|   
 | |
| private:
 | |
|   inline _Self& operator=(const _Self& x); // DISABLE -- DO NOT IMPLEMENT
 | |
|   void	skipToNextInstr();
 | |
| };
 | |
| 
 | |
| 
 | |
| //----------------------------------------------------------------------
 | |
| // class InstrSchedule:
 | |
| // 
 | |
| // Represents the schedule of machine instructions for a single basic block.
 | |
| //----------------------------------------------------------------------
 | |
| 
 | |
| class InstrSchedule: public NonCopyable {
 | |
| private:
 | |
|   const unsigned int nslots;
 | |
|   unsigned int numInstr;
 | |
|   std::vector<InstrGroup*> groups;		// indexed by cycle number
 | |
|   std::vector<cycles_t> startTime;		// indexed by node id
 | |
|   
 | |
| public: // iterators
 | |
|   typedef ScheduleIterator<SchedGraphNode> iterator;
 | |
|   typedef ScheduleIterator<const SchedGraphNode> const_iterator;
 | |
|   
 | |
|         iterator begin();
 | |
|   const_iterator begin() const;
 | |
|         iterator end();
 | |
|   const_iterator end()   const;
 | |
|   
 | |
| public: // constructors and destructor
 | |
|   /*ctor*/		InstrSchedule	(unsigned int _nslots,
 | |
| 					 unsigned int _numNodes);
 | |
|   /*dtor*/		~InstrSchedule	();
 | |
|   
 | |
| public: // accessor functions to query chosen schedule
 | |
|   const SchedGraphNode* getInstr	(unsigned int slotNum,
 | |
| 					 cycles_t c) const {
 | |
|     const InstrGroup* igroup = this->getIGroup(c);
 | |
|     return (igroup == NULL)? NULL : (*igroup)[slotNum];
 | |
|   }
 | |
|   
 | |
|   inline InstrGroup*	getIGroup	(cycles_t c) {
 | |
|     if ((unsigned)c >= groups.size())
 | |
|       groups.resize(c+1);
 | |
|     if (groups[c] == NULL)
 | |
|       groups[c] = new InstrGroup(nslots);
 | |
|     return groups[c];
 | |
|   }
 | |
|   
 | |
|   inline const InstrGroup* getIGroup	(cycles_t c) const {
 | |
|     assert((unsigned)c < groups.size());
 | |
|     return groups[c];
 | |
|   }
 | |
|   
 | |
|   inline cycles_t	getStartTime	(unsigned int nodeId) const {
 | |
|     assert(nodeId < startTime.size());
 | |
|     return startTime[nodeId];
 | |
|   }
 | |
|   
 | |
|   unsigned int		getNumInstructions() const {
 | |
|     return numInstr;
 | |
|   }
 | |
|   
 | |
|   inline void		scheduleInstr	(const SchedGraphNode* node,
 | |
| 					 unsigned int slotNum,
 | |
| 					 cycles_t cycle) {
 | |
|     InstrGroup* igroup = this->getIGroup(cycle);
 | |
|     assert((*igroup)[slotNum] == NULL &&  "Slot already filled?");
 | |
|     igroup->addInstr(node, slotNum);
 | |
|     assert(node->getNodeId() < startTime.size());
 | |
|     startTime[node->getNodeId()] = cycle;
 | |
|     ++numInstr;
 | |
|   }
 | |
|   
 | |
| private:
 | |
|   friend class iterator;
 | |
|   friend class const_iterator;
 | |
|   /*ctor*/	InstrSchedule	();	// Disable: DO NOT IMPLEMENT.
 | |
| };
 | |
| 
 | |
| 
 | |
| /*ctor*/
 | |
| InstrSchedule::InstrSchedule(unsigned int _nslots, unsigned int _numNodes)
 | |
|   : nslots(_nslots),
 | |
|     numInstr(0),
 | |
|     groups(2 * _numNodes / _nslots),		// 2 x lower-bound for #cycles
 | |
|     startTime(_numNodes, (cycles_t) -1)		// set all to -1
 | |
| {
 | |
| }
 | |
| 
 | |
| 
 | |
| /*dtor*/
 | |
| InstrSchedule::~InstrSchedule()
 | |
| {
 | |
|   for (unsigned c=0, NC=groups.size(); c < NC; c++)
 | |
|     if (groups[c] != NULL)
 | |
|       delete groups[c];			// delete InstrGroup objects
 | |
| }
 | |
| 
 | |
| 
 | |
| template<class _NodeType>
 | |
| inline 
 | |
| void
 | |
| ScheduleIterator<_NodeType>::skipToNextInstr()
 | |
| {
 | |
|   while(cycleNum < S.groups.size() && S.groups[cycleNum] == NULL)
 | |
|     ++cycleNum;			// skip cycles with no instructions
 | |
|   
 | |
|   while (cycleNum < S.groups.size() &&
 | |
| 	 (*S.groups[cycleNum])[slotNum] == NULL)
 | |
|   {
 | |
|     ++slotNum;
 | |
|     if (slotNum == S.nslots) {
 | |
|       ++cycleNum;
 | |
|       slotNum = 0;
 | |
|       while(cycleNum < S.groups.size() && S.groups[cycleNum] == NULL)
 | |
|         ++cycleNum;			// skip cycles with no instructions
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| template<class _NodeType>
 | |
| inline 
 | |
| ScheduleIterator<_NodeType>&
 | |
| ScheduleIterator<_NodeType>::operator++()	// Preincrement
 | |
| {
 | |
|   ++slotNum;
 | |
|   if (slotNum == S.nslots) {
 | |
|     ++cycleNum;
 | |
|     slotNum = 0;
 | |
|   }
 | |
|   skipToNextInstr(); 
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| template<class _NodeType>
 | |
| ScheduleIterator<_NodeType>
 | |
| ScheduleIterator<_NodeType>::begin(const InstrSchedule& _schedule)
 | |
| {
 | |
|   return _Self(_schedule, 0, 0);
 | |
| }
 | |
| 
 | |
| template<class _NodeType>
 | |
| ScheduleIterator<_NodeType>
 | |
| ScheduleIterator<_NodeType>::end(const InstrSchedule& _schedule)
 | |
| {
 | |
|   return _Self(_schedule, _schedule.groups.size(), 0);
 | |
| }
 | |
| 
 | |
| InstrSchedule::iterator
 | |
| InstrSchedule::begin()
 | |
| {
 | |
|   return iterator::begin(*this);
 | |
| }
 | |
| 
 | |
| InstrSchedule::const_iterator
 | |
| InstrSchedule::begin() const
 | |
| {
 | |
|   return const_iterator::begin(*this);
 | |
| }
 | |
| 
 | |
| InstrSchedule::iterator
 | |
| InstrSchedule::end()
 | |
| {
 | |
|   return iterator::end(*this);
 | |
| }
 | |
| 
 | |
| InstrSchedule::const_iterator
 | |
| InstrSchedule::end() const
 | |
| {
 | |
|   return const_iterator::end(  *this);
 | |
| }
 | |
| 
 | |
| 
 | |
| //----------------------------------------------------------------------
 | |
| // class DelaySlotInfo:
 | |
| // 
 | |
| // Record information about delay slots for a single branch instruction.
 | |
| // Delay slots are simply indexed by slot number 1 ... numDelaySlots
 | |
| //----------------------------------------------------------------------
 | |
| 
 | |
| class DelaySlotInfo: public NonCopyable {
 | |
| private:
 | |
|   const SchedGraphNode* brNode;
 | |
|   unsigned int ndelays;
 | |
|   std::vector<const SchedGraphNode*> delayNodeVec;
 | |
|   cycles_t delayedNodeCycle;
 | |
|   unsigned int delayedNodeSlotNum;
 | |
|   
 | |
| public:
 | |
|   /*ctor*/	DelaySlotInfo		(const SchedGraphNode* _brNode,
 | |
| 					 unsigned _ndelays)
 | |
|     : brNode(_brNode), ndelays(_ndelays),
 | |
|       delayedNodeCycle(0), delayedNodeSlotNum(0) {}
 | |
|   
 | |
|   inline unsigned getNumDelays	() {
 | |
|     return ndelays;
 | |
|   }
 | |
|   
 | |
|   inline const std::vector<const SchedGraphNode*>& getDelayNodeVec() {
 | |
|     return delayNodeVec;
 | |
|   }
 | |
|   
 | |
|   inline void	addDelayNode		(const SchedGraphNode* node) {
 | |
|     delayNodeVec.push_back(node);
 | |
|     assert(delayNodeVec.size() <= ndelays && "Too many delay slot instrs!");
 | |
|   }
 | |
|   
 | |
|   inline void	recordChosenSlot	(cycles_t cycle, unsigned slotNum) {
 | |
|     delayedNodeCycle = cycle;
 | |
|     delayedNodeSlotNum = slotNum;
 | |
|   }
 | |
|   
 | |
|   unsigned	scheduleDelayedNode	(SchedulingManager& S);
 | |
| };
 | |
| 
 | |
| 
 | |
| //----------------------------------------------------------------------
 | |
| // class SchedulingManager:
 | |
| // 
 | |
| // Represents the schedule of machine instructions for a single basic block.
 | |
| //----------------------------------------------------------------------
 | |
| 
 | |
| class SchedulingManager: public NonCopyable {
 | |
| public: // publicly accessible data members
 | |
|   const unsigned nslots;
 | |
|   const TargetSchedInfo& schedInfo;
 | |
|   SchedPriorities& schedPrio;
 | |
|   InstrSchedule isched;
 | |
|   
 | |
| private:
 | |
|   unsigned int totalInstrCount;
 | |
|   cycles_t curTime;
 | |
|   cycles_t nextEarliestIssueTime;		// next cycle we can issue
 | |
|   // indexed by slot#
 | |
|   std::vector<hash_set<const SchedGraphNode*> > choicesForSlot;
 | |
|   std::vector<const SchedGraphNode*> choiceVec;	// indexed by node ptr
 | |
|   std::vector<int> numInClass;			// indexed by sched class
 | |
|   std::vector<cycles_t> nextEarliestStartTime;	// indexed by opCode
 | |
|   hash_map<const SchedGraphNode*, DelaySlotInfo*> delaySlotInfoForBranches;
 | |
| 						// indexed by branch node ptr 
 | |
|   
 | |
| public:
 | |
|   SchedulingManager(const TargetMachine& _target, const SchedGraph* graph,
 | |
|                     SchedPriorities& schedPrio);
 | |
|   ~SchedulingManager() {
 | |
|     for (hash_map<const SchedGraphNode*,
 | |
|            DelaySlotInfo*>::iterator I = delaySlotInfoForBranches.begin(),
 | |
|            E = delaySlotInfoForBranches.end(); I != E; ++I)
 | |
|       delete I->second;
 | |
|   }
 | |
|   
 | |
|   //----------------------------------------------------------------------
 | |
|   // Simplify access to the machine instruction info
 | |
|   //----------------------------------------------------------------------
 | |
|   
 | |
|   inline const TargetInstrInfo& getInstrInfo	() const {
 | |
|     return schedInfo.getInstrInfo();
 | |
|   }
 | |
|   
 | |
|   //----------------------------------------------------------------------
 | |
|   // Interface for checking and updating the current time
 | |
|   //----------------------------------------------------------------------
 | |
|   
 | |
|   inline cycles_t	getTime			() const {
 | |
|     return curTime;
 | |
|   }
 | |
|   
 | |
|   inline cycles_t	getEarliestIssueTime() const {
 | |
|     return nextEarliestIssueTime;
 | |
|   }
 | |
|   
 | |
|   inline cycles_t	getEarliestStartTimeForOp(MachineOpCode opCode) const {
 | |
|     assert(opCode < (int) nextEarliestStartTime.size());
 | |
|     return nextEarliestStartTime[opCode];
 | |
|   }
 | |
|   
 | |
|   // Update current time to specified cycle
 | |
|   inline void	updateTime		(cycles_t c) {
 | |
|     curTime = c;
 | |
|     schedPrio.updateTime(c);
 | |
|   }
 | |
|   
 | |
|   //----------------------------------------------------------------------
 | |
|   // Functions to manage the choices for the current cycle including:
 | |
|   // -- a vector of choices by priority (choiceVec)
 | |
|   // -- vectors of the choices for each instruction slot (choicesForSlot[])
 | |
|   // -- number of choices in each sched class, used to check issue conflicts
 | |
|   //    between choices for a single cycle
 | |
|   //----------------------------------------------------------------------
 | |
|   
 | |
|   inline unsigned int getNumChoices	() const {
 | |
|     return choiceVec.size();
 | |
|   }
 | |
|   
 | |
|   inline unsigned getNumChoicesInClass	(const InstrSchedClass& sc) const {
 | |
|     assert(sc < numInClass.size() && "Invalid op code or sched class!");
 | |
|     return numInClass[sc];
 | |
|   }
 | |
|   
 | |
|   inline const SchedGraphNode* getChoice(unsigned int i) const {
 | |
|     // assert(i < choiceVec.size());	don't check here.
 | |
|     return choiceVec[i];
 | |
|   }
 | |
|   
 | |
|   inline hash_set<const SchedGraphNode*>& getChoicesForSlot(unsigned slotNum) {
 | |
|     assert(slotNum < nslots);
 | |
|     return choicesForSlot[slotNum];
 | |
|   }
 | |
|   
 | |
|   inline void	addChoice		(const SchedGraphNode* node) {
 | |
|     // Append the instruction to the vector of choices for current cycle.
 | |
|     // Increment numInClass[c] for the sched class to which the instr belongs.
 | |
|     choiceVec.push_back(node);
 | |
|     const InstrSchedClass& sc = schedInfo.getSchedClass(node->getOpCode());
 | |
|     assert(sc < numInClass.size());
 | |
|     numInClass[sc]++;
 | |
|   }
 | |
|   
 | |
|   inline void	addChoiceToSlot		(unsigned int slotNum,
 | |
| 					 const SchedGraphNode* node) {
 | |
|     // Add the instruction to the choice set for the specified slot
 | |
|     assert(slotNum < nslots);
 | |
|     choicesForSlot[slotNum].insert(node);
 | |
|   }
 | |
|   
 | |
|   inline void	resetChoices		() {
 | |
|     choiceVec.clear();
 | |
|     for (unsigned int s=0; s < nslots; s++)
 | |
|       choicesForSlot[s].clear();
 | |
|     for (unsigned int c=0; c < numInClass.size(); c++)
 | |
|       numInClass[c] = 0;
 | |
|   }
 | |
|   
 | |
|   //----------------------------------------------------------------------
 | |
|   // Code to query and manage the partial instruction schedule so far
 | |
|   //----------------------------------------------------------------------
 | |
|   
 | |
|   inline unsigned int	getNumScheduled	() const {
 | |
|     return isched.getNumInstructions();
 | |
|   }
 | |
|   
 | |
|   inline unsigned int	getNumUnscheduled() const {
 | |
|     return totalInstrCount - isched.getNumInstructions();
 | |
|   }
 | |
|   
 | |
|   inline bool		isScheduled	(const SchedGraphNode* node) const {
 | |
|     return (isched.getStartTime(node->getNodeId()) >= 0);
 | |
|   }
 | |
|   
 | |
|   inline void	scheduleInstr		(const SchedGraphNode* node,
 | |
| 					 unsigned int slotNum,
 | |
| 					 cycles_t cycle)
 | |
|   {
 | |
|     assert(! isScheduled(node) && "Instruction already scheduled?");
 | |
|     
 | |
|     // add the instruction to the schedule
 | |
|     isched.scheduleInstr(node, slotNum, cycle);
 | |
|     
 | |
|     // update the earliest start times of all nodes that conflict with `node'
 | |
|     // and the next-earliest time anything can issue if `node' causes bubbles
 | |
|     updateEarliestStartTimes(node, cycle);
 | |
|     
 | |
|     // remove the instruction from the choice sets for all slots
 | |
|     for (unsigned s=0; s < nslots; s++)
 | |
|       choicesForSlot[s].erase(node);
 | |
|     
 | |
|     // and decrement the instr count for the sched class to which it belongs
 | |
|     const InstrSchedClass& sc = schedInfo.getSchedClass(node->getOpCode());
 | |
|     assert(sc < numInClass.size());
 | |
|     numInClass[sc]--;
 | |
|   }
 | |
| 
 | |
|   //----------------------------------------------------------------------
 | |
|   // Create and retrieve delay slot info for delayed instructions
 | |
|   //----------------------------------------------------------------------
 | |
|   
 | |
|   inline DelaySlotInfo* getDelaySlotInfoForInstr(const SchedGraphNode* bn,
 | |
| 						 bool createIfMissing=false)
 | |
|   {
 | |
|     hash_map<const SchedGraphNode*, DelaySlotInfo*>::const_iterator
 | |
|       I = delaySlotInfoForBranches.find(bn);
 | |
|     if (I != delaySlotInfoForBranches.end())
 | |
|       return I->second;
 | |
| 
 | |
|     if (!createIfMissing) return 0;
 | |
| 
 | |
|     DelaySlotInfo *dinfo =
 | |
|       new DelaySlotInfo(bn, getInstrInfo().getNumDelaySlots(bn->getOpCode()));
 | |
|     return delaySlotInfoForBranches[bn] = dinfo;
 | |
|   }
 | |
|   
 | |
| private:
 | |
|   SchedulingManager();     // DISABLED: DO NOT IMPLEMENT
 | |
|   void updateEarliestStartTimes(const SchedGraphNode* node, cycles_t schedTime);
 | |
| };
 | |
| 
 | |
| 
 | |
| /*ctor*/
 | |
| SchedulingManager::SchedulingManager(const TargetMachine& target,
 | |
| 				     const SchedGraph* graph,
 | |
| 				     SchedPriorities& _schedPrio)
 | |
|   : nslots(target.getSchedInfo().getMaxNumIssueTotal()),
 | |
|     schedInfo(target.getSchedInfo()),
 | |
|     schedPrio(_schedPrio),
 | |
|     isched(nslots, graph->getNumNodes()),
 | |
|     totalInstrCount(graph->getNumNodes() - 2),
 | |
|     nextEarliestIssueTime(0),
 | |
|     choicesForSlot(nslots),
 | |
|     numInClass(target.getSchedInfo().getNumSchedClasses(), 0),	// set all to 0
 | |
|     nextEarliestStartTime(target.getInstrInfo().getNumRealOpCodes(),
 | |
| 			  (cycles_t) 0)				// set all to 0
 | |
| {
 | |
|   updateTime(0);
 | |
|   
 | |
|   // Note that an upper bound on #choices for each slot is = nslots since
 | |
|   // we use this vector to hold a feasible set of instructions, and more
 | |
|   // would be infeasible. Reserve that much memory since it is probably small.
 | |
|   for (unsigned int i=0; i < nslots; i++)
 | |
|     choicesForSlot[i].resize(nslots);
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| SchedulingManager::updateEarliestStartTimes(const SchedGraphNode* node,
 | |
| 					    cycles_t schedTime)
 | |
| {
 | |
|   if (schedInfo.numBubblesAfter(node->getOpCode()) > 0)
 | |
|     { // Update next earliest time before which *nothing* can issue.
 | |
|       nextEarliestIssueTime = std::max(nextEarliestIssueTime,
 | |
| 		  curTime + 1 + schedInfo.numBubblesAfter(node->getOpCode()));
 | |
|     }
 | |
|   
 | |
|   const std::vector<MachineOpCode>&
 | |
|     conflictVec = schedInfo.getConflictList(node->getOpCode());
 | |
|   
 | |
|   for (unsigned i=0; i < conflictVec.size(); i++)
 | |
|     {
 | |
|       MachineOpCode toOp = conflictVec[i];
 | |
|       cycles_t est=schedTime + schedInfo.getMinIssueGap(node->getOpCode(),toOp);
 | |
|       assert(toOp < (int) nextEarliestStartTime.size());
 | |
|       if (nextEarliestStartTime[toOp] < est)
 | |
|         nextEarliestStartTime[toOp] = est;
 | |
|     }
 | |
| }
 | |
| 
 | |
| //************************* Internal Functions *****************************/
 | |
| 
 | |
| 
 | |
| static void
 | |
| AssignInstructionsToSlots(class SchedulingManager& S, unsigned maxIssue)
 | |
| {
 | |
|   // find the slot to start from, in the current cycle
 | |
|   unsigned int startSlot = 0;
 | |
|   cycles_t curTime = S.getTime();
 | |
|   
 | |
|   assert(maxIssue > 0 && maxIssue <= S.nslots - startSlot);
 | |
|   
 | |
|   // If only one instruction can be issued, do so.
 | |
|   if (maxIssue == 1)
 | |
|     for (unsigned s=startSlot; s < S.nslots; s++)
 | |
|       if (S.getChoicesForSlot(s).size() > 0) {
 | |
|         // found the one instruction
 | |
|         S.scheduleInstr(*S.getChoicesForSlot(s).begin(), s, curTime);
 | |
|         return;
 | |
|       }
 | |
|   
 | |
|   // Otherwise, choose from the choices for each slot
 | |
|   // 
 | |
|   InstrGroup* igroup = S.isched.getIGroup(S.getTime());
 | |
|   assert(igroup != NULL && "Group creation failed?");
 | |
|   
 | |
|   // Find a slot that has only a single choice, and take it.
 | |
|   // If all slots have 0 or multiple choices, pick the first slot with
 | |
|   // choices and use its last instruction (just to avoid shifting the vector).
 | |
|   unsigned numIssued;
 | |
|   for (numIssued = 0; numIssued < maxIssue; numIssued++) {
 | |
|     int chosenSlot = -1;
 | |
|     for (unsigned s=startSlot; s < S.nslots; s++)
 | |
|       if ((*igroup)[s] == NULL && S.getChoicesForSlot(s).size() == 1) {
 | |
|         chosenSlot = (int) s;
 | |
|         break;
 | |
|       }
 | |
|       
 | |
|     if (chosenSlot == -1)
 | |
|       for (unsigned s=startSlot; s < S.nslots; s++)
 | |
|         if ((*igroup)[s] == NULL && S.getChoicesForSlot(s).size() > 0) {
 | |
|           chosenSlot = (int) s;
 | |
|           break;
 | |
|         }
 | |
|       
 | |
|     if (chosenSlot != -1) {
 | |
|       // Insert the chosen instr in the chosen slot and
 | |
|       // erase it from all slots.
 | |
|       const SchedGraphNode* node= *S.getChoicesForSlot(chosenSlot).begin();
 | |
|       S.scheduleInstr(node, chosenSlot, curTime);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   assert(numIssued > 0 && "Should not happen when maxIssue > 0!");
 | |
| }
 | |
| 
 | |
| 
 | |
| // 
 | |
| // For now, just assume we are scheduling within a single basic block.
 | |
| // Get the machine instruction vector for the basic block and clear it,
 | |
| // then append instructions in scheduled order.
 | |
| // Also, re-insert the dummy PHI instructions that were at the beginning
 | |
| // of the basic block, since they are not part of the schedule.
 | |
| //   
 | |
| static void
 | |
| RecordSchedule(MachineBasicBlock &MBB, const SchedulingManager& S)
 | |
| {
 | |
|   const TargetInstrInfo& mii = S.schedInfo.getInstrInfo();
 | |
|   
 | |
| #ifndef NDEBUG
 | |
|   // Lets make sure we didn't lose any instructions, except possibly
 | |
|   // some NOPs from delay slots.  Also, PHIs are not included in the schedule.
 | |
|   unsigned numInstr = 0;
 | |
|   for (MachineBasicBlock::iterator I=MBB.begin(); I != MBB.end(); ++I)
 | |
|     if (! mii.isNop((*I)->getOpCode()) &&
 | |
| 	! mii.isDummyPhiInstr((*I)->getOpCode()))
 | |
|       ++numInstr;
 | |
|   assert(S.isched.getNumInstructions() >= numInstr &&
 | |
| 	 "Lost some non-NOP instructions during scheduling!");
 | |
| #endif
 | |
|   
 | |
|   if (S.isched.getNumInstructions() == 0)
 | |
|     return;				// empty basic block!
 | |
|   
 | |
|   // First find the dummy instructions at the start of the basic block
 | |
|   MachineBasicBlock::iterator I = MBB.begin();
 | |
|   for ( ; I != MBB.end(); ++I)
 | |
|     if (! mii.isDummyPhiInstr((*I)->getOpCode()))
 | |
|       break;
 | |
|   
 | |
|   // Erase all except the dummy PHI instructions from MBB, and
 | |
|   // pre-allocate create space for the ones we will put back in.
 | |
|   MBB.erase(I, MBB.end());
 | |
|   
 | |
|   InstrSchedule::const_iterator NIend = S.isched.end();
 | |
|   for (InstrSchedule::const_iterator NI = S.isched.begin(); NI != NIend; ++NI)
 | |
|     MBB.push_back(const_cast<MachineInstr*>((*NI)->getMachineInstr()));
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| static void
 | |
| MarkSuccessorsReady(SchedulingManager& S, const SchedGraphNode* node)
 | |
| {
 | |
|   // Check if any successors are now ready that were not already marked
 | |
|   // ready before, and that have not yet been scheduled.
 | |
|   // 
 | |
|   for (sg_succ_const_iterator SI = succ_begin(node); SI !=succ_end(node); ++SI)
 | |
|     if (! (*SI)->isDummyNode()
 | |
| 	&& ! S.isScheduled(*SI)
 | |
| 	&& ! S.schedPrio.nodeIsReady(*SI))
 | |
|     {
 | |
|       // successor not scheduled and not marked ready; check *its* preds.
 | |
| 	
 | |
|       bool succIsReady = true;
 | |
|       for (sg_pred_const_iterator P=pred_begin(*SI); P != pred_end(*SI); ++P)
 | |
|         if (! (*P)->isDummyNode() && ! S.isScheduled(*P)) {
 | |
|           succIsReady = false;
 | |
|           break;
 | |
|         }
 | |
| 	
 | |
|       if (succIsReady)	// add the successor to the ready list
 | |
|         S.schedPrio.insertReady(*SI);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| // Choose up to `nslots' FEASIBLE instructions and assign each
 | |
| // instruction to all possible slots that do not violate feasibility.
 | |
| // FEASIBLE means it should be guaranteed that the set
 | |
| // of chosen instructions can be issued in a single group.
 | |
| // 
 | |
| // Return value:
 | |
| //	maxIssue : total number of feasible instructions
 | |
| //	S.choicesForSlot[i=0..nslots] : set of instructions feasible in slot i
 | |
| // 
 | |
| static unsigned
 | |
| FindSlotChoices(SchedulingManager& S,
 | |
| 		DelaySlotInfo*& getDelaySlotInfo)
 | |
| {
 | |
|   // initialize result vectors to empty
 | |
|   S.resetChoices();
 | |
|   
 | |
|   // find the slot to start from, in the current cycle
 | |
|   unsigned int startSlot = 0;
 | |
|   InstrGroup* igroup = S.isched.getIGroup(S.getTime());
 | |
|   for (int s = S.nslots - 1; s >= 0; s--)
 | |
|     if ((*igroup)[s] != NULL) {
 | |
|       startSlot = s+1;
 | |
|       break;
 | |
|     }
 | |
|   
 | |
|   // Make sure we pick at most one instruction that would break the group.
 | |
|   // Also, if we do pick one, remember which it was.
 | |
|   unsigned int indexForBreakingNode = S.nslots;
 | |
|   unsigned int indexForDelayedInstr = S.nslots;
 | |
|   DelaySlotInfo* delaySlotInfo = NULL;
 | |
| 
 | |
|   getDelaySlotInfo = NULL;
 | |
|   
 | |
|   // Choose instructions in order of priority.
 | |
|   // Add choices to the choice vector in the SchedulingManager class as
 | |
|   // we choose them so that subsequent choices will be correctly tested
 | |
|   // for feasibility, w.r.t. higher priority choices for the same cycle.
 | |
|   // 
 | |
|   while (S.getNumChoices() < S.nslots - startSlot) {
 | |
|     const SchedGraphNode* nextNode=S.schedPrio.getNextHighest(S,S.getTime());
 | |
|     if (nextNode == NULL)
 | |
|       break;			// no more instructions for this cycle
 | |
|       
 | |
|     if (S.getInstrInfo().getNumDelaySlots(nextNode->getOpCode()) > 0) {
 | |
|       delaySlotInfo = S.getDelaySlotInfoForInstr(nextNode);
 | |
|       if (delaySlotInfo != NULL) {
 | |
|         if (indexForBreakingNode < S.nslots)
 | |
|           // cannot issue a delayed instr in the same cycle as one
 | |
|           // that breaks the issue group or as another delayed instr
 | |
|           nextNode = NULL;
 | |
|         else
 | |
|           indexForDelayedInstr = S.getNumChoices();
 | |
|       }
 | |
|     } else if (S.schedInfo.breaksIssueGroup(nextNode->getOpCode())) {
 | |
|       if (indexForBreakingNode < S.nslots)
 | |
|         // have a breaking instruction already so throw this one away
 | |
|         nextNode = NULL;
 | |
|       else
 | |
|         indexForBreakingNode = S.getNumChoices();
 | |
|     }
 | |
|       
 | |
|     if (nextNode != NULL) {
 | |
|       S.addChoice(nextNode);
 | |
|       
 | |
|       if (S.schedInfo.isSingleIssue(nextNode->getOpCode())) {
 | |
|         assert(S.getNumChoices() == 1 &&
 | |
|                "Prioritizer returned invalid instr for this cycle!");
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|           
 | |
|     if (indexForDelayedInstr < S.nslots)
 | |
|       break;			// leave the rest for delay slots
 | |
|   }
 | |
|   
 | |
|   assert(S.getNumChoices() <= S.nslots);
 | |
|   assert(! (indexForDelayedInstr < S.nslots &&
 | |
| 	    indexForBreakingNode < S.nslots) && "Cannot have both in a cycle");
 | |
|   
 | |
|   // Assign each chosen instruction to all possible slots for that instr.
 | |
|   // But if only one instruction was chosen, put it only in the first
 | |
|   // feasible slot; no more analysis will be needed.
 | |
|   // 
 | |
|   if (indexForDelayedInstr >= S.nslots && 
 | |
|       indexForBreakingNode >= S.nslots)
 | |
|   { // No instructions that break the issue group or that have delay slots.
 | |
|     // This is the common case, so handle it separately for efficiency.
 | |
|       
 | |
|     if (S.getNumChoices() == 1) {
 | |
|       MachineOpCode opCode = S.getChoice(0)->getOpCode();
 | |
|       unsigned int s;
 | |
|       for (s=startSlot; s < S.nslots; s++)
 | |
|         if (S.schedInfo.instrCanUseSlot(opCode, s))
 | |
|           break;
 | |
|       assert(s < S.nslots && "No feasible slot for this opCode?");
 | |
|       S.addChoiceToSlot(s, S.getChoice(0));
 | |
|     } else {
 | |
|       for (unsigned i=0; i < S.getNumChoices(); i++) {
 | |
|         MachineOpCode opCode = S.getChoice(i)->getOpCode();
 | |
|         for (unsigned int s=startSlot; s < S.nslots; s++)
 | |
|           if (S.schedInfo.instrCanUseSlot(opCode, s))
 | |
|             S.addChoiceToSlot(s, S.getChoice(i));
 | |
|       }
 | |
|     }
 | |
|   } else if (indexForDelayedInstr < S.nslots) {
 | |
|     // There is an instruction that needs delay slots.
 | |
|     // Try to assign that instruction to a higher slot than any other
 | |
|     // instructions in the group, so that its delay slots can go
 | |
|     // right after it.
 | |
|     //  
 | |
| 
 | |
|     assert(indexForDelayedInstr == S.getNumChoices() - 1 &&
 | |
|            "Instruction with delay slots should be last choice!");
 | |
|     assert(delaySlotInfo != NULL && "No delay slot info for instr?");
 | |
|       
 | |
|     const SchedGraphNode* delayedNode = S.getChoice(indexForDelayedInstr);
 | |
|     MachineOpCode delayOpCode = delayedNode->getOpCode();
 | |
|     unsigned ndelays= S.getInstrInfo().getNumDelaySlots(delayOpCode);
 | |
|       
 | |
|     unsigned delayedNodeSlot = S.nslots;
 | |
|     int highestSlotUsed;
 | |
|       
 | |
|     // Find the last possible slot for the delayed instruction that leaves
 | |
|     // at least `d' slots vacant after it (d = #delay slots)
 | |
|     for (int s = S.nslots-ndelays-1; s >= (int) startSlot; s--)
 | |
|       if (S.schedInfo.instrCanUseSlot(delayOpCode, s)) {
 | |
|         delayedNodeSlot = s;
 | |
|         break;
 | |
|       }
 | |
|       
 | |
|     highestSlotUsed = -1;
 | |
|     for (unsigned i=0; i < S.getNumChoices() - 1; i++) {
 | |
|       // Try to assign every other instruction to a lower numbered
 | |
|       // slot than delayedNodeSlot.
 | |
|       MachineOpCode opCode =S.getChoice(i)->getOpCode();
 | |
|       bool noSlotFound = true;
 | |
|       unsigned int s;
 | |
|       for (s=startSlot; s < delayedNodeSlot; s++)
 | |
|         if (S.schedInfo.instrCanUseSlot(opCode, s)) {
 | |
|           S.addChoiceToSlot(s, S.getChoice(i));
 | |
|           noSlotFound = false;
 | |
|         }
 | |
| 	  
 | |
|       // No slot before `delayedNodeSlot' was found for this opCode
 | |
|       // Use a later slot, and allow some delay slots to fall in
 | |
|       // the next cycle.
 | |
|       if (noSlotFound)
 | |
|         for ( ; s < S.nslots; s++)
 | |
|           if (S.schedInfo.instrCanUseSlot(opCode, s)) {
 | |
|             S.addChoiceToSlot(s, S.getChoice(i));
 | |
|             break;
 | |
|           }
 | |
| 	  
 | |
|       assert(s < S.nslots && "No feasible slot for instruction?");
 | |
| 	  
 | |
|       highestSlotUsed = std::max(highestSlotUsed, (int) s);
 | |
|     }
 | |
|       
 | |
|     assert(highestSlotUsed <= (int) S.nslots-1 && "Invalid slot used?");
 | |
|       
 | |
|     // We will put the delayed node in the first slot after the
 | |
|     // highest slot used.  But we just mark that for now, and
 | |
|     // schedule it separately because we want to schedule the delay
 | |
|     // slots for the node at the same time.
 | |
|     cycles_t dcycle = S.getTime();
 | |
|     unsigned int dslot = highestSlotUsed + 1;
 | |
|     if (dslot == S.nslots) {
 | |
|       dslot = 0;
 | |
|       ++dcycle;
 | |
|     }
 | |
|     delaySlotInfo->recordChosenSlot(dcycle, dslot);
 | |
|     getDelaySlotInfo = delaySlotInfo;
 | |
|   } else {
 | |
|     // There is an instruction that breaks the issue group.
 | |
|     // For such an instruction, assign to the last possible slot in
 | |
|     // the current group, and then don't assign any other instructions
 | |
|     // to later slots.
 | |
|     assert(indexForBreakingNode < S.nslots);
 | |
|     const SchedGraphNode* breakingNode=S.getChoice(indexForBreakingNode);
 | |
|     unsigned breakingSlot = INT_MAX;
 | |
|     unsigned int nslotsToUse = S.nslots;
 | |
| 	  
 | |
|     // Find the last possible slot for this instruction.
 | |
|     for (int s = S.nslots-1; s >= (int) startSlot; s--)
 | |
|       if (S.schedInfo.instrCanUseSlot(breakingNode->getOpCode(), s)) {
 | |
|         breakingSlot = s;
 | |
|         break;
 | |
|       }
 | |
|     assert(breakingSlot < S.nslots &&
 | |
|            "No feasible slot for `breakingNode'?");
 | |
|       
 | |
|     // Higher priority instructions than the one that breaks the group:
 | |
|     // These can be assigned to all slots, but will be assigned only
 | |
|     // to earlier slots if possible.
 | |
|     for (unsigned i=0;
 | |
|          i < S.getNumChoices() && i < indexForBreakingNode; i++)
 | |
|     {
 | |
|       MachineOpCode opCode =S.getChoice(i)->getOpCode();
 | |
| 	  
 | |
|       // If a higher priority instruction cannot be assigned to
 | |
|       // any earlier slots, don't schedule the breaking instruction.
 | |
|       // 
 | |
|       bool foundLowerSlot = false;
 | |
|       nslotsToUse = S.nslots;	    // May be modified in the loop
 | |
|       for (unsigned int s=startSlot; s < nslotsToUse; s++)
 | |
|         if (S.schedInfo.instrCanUseSlot(opCode, s)) {
 | |
|           if (breakingSlot < S.nslots && s < breakingSlot) {
 | |
|             foundLowerSlot = true;
 | |
|             nslotsToUse = breakingSlot; // RESETS LOOP UPPER BOUND!
 | |
|           }
 | |
| 		    
 | |
|           S.addChoiceToSlot(s, S.getChoice(i));
 | |
|         }
 | |
| 	      
 | |
|       if (!foundLowerSlot)
 | |
|         breakingSlot = INT_MAX;		// disable breaking instr
 | |
|     }
 | |
|       
 | |
|     // Assign the breaking instruction (if any) to a single slot
 | |
|     // Otherwise, just ignore the instruction.  It will simply be
 | |
|     // scheduled in a later cycle.
 | |
|     if (breakingSlot < S.nslots) {
 | |
|       S.addChoiceToSlot(breakingSlot, breakingNode);
 | |
|       nslotsToUse = breakingSlot;
 | |
|     } else
 | |
|       nslotsToUse = S.nslots;
 | |
| 	  
 | |
|     // For lower priority instructions than the one that breaks the
 | |
|     // group, only assign them to slots lower than the breaking slot.
 | |
|     // Otherwise, just ignore the instruction.
 | |
|     for (unsigned i=indexForBreakingNode+1; i < S.getNumChoices(); i++) {
 | |
|       MachineOpCode opCode = S.getChoice(i)->getOpCode();
 | |
|       for (unsigned int s=startSlot; s < nslotsToUse; s++)
 | |
|         if (S.schedInfo.instrCanUseSlot(opCode, s))
 | |
|           S.addChoiceToSlot(s, S.getChoice(i));
 | |
|     }
 | |
|   } // endif (no delay slots and no breaking slots)
 | |
|   
 | |
|   return S.getNumChoices();
 | |
| }
 | |
| 
 | |
| 
 | |
| static unsigned
 | |
| ChooseOneGroup(SchedulingManager& S)
 | |
| {
 | |
|   assert(S.schedPrio.getNumReady() > 0
 | |
| 	 && "Don't get here without ready instructions.");
 | |
|   
 | |
|   cycles_t firstCycle = S.getTime();
 | |
|   DelaySlotInfo* getDelaySlotInfo = NULL;
 | |
|   
 | |
|   // Choose up to `nslots' feasible instructions and their possible slots.
 | |
|   unsigned numIssued = FindSlotChoices(S, getDelaySlotInfo);
 | |
|   
 | |
|   while (numIssued == 0) {
 | |
|     S.updateTime(S.getTime()+1);
 | |
|     numIssued = FindSlotChoices(S, getDelaySlotInfo);
 | |
|   }
 | |
|   
 | |
|   AssignInstructionsToSlots(S, numIssued);
 | |
|   
 | |
|   if (getDelaySlotInfo != NULL)
 | |
|     numIssued += getDelaySlotInfo->scheduleDelayedNode(S); 
 | |
|   
 | |
|   // Print trace of scheduled instructions before newly ready ones
 | |
|   if (SchedDebugLevel >= Sched_PrintSchedTrace) {
 | |
|     for (cycles_t c = firstCycle; c <= S.getTime(); c++) {
 | |
|       std::cerr << "    Cycle " << (long)c <<" : Scheduled instructions:\n";
 | |
|       const InstrGroup* igroup = S.isched.getIGroup(c);
 | |
|       for (unsigned int s=0; s < S.nslots; s++) {
 | |
|         std::cerr << "        ";
 | |
|         if ((*igroup)[s] != NULL)
 | |
|           std::cerr << * ((*igroup)[s])->getMachineInstr() << "\n";
 | |
|         else
 | |
|           std::cerr << "<none>\n";
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return numIssued;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| ForwardListSchedule(SchedulingManager& S)
 | |
| {
 | |
|   unsigned N;
 | |
|   const SchedGraphNode* node;
 | |
|   
 | |
|   S.schedPrio.initialize();
 | |
|   
 | |
|   while ((N = S.schedPrio.getNumReady()) > 0) {
 | |
|     cycles_t nextCycle = S.getTime();
 | |
|       
 | |
|     // Choose one group of instructions for a cycle, plus any delay slot
 | |
|     // instructions (which may overflow into successive cycles).
 | |
|     // This will advance S.getTime() to the last cycle in which
 | |
|     // instructions are actually issued.
 | |
|     // 
 | |
|     unsigned numIssued = ChooseOneGroup(S);
 | |
|     assert(numIssued > 0 && "Deadlock in list scheduling algorithm?");
 | |
|       
 | |
|     // Notify the priority manager of scheduled instructions and mark
 | |
|     // any successors that may now be ready
 | |
|     // 
 | |
|     for (cycles_t c = nextCycle; c <= S.getTime(); c++) {
 | |
|       const InstrGroup* igroup = S.isched.getIGroup(c);
 | |
|       for (unsigned int s=0; s < S.nslots; s++)
 | |
|         if ((node = (*igroup)[s]) != NULL) {
 | |
|           S.schedPrio.issuedReadyNodeAt(S.getTime(), node);
 | |
|           MarkSuccessorsReady(S, node);
 | |
|         }
 | |
|     }
 | |
|       
 | |
|     // Move to the next the next earliest cycle for which
 | |
|     // an instruction can be issued, or the next earliest in which
 | |
|     // one will be ready, or to the next cycle, whichever is latest.
 | |
|     // 
 | |
|     S.updateTime(std::max(S.getTime() + 1,
 | |
|                           std::max(S.getEarliestIssueTime(),
 | |
|                                    S.schedPrio.getEarliestReadyTime())));
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| //---------------------------------------------------------------------
 | |
| // Code for filling delay slots for delayed terminator instructions
 | |
| // (e.g., BRANCH and RETURN).  Delay slots for non-terminator
 | |
| // instructions (e.g., CALL) are not handled here because they almost
 | |
| // always can be filled with instructions from the call sequence code
 | |
| // before a call.  That's preferable because we incur many tradeoffs here
 | |
| // when we cannot find single-cycle instructions that can be reordered.
 | |
| //----------------------------------------------------------------------
 | |
| 
 | |
| static bool
 | |
| NodeCanFillDelaySlot(const SchedulingManager& S,
 | |
| 		     const SchedGraphNode* node,
 | |
| 		     const SchedGraphNode* brNode,
 | |
| 		     bool nodeIsPredecessor)
 | |
| {
 | |
|   assert(! node->isDummyNode());
 | |
|   
 | |
|   // don't put a branch in the delay slot of another branch
 | |
|   if (S.getInstrInfo().isBranch(node->getOpCode()))
 | |
|     return false;
 | |
|   
 | |
|   // don't put a single-issue instruction in the delay slot of a branch
 | |
|   if (S.schedInfo.isSingleIssue(node->getOpCode()))
 | |
|     return false;
 | |
|   
 | |
|   // don't put a load-use dependence in the delay slot of a branch
 | |
|   const TargetInstrInfo& mii = S.getInstrInfo();
 | |
|   
 | |
|   for (SchedGraphNode::const_iterator EI = node->beginInEdges();
 | |
|        EI != node->endInEdges(); ++EI)
 | |
|     if (! (*EI)->getSrc()->isDummyNode()
 | |
| 	&& mii.isLoad((*EI)->getSrc()->getOpCode())
 | |
| 	&& (*EI)->getDepType() == SchedGraphEdge::CtrlDep)
 | |
|       return false;
 | |
|   
 | |
|   // for now, don't put an instruction that does not have operand
 | |
|   // interlocks in the delay slot of a branch
 | |
|   if (! S.getInstrInfo().hasOperandInterlock(node->getOpCode()))
 | |
|     return false;
 | |
|   
 | |
|   // Finally, if the instruction preceeds the branch, we make sure the
 | |
|   // instruction can be reordered relative to the branch.  We simply check
 | |
|   // if the instr. has only 1 outgoing edge, viz., a CD edge to the branch.
 | |
|   // 
 | |
|   if (nodeIsPredecessor) {
 | |
|     bool onlyCDEdgeToBranch = true;
 | |
|     for (SchedGraphNode::const_iterator OEI = node->beginOutEdges();
 | |
|          OEI != node->endOutEdges(); ++OEI)
 | |
|       if (! (*OEI)->getSink()->isDummyNode()
 | |
|           && ((*OEI)->getSink() != brNode
 | |
|               || (*OEI)->getDepType() != SchedGraphEdge::CtrlDep))
 | |
|       {
 | |
|         onlyCDEdgeToBranch = false;
 | |
|         break;
 | |
|       }
 | |
|       
 | |
|     if (!onlyCDEdgeToBranch)
 | |
|       return false;
 | |
|   }
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| MarkNodeForDelaySlot(SchedulingManager& S,
 | |
| 		     SchedGraph* graph,
 | |
| 		     SchedGraphNode* node,
 | |
| 		     const SchedGraphNode* brNode,
 | |
| 		     bool nodeIsPredecessor)
 | |
| {
 | |
|   if (nodeIsPredecessor) {
 | |
|     // If node is in the same basic block (i.e., preceeds brNode),
 | |
|     // remove it and all its incident edges from the graph.  Make sure we
 | |
|     // add dummy edges for pred/succ nodes that become entry/exit nodes.
 | |
|     graph->eraseIncidentEdges(node, /*addDummyEdges*/ true);
 | |
|   } else { 
 | |
|     // If the node was from a target block, add the node to the graph
 | |
|     // and add a CD edge from brNode to node.
 | |
|     assert(0 && "NOT IMPLEMENTED YET");
 | |
|   }
 | |
|   
 | |
|   DelaySlotInfo* dinfo = S.getDelaySlotInfoForInstr(brNode, /*create*/ true);
 | |
|   dinfo->addDelayNode(node);
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| FindUsefulInstructionsForDelaySlots(SchedulingManager& S,
 | |
|                                     SchedGraphNode* brNode,
 | |
|                                     std::vector<SchedGraphNode*>& sdelayNodeVec)
 | |
| {
 | |
|   const TargetInstrInfo& mii = S.getInstrInfo();
 | |
|   unsigned ndelays =
 | |
|     mii.getNumDelaySlots(brNode->getOpCode());
 | |
|   
 | |
|   if (ndelays == 0)
 | |
|     return;
 | |
|   
 | |
|   sdelayNodeVec.reserve(ndelays);
 | |
|   
 | |
|   // Use a separate vector to hold the feasible multi-cycle nodes.
 | |
|   // These will be used if not enough single-cycle nodes are found.
 | |
|   // 
 | |
|   std::vector<SchedGraphNode*> mdelayNodeVec;
 | |
|   
 | |
|   for (sg_pred_iterator P = pred_begin(brNode);
 | |
|        P != pred_end(brNode) && sdelayNodeVec.size() < ndelays; ++P)
 | |
|     if (! (*P)->isDummyNode() &&
 | |
| 	! mii.isNop((*P)->getOpCode()) &&
 | |
| 	NodeCanFillDelaySlot(S, *P, brNode, /*pred*/ true))
 | |
|     {
 | |
|       if (mii.maxLatency((*P)->getOpCode()) > 1)
 | |
|         mdelayNodeVec.push_back(*P);
 | |
|       else
 | |
|         sdelayNodeVec.push_back(*P);
 | |
|     }
 | |
|   
 | |
|   // If not enough single-cycle instructions were found, select the
 | |
|   // lowest-latency multi-cycle instructions and use them.
 | |
|   // Note that this is the most efficient code when only 1 (or even 2)
 | |
|   // values need to be selected.
 | |
|   // 
 | |
|   while (sdelayNodeVec.size() < ndelays && mdelayNodeVec.size() > 0) {
 | |
|     unsigned lmin =
 | |
|       mii.maxLatency(mdelayNodeVec[0]->getOpCode());
 | |
|     unsigned minIndex   = 0;
 | |
|     for (unsigned i=1; i < mdelayNodeVec.size(); i++)
 | |
|     {
 | |
|       unsigned li = 
 | |
|         mii.maxLatency(mdelayNodeVec[i]->getOpCode());
 | |
|       if (lmin >= li)
 | |
|       {
 | |
|         lmin = li;
 | |
|         minIndex = i;
 | |
|       }
 | |
|     }
 | |
|     sdelayNodeVec.push_back(mdelayNodeVec[minIndex]);
 | |
|     if (sdelayNodeVec.size() < ndelays) // avoid the last erase!
 | |
|       mdelayNodeVec.erase(mdelayNodeVec.begin() + minIndex);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // Remove the NOPs currently in delay slots from the graph.
 | |
| // Mark instructions specified in sdelayNodeVec to replace them.
 | |
| // If not enough useful instructions were found, mark the NOPs to be used
 | |
| // for filling delay slots, otherwise, otherwise just discard them.
 | |
| // 
 | |
| static void ReplaceNopsWithUsefulInstr(SchedulingManager& S,
 | |
|                                        SchedGraphNode* node,
 | |
|                                        // FIXME: passing vector BY VALUE!!!
 | |
|                                      std::vector<SchedGraphNode*> sdelayNodeVec,
 | |
|                                        SchedGraph* graph)
 | |
| {
 | |
|   std::vector<SchedGraphNode*> nopNodeVec;   // this will hold unused NOPs
 | |
|   const TargetInstrInfo& mii = S.getInstrInfo();
 | |
|   const MachineInstr* brInstr = node->getMachineInstr();
 | |
|   unsigned ndelays= mii.getNumDelaySlots(brInstr->getOpCode());
 | |
|   assert(ndelays > 0 && "Unnecessary call to replace NOPs");
 | |
|   
 | |
|   // Remove the NOPs currently in delay slots from the graph.
 | |
|   // If not enough useful instructions were found, use the NOPs to
 | |
|   // fill delay slots, otherwise, just discard them.
 | |
|   //  
 | |
|   unsigned int firstDelaySlotIdx = node->getOrigIndexInBB() + 1;
 | |
|   MachineBasicBlock& MBB = node->getMachineBasicBlock();
 | |
|   assert(MBB[firstDelaySlotIdx - 1] == brInstr &&
 | |
|          "Incorrect instr. index in basic block for brInstr");
 | |
|   
 | |
|   // First find all useful instructions already in the delay slots
 | |
|   // and USE THEM.  We'll throw away the unused alternatives below
 | |
|   // 
 | |
|   for (unsigned i=firstDelaySlotIdx; i < firstDelaySlotIdx + ndelays; ++i)
 | |
|     if (! mii.isNop(MBB[i]->getOpCode()))
 | |
|       sdelayNodeVec.insert(sdelayNodeVec.begin(),
 | |
|                            graph->getGraphNodeForInstr(MBB[i]));
 | |
|   
 | |
|   // Then find the NOPs and keep only as many as are needed.
 | |
|   // Put the rest in nopNodeVec to be deleted.
 | |
|   for (unsigned i=firstDelaySlotIdx; i < firstDelaySlotIdx + ndelays; ++i)
 | |
|     if (mii.isNop(MBB[i]->getOpCode()))
 | |
|       if (sdelayNodeVec.size() < ndelays)
 | |
|         sdelayNodeVec.push_back(graph->getGraphNodeForInstr(MBB[i]));
 | |
|       else {
 | |
|         nopNodeVec.push_back(graph->getGraphNodeForInstr(MBB[i]));
 | |
| 	  
 | |
|         //remove the MI from the Machine Code For Instruction
 | |
|         TerminatorInst *TI = MBB.getBasicBlock()->getTerminator();
 | |
|         MachineCodeForInstruction& llvmMvec = 
 | |
|           MachineCodeForInstruction::get((Instruction *)TI);
 | |
|           
 | |
|         for(MachineCodeForInstruction::iterator mciI=llvmMvec.begin(), 
 | |
|               mciE=llvmMvec.end(); mciI!=mciE; ++mciI){
 | |
|           if (*mciI==MBB[i])
 | |
|             llvmMvec.erase(mciI);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|   assert(sdelayNodeVec.size() >= ndelays);
 | |
|   
 | |
|   // If some delay slots were already filled, throw away that many new choices
 | |
|   if (sdelayNodeVec.size() > ndelays)
 | |
|     sdelayNodeVec.resize(ndelays);
 | |
|   
 | |
|   // Mark the nodes chosen for delay slots.  This removes them from the graph.
 | |
|   for (unsigned i=0; i < sdelayNodeVec.size(); i++)
 | |
|     MarkNodeForDelaySlot(S, graph, sdelayNodeVec[i], node, true);
 | |
|   
 | |
|   // And remove the unused NOPs from the graph.
 | |
|   for (unsigned i=0; i < nopNodeVec.size(); i++)
 | |
|     graph->eraseIncidentEdges(nopNodeVec[i], /*addDummyEdges*/ true);
 | |
| }
 | |
| 
 | |
| 
 | |
| // For all delayed instructions, choose instructions to put in the delay
 | |
| // slots and pull those out of the graph.  Mark them for the delay slots
 | |
| // in the DelaySlotInfo object for that graph node.  If no useful work
 | |
| // is found for a delay slot, use the NOP that is currently in that slot.
 | |
| // 
 | |
| // We try to fill the delay slots with useful work for all instructions
 | |
| // EXCEPT CALLS AND RETURNS.
 | |
| // For CALLs and RETURNs, it is nearly always possible to use one of the
 | |
| // call sequence instrs and putting anything else in the delay slot could be
 | |
| // suboptimal.  Also, it complicates generating the calling sequence code in
 | |
| // regalloc.
 | |
| // 
 | |
| static void
 | |
| ChooseInstructionsForDelaySlots(SchedulingManager& S, MachineBasicBlock &MBB,
 | |
| 				SchedGraph *graph)
 | |
| {
 | |
|   const TargetInstrInfo& mii = S.getInstrInfo();
 | |
| 
 | |
|   Instruction *termInstr = (Instruction*)MBB.getBasicBlock()->getTerminator();
 | |
|   MachineCodeForInstruction &termMvec=MachineCodeForInstruction::get(termInstr);
 | |
|   std::vector<SchedGraphNode*> delayNodeVec;
 | |
|   const MachineInstr* brInstr = NULL;
 | |
|   
 | |
|   if (termInstr->getOpcode() != Instruction::Ret)
 | |
|   {
 | |
|     // To find instructions that need delay slots without searching the full
 | |
|     // machine code, we assume that the only delayed instructions are CALLs
 | |
|     // or instructions generated for the terminator inst.
 | |
|     // Find the first branch instr in the sequence of machine instrs for term
 | |
|     // 
 | |
|     unsigned first = 0;
 | |
|     while (first < termMvec.size() &&
 | |
|            ! mii.isBranch(termMvec[first]->getOpCode()))
 | |
|     {
 | |
|       ++first;
 | |
|     }
 | |
|     assert(first < termMvec.size() &&
 | |
|            "No branch instructions for BR?  Ok, but weird!  Delete assertion.");
 | |
|       
 | |
|     brInstr = (first < termMvec.size())? termMvec[first] : NULL;
 | |
|       
 | |
|     // Compute a vector of the nodes chosen for delay slots and then
 | |
|     // mark delay slots to replace NOPs with these useful instructions.
 | |
|     // 
 | |
|     if (brInstr != NULL) {
 | |
|       SchedGraphNode* brNode = graph->getGraphNodeForInstr(brInstr);
 | |
|       FindUsefulInstructionsForDelaySlots(S, brNode, delayNodeVec);
 | |
|       ReplaceNopsWithUsefulInstr(S, brNode, delayNodeVec, graph);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Also mark delay slots for other delayed instructions to hold NOPs. 
 | |
|   // Simply passing in an empty delayNodeVec will have this effect.
 | |
|   // 
 | |
|   delayNodeVec.clear();
 | |
|   for (unsigned i=0; i < MBB.size(); ++i)
 | |
|     if (MBB[i] != brInstr &&
 | |
|         mii.getNumDelaySlots(MBB[i]->getOpCode()) > 0)
 | |
|     {
 | |
|       SchedGraphNode* node = graph->getGraphNodeForInstr(MBB[i]);
 | |
|       ReplaceNopsWithUsefulInstr(S, node, delayNodeVec, graph);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| // 
 | |
| // Schedule the delayed branch and its delay slots
 | |
| // 
 | |
| unsigned
 | |
| DelaySlotInfo::scheduleDelayedNode(SchedulingManager& S)
 | |
| {
 | |
|   assert(delayedNodeSlotNum < S.nslots && "Illegal slot for branch");
 | |
|   assert(S.isched.getInstr(delayedNodeSlotNum, delayedNodeCycle) == NULL
 | |
| 	 && "Slot for branch should be empty");
 | |
|   
 | |
|   unsigned int nextSlot = delayedNodeSlotNum;
 | |
|   cycles_t nextTime = delayedNodeCycle;
 | |
|   
 | |
|   S.scheduleInstr(brNode, nextSlot, nextTime);
 | |
|   
 | |
|   for (unsigned d=0; d < ndelays; d++) {
 | |
|     ++nextSlot;
 | |
|     if (nextSlot == S.nslots) {
 | |
|       nextSlot = 0;
 | |
|       nextTime++;
 | |
|     }
 | |
|       
 | |
|     // Find the first feasible instruction for this delay slot
 | |
|     // Note that we only check for issue restrictions here.
 | |
|     // We do *not* check for flow dependences but rely on pipeline
 | |
|     // interlocks to resolve them.  Machines without interlocks
 | |
|     // will require this code to be modified.
 | |
|     for (unsigned i=0; i < delayNodeVec.size(); i++) {
 | |
|       const SchedGraphNode* dnode = delayNodeVec[i];
 | |
|       if ( ! S.isScheduled(dnode)
 | |
|            && S.schedInfo.instrCanUseSlot(dnode->getOpCode(), nextSlot)
 | |
|            && instrIsFeasible(S, dnode->getOpCode()))
 | |
|       {
 | |
|         assert(S.getInstrInfo().hasOperandInterlock(dnode->getOpCode())
 | |
|                && "Instructions without interlocks not yet supported "
 | |
|                "when filling branch delay slots");
 | |
|         S.scheduleInstr(dnode, nextSlot, nextTime);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Update current time if delay slots overflowed into later cycles.
 | |
|   // Do this here because we know exactly which cycle is the last cycle
 | |
|   // that contains delay slots.  The next loop doesn't compute that.
 | |
|   if (nextTime > S.getTime())
 | |
|     S.updateTime(nextTime);
 | |
|   
 | |
|   // Now put any remaining instructions in the unfilled delay slots.
 | |
|   // This could lead to suboptimal performance but needed for correctness.
 | |
|   nextSlot = delayedNodeSlotNum;
 | |
|   nextTime = delayedNodeCycle;
 | |
|   for (unsigned i=0; i < delayNodeVec.size(); i++)
 | |
|     if (! S.isScheduled(delayNodeVec[i])) {
 | |
|       do { // find the next empty slot
 | |
|         ++nextSlot;
 | |
|         if (nextSlot == S.nslots) {
 | |
|           nextSlot = 0;
 | |
|           nextTime++;
 | |
|         }
 | |
|       } while (S.isched.getInstr(nextSlot, nextTime) != NULL);
 | |
| 	
 | |
|       S.scheduleInstr(delayNodeVec[i], nextSlot, nextTime);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   return 1 + ndelays;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Check if the instruction would conflict with instructions already
 | |
| // chosen for the current cycle
 | |
| // 
 | |
| static inline bool
 | |
| ConflictsWithChoices(const SchedulingManager& S,
 | |
| 		     MachineOpCode opCode)
 | |
| {
 | |
|   // Check if the instruction must issue by itself, and some feasible
 | |
|   // choices have already been made for this cycle
 | |
|   if (S.getNumChoices() > 0 && S.schedInfo.isSingleIssue(opCode))
 | |
|     return true;
 | |
|   
 | |
|   // For each class that opCode belongs to, check if there are too many
 | |
|   // instructions of that class.
 | |
|   // 
 | |
|   const InstrSchedClass sc = S.schedInfo.getSchedClass(opCode);
 | |
|   return (S.getNumChoicesInClass(sc) == S.schedInfo.getMaxIssueForClass(sc));
 | |
| }
 | |
| 
 | |
| 
 | |
| //************************* External Functions *****************************/
 | |
| 
 | |
| 
 | |
| //---------------------------------------------------------------------------
 | |
| // Function: ViolatesMinimumGap
 | |
| // 
 | |
| // Purpose:
 | |
| //   Check minimum gap requirements relative to instructions scheduled in
 | |
| //   previous cycles.
 | |
| //   Note that we do not need to consider `nextEarliestIssueTime' here because
 | |
| //   that is also captured in the earliest start times for each opcode.
 | |
| //---------------------------------------------------------------------------
 | |
| 
 | |
| static inline bool
 | |
| ViolatesMinimumGap(const SchedulingManager& S,
 | |
| 		   MachineOpCode opCode,
 | |
| 		   const cycles_t inCycle)
 | |
| {
 | |
|   return (inCycle < S.getEarliestStartTimeForOp(opCode));
 | |
| }
 | |
| 
 | |
| 
 | |
| //---------------------------------------------------------------------------
 | |
| // Function: instrIsFeasible
 | |
| // 
 | |
| // Purpose:
 | |
| //   Check if any issue restrictions would prevent the instruction from
 | |
| //   being issued in the current cycle
 | |
| //---------------------------------------------------------------------------
 | |
| 
 | |
| bool
 | |
| instrIsFeasible(const SchedulingManager& S,
 | |
| 		MachineOpCode opCode)
 | |
| {
 | |
|   // skip the instruction if it cannot be issued due to issue restrictions
 | |
|   // caused by previously issued instructions
 | |
|   if (ViolatesMinimumGap(S, opCode, S.getTime()))
 | |
|     return false;
 | |
|   
 | |
|   // skip the instruction if it cannot be issued due to issue restrictions
 | |
|   // caused by previously chosen instructions for the current cycle
 | |
|   if (ConflictsWithChoices(S, opCode))
 | |
|     return false;
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //---------------------------------------------------------------------------
 | |
| // Function: ScheduleInstructionsWithSSA
 | |
| // 
 | |
| // Purpose:
 | |
| //   Entry point for instruction scheduling on SSA form.
 | |
| //   Schedules the machine instructions generated by instruction selection.
 | |
| //   Assumes that register allocation has not been done, i.e., operands
 | |
| //   are still in SSA form.
 | |
| //---------------------------------------------------------------------------
 | |
| 
 | |
| namespace {
 | |
|   class InstructionSchedulingWithSSA : public FunctionPass {
 | |
|     const TargetMachine ⌖
 | |
|   public:
 | |
|     inline InstructionSchedulingWithSSA(const TargetMachine &T) : target(T) {}
 | |
| 
 | |
|     const char *getPassName() const { return "Instruction Scheduling"; }
 | |
|   
 | |
|     // getAnalysisUsage - We use LiveVarInfo...
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addRequired<FunctionLiveVarInfo>();
 | |
|       AU.setPreservesCFG();
 | |
|     }
 | |
|     
 | |
|     bool runOnFunction(Function &F);
 | |
|   };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| 
 | |
| bool InstructionSchedulingWithSSA::runOnFunction(Function &F)
 | |
| {
 | |
|   SchedGraphSet graphSet(&F, target);	
 | |
|   
 | |
|   if (SchedDebugLevel >= Sched_PrintSchedGraphs) {
 | |
|       std::cerr << "\n*** SCHEDULING GRAPHS FOR INSTRUCTION SCHEDULING\n";
 | |
|       graphSet.dump();
 | |
|     }
 | |
|   
 | |
|   for (SchedGraphSet::const_iterator GI=graphSet.begin(), GE=graphSet.end();
 | |
|        GI != GE; ++GI)
 | |
|   {
 | |
|     SchedGraph* graph = (*GI);
 | |
|     MachineBasicBlock &MBB = graph->getBasicBlock();
 | |
|       
 | |
|     if (SchedDebugLevel >= Sched_PrintSchedTrace)
 | |
|       std::cerr << "\n*** TRACE OF INSTRUCTION SCHEDULING OPERATIONS\n\n";
 | |
|       
 | |
|     // expensive!
 | |
|     SchedPriorities schedPrio(&F, graph, getAnalysis<FunctionLiveVarInfo>());
 | |
|     SchedulingManager S(target, graph, schedPrio);
 | |
|           
 | |
|     ChooseInstructionsForDelaySlots(S, MBB, graph); // modifies graph
 | |
|     ForwardListSchedule(S);               // computes schedule in S
 | |
|     RecordSchedule(MBB, S);                // records schedule in BB
 | |
|   }
 | |
|   
 | |
|   if (SchedDebugLevel >= Sched_PrintMachineCode) {
 | |
|     std::cerr << "\n*** Machine instructions after INSTRUCTION SCHEDULING\n";
 | |
|     MachineFunction::get(&F).dump();
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| Pass *createInstructionSchedulingWithSSAPass(const TargetMachine &tgt) {
 | |
|   return new InstructionSchedulingWithSSA(tgt);
 | |
| }
 |