mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@6624 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			256 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			256 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
 | |
| //
 | |
| // This pass eliminates machine instruction PHI nodes by inserting copy
 | |
| // instructions.  This destroys SSA information, but is the desired input for
 | |
| // some register allocators.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/SSARegMap.h"
 | |
| #include "llvm/CodeGen/LiveVariables.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| 
 | |
| namespace {
 | |
|   struct PNE : public MachineFunctionPass {
 | |
|     bool runOnMachineFunction(MachineFunction &Fn) {
 | |
|       bool Changed = false;
 | |
| 
 | |
|       // Eliminate PHI instructions by inserting copies into predecessor blocks.
 | |
|       //
 | |
|       for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
 | |
| 	Changed |= EliminatePHINodes(Fn, *I);
 | |
| 
 | |
|       //std::cerr << "AFTER PHI NODE ELIM:\n";
 | |
|       //Fn.dump();
 | |
|       return Changed;
 | |
|     }
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addPreserved<LiveVariables>();
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
 | |
|     /// in predecessor basic blocks.
 | |
|     ///
 | |
|     bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
 | |
|   };
 | |
| 
 | |
|   RegisterPass<PNE> X("phi-node-elimination",
 | |
| 		      "Eliminate PHI nodes for register allocation");
 | |
| }
 | |
| 
 | |
| const PassInfo *PHIEliminationID = X.getPassInfo();
 | |
| 
 | |
| /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
 | |
| /// predecessor basic blocks.
 | |
| ///
 | |
| bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) {
 | |
|   if (MBB.empty() || MBB.front()->getOpcode() != TargetInstrInfo::PHI)
 | |
|     return false;   // Quick exit for normal case...
 | |
| 
 | |
|   LiveVariables *LV = getAnalysisToUpdate<LiveVariables>();
 | |
|   const TargetInstrInfo &MII = MF.getTarget().getInstrInfo();
 | |
|   const MRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
 | |
| 
 | |
|   while (MBB.front()->getOpcode() == TargetInstrInfo::PHI) {
 | |
|     MachineInstr *MI = MBB.front();
 | |
|     // Unlink the PHI node from the basic block... but don't delete the PHI yet
 | |
|     MBB.erase(MBB.begin());
 | |
| 
 | |
|     assert(MI->getOperand(0).isVirtualRegister() &&
 | |
|            "PHI node doesn't write virt reg?");
 | |
| 
 | |
|     unsigned DestReg = MI->getOperand(0).getAllocatedRegNum();
 | |
|     
 | |
|     // Create a new register for the incoming PHI arguments
 | |
|     const TargetRegisterClass *RC = MF.getSSARegMap()->getRegClass(DestReg);
 | |
|     unsigned IncomingReg = MF.getSSARegMap()->createVirtualRegister(RC);
 | |
| 
 | |
|     // Insert a register to register copy in the top of the current block (but
 | |
|     // after any remaining phi nodes) which copies the new incoming register
 | |
|     // into the phi node destination.
 | |
|     //
 | |
|     MachineBasicBlock::iterator AfterPHIsIt = MBB.begin();
 | |
|     while (AfterPHIsIt != MBB.end() &&
 | |
|            (*AfterPHIsIt)->getOpcode() == TargetInstrInfo::PHI)
 | |
|       ++AfterPHIsIt;    // Skip over all of the PHI nodes...
 | |
|     RegInfo->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC);
 | |
|     
 | |
|     // Update live variable information if there is any...
 | |
|     if (LV) {
 | |
|       MachineInstr *PHICopy = *(AfterPHIsIt-1);
 | |
| 
 | |
|       // Add information to LiveVariables to know that the incoming value is
 | |
|       // killed.  Note that because the value is defined in several places (once
 | |
|       // each for each incoming block), the "def" block and instruction fields
 | |
|       // for the VarInfo is not filled in.
 | |
|       //
 | |
|       LV->addVirtualRegisterKilled(IncomingReg, &MBB, PHICopy);
 | |
| 
 | |
|       // Since we are going to be deleting the PHI node, if it is the last use
 | |
|       // of any registers, or if the value itself is dead, we need to move this
 | |
|       // information over to the new copy we just inserted...
 | |
|       //
 | |
|       std::pair<LiveVariables::killed_iterator, LiveVariables::killed_iterator> 
 | |
|         RKs = LV->killed_range(MI);
 | |
|       std::vector<std::pair<MachineInstr*, unsigned> > Range;
 | |
|       if (RKs.first != RKs.second) {
 | |
|         // Copy the range into a vector...
 | |
|         Range.assign(RKs.first, RKs.second);
 | |
| 
 | |
|         // Delete the range...
 | |
|         LV->removeVirtualRegistersKilled(RKs.first, RKs.second);
 | |
| 
 | |
|         // Add all of the kills back, which will update the appropriate info...
 | |
|         for (unsigned i = 0, e = Range.size(); i != e; ++i)
 | |
|           LV->addVirtualRegisterKilled(Range[i].second, &MBB, PHICopy);
 | |
|       }
 | |
| 
 | |
|       RKs = LV->dead_range(MI);
 | |
|       if (RKs.first != RKs.second) {
 | |
|         // Works as above...
 | |
|         Range.assign(RKs.first, RKs.second);
 | |
|         LV->removeVirtualRegistersDead(RKs.first, RKs.second);
 | |
|         for (unsigned i = 0, e = Range.size(); i != e; ++i)
 | |
|           LV->addVirtualRegisterDead(Range[i].second, &MBB, PHICopy);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Now loop over all of the incoming arguments, changing them to copy into
 | |
|     // the IncomingReg register in the corresponding predecessor basic block.
 | |
|     //
 | |
|     for (int i = MI->getNumOperands() - 1; i >= 2; i-=2) {
 | |
|       MachineOperand &opVal = MI->getOperand(i-1);
 | |
|       
 | |
|       // Get the MachineBasicBlock equivalent of the BasicBlock that is the
 | |
|       // source path the PHI.
 | |
|       MachineBasicBlock &opBlock = *MI->getOperand(i).getMachineBasicBlock();
 | |
| 
 | |
|       // Figure out where to insert the copy, which is at the end of the
 | |
|       // predecessor basic block, but before any terminator/branch
 | |
|       // instructions...
 | |
|       MachineBasicBlock::iterator I = opBlock.end();
 | |
|       if (I != opBlock.begin()) {  // Handle empty blocks
 | |
|         --I;
 | |
|         // must backtrack over ALL the branches in the previous block
 | |
|         while (MII.isTerminatorInstr((*I)->getOpcode()) &&
 | |
|                I != opBlock.begin())
 | |
|           --I;
 | |
|         
 | |
|         // move back to the first branch instruction so new instructions
 | |
|         // are inserted right in front of it and not in front of a non-branch
 | |
|         if (!MII.isTerminatorInstr((*I)->getOpcode()))
 | |
|           ++I;
 | |
|       }
 | |
|       
 | |
|       // Check to make sure we haven't already emitted the copy for this block.
 | |
|       // This can happen because PHI nodes may have multiple entries for the
 | |
|       // same basic block.  It doesn't matter which entry we use though, because
 | |
|       // all incoming values are guaranteed to be the same for a particular bb.
 | |
|       //
 | |
|       // If we emitted a copy for this basic block already, it will be right
 | |
|       // where we want to insert one now.  Just check for a definition of the
 | |
|       // register we are interested in!
 | |
|       //
 | |
|       bool HaveNotEmitted = true;
 | |
|       
 | |
|       if (I != opBlock.begin()) {
 | |
|         MachineInstr *PrevInst = *(I-1);
 | |
|         for (unsigned i = 0, e = PrevInst->getNumOperands(); i != e; ++i) {
 | |
|           MachineOperand &MO = PrevInst->getOperand(i);
 | |
|           if (MO.isVirtualRegister() && MO.getReg() == IncomingReg)
 | |
|             if (MO.opIsDefOnly() || MO.opIsDefAndUse()) {
 | |
|               HaveNotEmitted = false;
 | |
|               break;
 | |
|             }             
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (HaveNotEmitted) { // If the copy has not already been emitted, do it.
 | |
|         assert(opVal.isVirtualRegister() &&
 | |
|                "Machine PHI Operands must all be virtual registers!");
 | |
|         unsigned SrcReg = opVal.getReg();
 | |
|         RegInfo->copyRegToReg(opBlock, I, IncomingReg, SrcReg, RC);
 | |
| 
 | |
|         // Now update live variable information if we have it.
 | |
|         if (LV) {
 | |
|           // We want to be able to insert a kill of the register if this PHI
 | |
|           // (aka, the copy we just inserted) is the last use of the source
 | |
|           // value.  Live variable analysis conservatively handles this by
 | |
|           // saying that the value is live until the end of the block the PHI
 | |
|           // entry lives in.  If the value really is dead at the PHI copy, there
 | |
|           // will be no successor blocks which have the value live-in.
 | |
|           //
 | |
|           // Check to see if the copy is the last use, and if so, update the
 | |
|           // live variables information so that it knows the copy source
 | |
|           // instruction kills the incoming value.
 | |
|           //
 | |
|           LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg);
 | |
| 
 | |
|           // Loop over all of the successors of the basic block, checking to see
 | |
|           // if the value is either live in the block, or if it is killed in the
 | |
|           // block.  Also check to see if this register is in use by another PHI
 | |
|           // node which has not yet been eliminated.  If so, it will be killed
 | |
|           // at an appropriate point later.
 | |
|           //
 | |
|           bool ValueIsLive = false;
 | |
|           BasicBlock *BB = opBlock.getBasicBlock();
 | |
|           for (succ_iterator SI = succ_begin(BB), E = succ_end(BB);
 | |
|                SI != E && !ValueIsLive; ++SI) {
 | |
|             const std::pair<MachineBasicBlock*, unsigned> &
 | |
|               SuccInfo = LV->getBasicBlockInfo(*SI);
 | |
|             
 | |
|             // Is it alive in this successor?
 | |
|             unsigned SuccIdx = SuccInfo.second;
 | |
|             if (SuccIdx < InRegVI.AliveBlocks.size() &&
 | |
|                 InRegVI.AliveBlocks[SuccIdx]) {
 | |
|               ValueIsLive = true;
 | |
|               break;
 | |
|             }
 | |
|             
 | |
|             // Is it killed in this successor?
 | |
|             MachineBasicBlock *MBB = SuccInfo.first;
 | |
|             for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
 | |
|               if (InRegVI.Kills[i].first == MBB) {
 | |
|                 ValueIsLive = true;
 | |
|                 break;
 | |
|               }
 | |
| 
 | |
|             // Is it used by any PHI instructions in this block?
 | |
|             if (ValueIsLive) break;
 | |
| 
 | |
|             // Loop over all of the PHIs in this successor, checking to see if
 | |
|             // the register is being used...
 | |
|             for (MachineBasicBlock::iterator BBI = MBB->begin(), E=MBB->end();
 | |
|                  BBI != E && (*BBI)->getOpcode() == TargetInstrInfo::PHI;
 | |
|                  ++BBI)
 | |
|               for (unsigned i = 1, e = (*BBI)->getNumOperands(); i < e; i += 2)
 | |
|                 if ((*BBI)->getOperand(i).getReg() == SrcReg) {
 | |
|                   ValueIsLive = true;
 | |
|                   break;
 | |
|                 }
 | |
|           }
 | |
|           
 | |
|           // Okay, if we now know that the value is not live out of the block,
 | |
|           // we can add a kill marker to the copy we inserted saying that it
 | |
|           // kills the incoming value!
 | |
|           //
 | |
|           if (!ValueIsLive)
 | |
|             LV->addVirtualRegisterKilled(SrcReg, &opBlock, *(I-1));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // really delete the PHI instruction now!
 | |
|     delete MI;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 |