mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116158 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			600 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			600 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements inline cost analysis.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/InlineCost.h"
 | 
						|
#include "llvm/Support/CallSite.h"
 | 
						|
#include "llvm/CallingConv.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
/// callIsSmall - If a call is likely to lower to a single target instruction,
 | 
						|
/// or is otherwise deemed small return true.
 | 
						|
/// TODO: Perhaps calls like memcpy, strcpy, etc?
 | 
						|
bool llvm::callIsSmall(const Function *F) {
 | 
						|
  if (!F) return false;
 | 
						|
  
 | 
						|
  if (F->hasLocalLinkage()) return false;
 | 
						|
  
 | 
						|
  if (!F->hasName()) return false;
 | 
						|
  
 | 
						|
  StringRef Name = F->getName();
 | 
						|
  
 | 
						|
  // These will all likely lower to a single selection DAG node.
 | 
						|
  if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
 | 
						|
      Name == "fabs" || Name == "fabsf" || Name == "fabsl" ||
 | 
						|
      Name == "sin" || Name == "sinf" || Name == "sinl" ||
 | 
						|
      Name == "cos" || Name == "cosf" || Name == "cosl" ||
 | 
						|
      Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl" )
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  // These are all likely to be optimized into something smaller.
 | 
						|
  if (Name == "pow" || Name == "powf" || Name == "powl" ||
 | 
						|
      Name == "exp2" || Name == "exp2l" || Name == "exp2f" ||
 | 
						|
      Name == "floor" || Name == "floorf" || Name == "ceil" ||
 | 
						|
      Name == "round" || Name == "ffs" || Name == "ffsl" ||
 | 
						|
      Name == "abs" || Name == "labs" || Name == "llabs")
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// analyzeBasicBlock - Fill in the current structure with information gleaned
 | 
						|
/// from the specified block.
 | 
						|
void CodeMetrics::analyzeBasicBlock(const BasicBlock *BB) {
 | 
						|
  ++NumBlocks;
 | 
						|
  unsigned NumInstsBeforeThisBB = NumInsts;
 | 
						|
  for (BasicBlock::const_iterator II = BB->begin(), E = BB->end();
 | 
						|
       II != E; ++II) {
 | 
						|
    if (isa<PHINode>(II)) continue;           // PHI nodes don't count.
 | 
						|
 | 
						|
    // Special handling for calls.
 | 
						|
    if (isa<CallInst>(II) || isa<InvokeInst>(II)) {
 | 
						|
      if (isa<DbgInfoIntrinsic>(II))
 | 
						|
        continue;  // Debug intrinsics don't count as size.
 | 
						|
 | 
						|
      ImmutableCallSite CS(cast<Instruction>(II));
 | 
						|
 | 
						|
      // If this function contains a call to setjmp or _setjmp, never inline
 | 
						|
      // it.  This is a hack because we depend on the user marking their local
 | 
						|
      // variables as volatile if they are live across a setjmp call, and they
 | 
						|
      // probably won't do this in callers.
 | 
						|
      if (const Function *F = CS.getCalledFunction()) {
 | 
						|
        // If a function is both internal and has a single use, then it is 
 | 
						|
        // extremely likely to get inlined in the future (it was probably 
 | 
						|
        // exposed by an interleaved devirtualization pass).
 | 
						|
        if (F->hasInternalLinkage() && F->hasOneUse())
 | 
						|
          ++NumInlineCandidates;
 | 
						|
        
 | 
						|
        if (F->isDeclaration() && 
 | 
						|
            (F->getName() == "setjmp" || F->getName() == "_setjmp"))
 | 
						|
          callsSetJmp = true;
 | 
						|
       
 | 
						|
        // If this call is to function itself, then the function is recursive.
 | 
						|
        // Inlining it into other functions is a bad idea, because this is
 | 
						|
        // basically just a form of loop peeling, and our metrics aren't useful
 | 
						|
        // for that case.
 | 
						|
        if (F == BB->getParent())
 | 
						|
          isRecursive = true;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!isa<IntrinsicInst>(II) && !callIsSmall(CS.getCalledFunction())) {
 | 
						|
        // Each argument to a call takes on average one instruction to set up.
 | 
						|
        NumInsts += CS.arg_size();
 | 
						|
 | 
						|
        // We don't want inline asm to count as a call - that would prevent loop
 | 
						|
        // unrolling. The argument setup cost is still real, though.
 | 
						|
        if (!isa<InlineAsm>(CS.getCalledValue()))
 | 
						|
          ++NumCalls;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
 | 
						|
      if (!AI->isStaticAlloca())
 | 
						|
        this->usesDynamicAlloca = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (isa<ExtractElementInst>(II) || II->getType()->isVectorTy())
 | 
						|
      ++NumVectorInsts; 
 | 
						|
    
 | 
						|
    if (const CastInst *CI = dyn_cast<CastInst>(II)) {
 | 
						|
      // Noop casts, including ptr <-> int,  don't count.
 | 
						|
      if (CI->isLosslessCast() || isa<IntToPtrInst>(CI) || 
 | 
						|
          isa<PtrToIntInst>(CI))
 | 
						|
        continue;
 | 
						|
      // Result of a cmp instruction is often extended (to be used by other
 | 
						|
      // cmp instructions, logical or return instructions). These are usually
 | 
						|
      // nop on most sane targets.
 | 
						|
      if (isa<CmpInst>(CI->getOperand(0)))
 | 
						|
        continue;
 | 
						|
    } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(II)){
 | 
						|
      // If a GEP has all constant indices, it will probably be folded with
 | 
						|
      // a load/store.
 | 
						|
      if (GEPI->hasAllConstantIndices())
 | 
						|
        continue;
 | 
						|
    }
 | 
						|
 | 
						|
    ++NumInsts;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (isa<ReturnInst>(BB->getTerminator()))
 | 
						|
    ++NumRets;
 | 
						|
  
 | 
						|
  // We never want to inline functions that contain an indirectbr.  This is
 | 
						|
  // incorrect because all the blockaddress's (in static global initializers
 | 
						|
  // for example) would be referring to the original function, and this indirect
 | 
						|
  // jump would jump from the inlined copy of the function into the original
 | 
						|
  // function which is extremely undefined behavior.
 | 
						|
  if (isa<IndirectBrInst>(BB->getTerminator()))
 | 
						|
    containsIndirectBr = true;
 | 
						|
 | 
						|
  // Remember NumInsts for this BB.
 | 
						|
  NumBBInsts[BB] = NumInsts - NumInstsBeforeThisBB;
 | 
						|
}
 | 
						|
 | 
						|
// CountBonusForConstant - Figure out an approximation for how much per-call
 | 
						|
// performance boost we can expect if the specified value is constant.
 | 
						|
unsigned CodeMetrics::CountBonusForConstant(Value *V) {
 | 
						|
  unsigned Bonus = 0;
 | 
						|
  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
 | 
						|
    User *U = *UI;
 | 
						|
    if (CallInst *CI = dyn_cast<CallInst>(U)) {
 | 
						|
      // Turning an indirect call into a direct call is a BIG win
 | 
						|
      if (CI->getCalledValue() == V)
 | 
						|
        Bonus += InlineConstants::IndirectCallBonus;
 | 
						|
    }
 | 
						|
    else if (InvokeInst *II = dyn_cast<InvokeInst>(U)) {
 | 
						|
      // Turning an indirect call into a direct call is a BIG win
 | 
						|
      if (II->getCalledValue() == V)
 | 
						|
        Bonus += InlineConstants::IndirectCallBonus;
 | 
						|
    }
 | 
						|
    // FIXME: Eliminating conditional branches and switches should
 | 
						|
    // also yield a per-call performance boost.
 | 
						|
    else {
 | 
						|
      // Figure out the bonuses that wll accrue due to simple constant
 | 
						|
      // propagation.
 | 
						|
      Instruction &Inst = cast<Instruction>(*U);
 | 
						|
 | 
						|
      // We can't constant propagate instructions which have effects or
 | 
						|
      // read memory.
 | 
						|
      //
 | 
						|
      // FIXME: It would be nice to capture the fact that a load from a
 | 
						|
      // pointer-to-constant-global is actually a *really* good thing to zap.
 | 
						|
      // Unfortunately, we don't know the pointer that may get propagated here,
 | 
						|
      // so we can't make this decision.
 | 
						|
      if (Inst.mayReadFromMemory() || Inst.mayHaveSideEffects() ||
 | 
						|
          isa<AllocaInst>(Inst))
 | 
						|
        continue;
 | 
						|
 | 
						|
      bool AllOperandsConstant = true;
 | 
						|
      for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i)
 | 
						|
        if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) {
 | 
						|
          AllOperandsConstant = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
      if (AllOperandsConstant)
 | 
						|
        Bonus += CountBonusForConstant(&Inst);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Bonus;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// CountCodeReductionForConstant - Figure out an approximation for how many
 | 
						|
// instructions will be constant folded if the specified value is constant.
 | 
						|
//
 | 
						|
unsigned CodeMetrics::CountCodeReductionForConstant(Value *V) {
 | 
						|
  unsigned Reduction = 0;
 | 
						|
  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
 | 
						|
    User *U = *UI;
 | 
						|
    if (isa<BranchInst>(U) || isa<SwitchInst>(U)) {
 | 
						|
      // We will be able to eliminate all but one of the successors.
 | 
						|
      const TerminatorInst &TI = cast<TerminatorInst>(*U);
 | 
						|
      const unsigned NumSucc = TI.getNumSuccessors();
 | 
						|
      unsigned Instrs = 0;
 | 
						|
      for (unsigned I = 0; I != NumSucc; ++I)
 | 
						|
        Instrs += NumBBInsts[TI.getSuccessor(I)];
 | 
						|
      // We don't know which blocks will be eliminated, so use the average size.
 | 
						|
      Reduction += InlineConstants::InstrCost*Instrs*(NumSucc-1)/NumSucc;
 | 
						|
    } else {
 | 
						|
      // Figure out if this instruction will be removed due to simple constant
 | 
						|
      // propagation.
 | 
						|
      Instruction &Inst = cast<Instruction>(*U);
 | 
						|
 | 
						|
      // We can't constant propagate instructions which have effects or
 | 
						|
      // read memory.
 | 
						|
      //
 | 
						|
      // FIXME: It would be nice to capture the fact that a load from a
 | 
						|
      // pointer-to-constant-global is actually a *really* good thing to zap.
 | 
						|
      // Unfortunately, we don't know the pointer that may get propagated here,
 | 
						|
      // so we can't make this decision.
 | 
						|
      if (Inst.mayReadFromMemory() || Inst.mayHaveSideEffects() ||
 | 
						|
          isa<AllocaInst>(Inst))
 | 
						|
        continue;
 | 
						|
 | 
						|
      bool AllOperandsConstant = true;
 | 
						|
      for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i)
 | 
						|
        if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) {
 | 
						|
          AllOperandsConstant = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
      if (AllOperandsConstant) {
 | 
						|
        // We will get to remove this instruction...
 | 
						|
        Reduction += InlineConstants::InstrCost;
 | 
						|
 | 
						|
        // And any other instructions that use it which become constants
 | 
						|
        // themselves.
 | 
						|
        Reduction += CountCodeReductionForConstant(&Inst);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Reduction;
 | 
						|
}
 | 
						|
 | 
						|
// CountCodeReductionForAlloca - Figure out an approximation of how much smaller
 | 
						|
// the function will be if it is inlined into a context where an argument
 | 
						|
// becomes an alloca.
 | 
						|
//
 | 
						|
unsigned CodeMetrics::CountCodeReductionForAlloca(Value *V) {
 | 
						|
  if (!V->getType()->isPointerTy()) return 0;  // Not a pointer
 | 
						|
  unsigned Reduction = 0;
 | 
						|
  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
 | 
						|
    Instruction *I = cast<Instruction>(*UI);
 | 
						|
    if (isa<LoadInst>(I) || isa<StoreInst>(I))
 | 
						|
      Reduction += InlineConstants::InstrCost;
 | 
						|
    else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
 | 
						|
      // If the GEP has variable indices, we won't be able to do much with it.
 | 
						|
      if (GEP->hasAllConstantIndices())
 | 
						|
        Reduction += CountCodeReductionForAlloca(GEP);
 | 
						|
    } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(I)) {
 | 
						|
      // Track pointer through bitcasts.
 | 
						|
      Reduction += CountCodeReductionForAlloca(BCI);
 | 
						|
    } else {
 | 
						|
      // If there is some other strange instruction, we're not going to be able
 | 
						|
      // to do much if we inline this.
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Reduction;
 | 
						|
}
 | 
						|
 | 
						|
/// analyzeFunction - Fill in the current structure with information gleaned
 | 
						|
/// from the specified function.
 | 
						|
void CodeMetrics::analyzeFunction(Function *F) {
 | 
						|
  // Look at the size of the callee.
 | 
						|
  for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
 | 
						|
    analyzeBasicBlock(&*BB);
 | 
						|
}
 | 
						|
 | 
						|
/// analyzeFunction - Fill in the current structure with information gleaned
 | 
						|
/// from the specified function.
 | 
						|
void InlineCostAnalyzer::FunctionInfo::analyzeFunction(Function *F) {
 | 
						|
  Metrics.analyzeFunction(F);
 | 
						|
 | 
						|
  // A function with exactly one return has it removed during the inlining
 | 
						|
  // process (see InlineFunction), so don't count it.
 | 
						|
  // FIXME: This knowledge should really be encoded outside of FunctionInfo.
 | 
						|
  if (Metrics.NumRets==1)
 | 
						|
    --Metrics.NumInsts;
 | 
						|
 | 
						|
  // Don't bother calculating argument weights if we are never going to inline
 | 
						|
  // the function anyway.
 | 
						|
  if (NeverInline())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Check out all of the arguments to the function, figuring out how much
 | 
						|
  // code can be eliminated if one of the arguments is a constant.
 | 
						|
  ArgumentWeights.reserve(F->arg_size());
 | 
						|
  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
 | 
						|
    ArgumentWeights.push_back(ArgInfo(Metrics.CountCodeReductionForConstant(I),
 | 
						|
                                      Metrics.CountCodeReductionForAlloca(I),
 | 
						|
                                      Metrics.CountBonusForConstant(I)));
 | 
						|
}
 | 
						|
 | 
						|
/// NeverInline - returns true if the function should never be inlined into
 | 
						|
/// any caller
 | 
						|
bool InlineCostAnalyzer::FunctionInfo::NeverInline()
 | 
						|
{
 | 
						|
  return (Metrics.callsSetJmp || Metrics.isRecursive || 
 | 
						|
          Metrics.containsIndirectBr);
 | 
						|
 | 
						|
}
 | 
						|
// getSpecializationBonus - The heuristic used to determine the per-call
 | 
						|
// performance boost for using a specialization of Callee with argument
 | 
						|
// specializedArgNo replaced by a constant.
 | 
						|
int InlineCostAnalyzer::getSpecializationBonus(Function *Callee,
 | 
						|
         SmallVectorImpl<unsigned> &SpecializedArgNos)
 | 
						|
{
 | 
						|
  if (Callee->mayBeOverridden())
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  int Bonus = 0;
 | 
						|
  // If this function uses the coldcc calling convention, prefer not to
 | 
						|
  // specialize it.
 | 
						|
  if (Callee->getCallingConv() == CallingConv::Cold)
 | 
						|
    Bonus -= InlineConstants::ColdccPenalty;
 | 
						|
  
 | 
						|
  // Get information about the callee.
 | 
						|
  FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee];
 | 
						|
  
 | 
						|
  // If we haven't calculated this information yet, do so now.
 | 
						|
  if (CalleeFI->Metrics.NumBlocks == 0)
 | 
						|
    CalleeFI->analyzeFunction(Callee);
 | 
						|
 | 
						|
 | 
						|
  for (unsigned i = 0, s = SpecializedArgNos.size();
 | 
						|
       i < s; ++i )
 | 
						|
  {
 | 
						|
    Bonus += CalleeFI->ArgumentWeights[SpecializedArgNos[i]].ConstantBonus;
 | 
						|
  }
 | 
						|
  // Calls usually take a long time, so they make the specialization gain 
 | 
						|
  // smaller.
 | 
						|
  Bonus -= CalleeFI->Metrics.NumCalls * InlineConstants::CallPenalty;
 | 
						|
 | 
						|
  return Bonus;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// getInlineCost - The heuristic used to determine if we should inline the
 | 
						|
// function call or not.
 | 
						|
//
 | 
						|
InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS,
 | 
						|
                               SmallPtrSet<const Function*, 16> &NeverInline) {
 | 
						|
  return getInlineCost(CS, CS.getCalledFunction(), NeverInline);
 | 
						|
}
 | 
						|
 | 
						|
InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS,
 | 
						|
                               Function *Callee,
 | 
						|
                               SmallPtrSet<const Function*, 16> &NeverInline) {
 | 
						|
  Instruction *TheCall = CS.getInstruction();
 | 
						|
  Function *Caller = TheCall->getParent()->getParent();
 | 
						|
  bool isDirectCall = CS.getCalledFunction() == Callee;
 | 
						|
 | 
						|
  // Don't inline functions which can be redefined at link-time to mean
 | 
						|
  // something else.  Don't inline functions marked noinline or call sites
 | 
						|
  // marked noinline.
 | 
						|
  if (Callee->mayBeOverridden() ||
 | 
						|
      Callee->hasFnAttr(Attribute::NoInline) || NeverInline.count(Callee) ||
 | 
						|
      CS.isNoInline())
 | 
						|
    return llvm::InlineCost::getNever();
 | 
						|
 | 
						|
  // InlineCost - This value measures how good of an inline candidate this call
 | 
						|
  // site is to inline.  A lower inline cost make is more likely for the call to
 | 
						|
  // be inlined.  This value may go negative.
 | 
						|
  //
 | 
						|
  int InlineCost = 0;
 | 
						|
 | 
						|
  // If there is only one call of the function, and it has internal linkage,
 | 
						|
  // make it almost guaranteed to be inlined.
 | 
						|
  //
 | 
						|
  if (Callee->hasLocalLinkage() && Callee->hasOneUse() && isDirectCall)
 | 
						|
    InlineCost += InlineConstants::LastCallToStaticBonus;
 | 
						|
  
 | 
						|
  // If this function uses the coldcc calling convention, prefer not to inline
 | 
						|
  // it.
 | 
						|
  if (Callee->getCallingConv() == CallingConv::Cold)
 | 
						|
    InlineCost += InlineConstants::ColdccPenalty;
 | 
						|
  
 | 
						|
  // If the instruction after the call, or if the normal destination of the
 | 
						|
  // invoke is an unreachable instruction, the function is noreturn.  As such,
 | 
						|
  // there is little point in inlining this.
 | 
						|
  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
 | 
						|
    if (isa<UnreachableInst>(II->getNormalDest()->begin()))
 | 
						|
      InlineCost += InlineConstants::NoreturnPenalty;
 | 
						|
  } else if (isa<UnreachableInst>(++BasicBlock::iterator(TheCall)))
 | 
						|
    InlineCost += InlineConstants::NoreturnPenalty;
 | 
						|
  
 | 
						|
  // Get information about the callee.
 | 
						|
  FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee];
 | 
						|
  
 | 
						|
  // If we haven't calculated this information yet, do so now.
 | 
						|
  if (CalleeFI->Metrics.NumBlocks == 0)
 | 
						|
    CalleeFI->analyzeFunction(Callee);
 | 
						|
 | 
						|
  // If we should never inline this, return a huge cost.
 | 
						|
  if (CalleeFI->NeverInline())
 | 
						|
    return InlineCost::getNever();
 | 
						|
 | 
						|
  // FIXME: It would be nice to kill off CalleeFI->NeverInline. Then we
 | 
						|
  // could move this up and avoid computing the FunctionInfo for
 | 
						|
  // things we are going to just return always inline for. This
 | 
						|
  // requires handling setjmp somewhere else, however.
 | 
						|
  if (!Callee->isDeclaration() && Callee->hasFnAttr(Attribute::AlwaysInline))
 | 
						|
    return InlineCost::getAlways();
 | 
						|
    
 | 
						|
  if (CalleeFI->Metrics.usesDynamicAlloca) {
 | 
						|
    // Get infomation about the caller.
 | 
						|
    FunctionInfo &CallerFI = CachedFunctionInfo[Caller];
 | 
						|
 | 
						|
    // If we haven't calculated this information yet, do so now.
 | 
						|
    if (CallerFI.Metrics.NumBlocks == 0) {
 | 
						|
      CallerFI.analyzeFunction(Caller);
 | 
						|
     
 | 
						|
      // Recompute the CalleeFI pointer, getting Caller could have invalidated
 | 
						|
      // it.
 | 
						|
      CalleeFI = &CachedFunctionInfo[Callee];
 | 
						|
    }
 | 
						|
 | 
						|
    // Don't inline a callee with dynamic alloca into a caller without them.
 | 
						|
    // Functions containing dynamic alloca's are inefficient in various ways;
 | 
						|
    // don't create more inefficiency.
 | 
						|
    if (!CallerFI.Metrics.usesDynamicAlloca)
 | 
						|
      return InlineCost::getNever();
 | 
						|
  }
 | 
						|
 | 
						|
  // Add to the inline quality for properties that make the call valuable to
 | 
						|
  // inline.  This includes factors that indicate that the result of inlining
 | 
						|
  // the function will be optimizable.  Currently this just looks at arguments
 | 
						|
  // passed into the function.
 | 
						|
  //
 | 
						|
  unsigned ArgNo = 0;
 | 
						|
  for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
 | 
						|
       I != E; ++I, ++ArgNo) {
 | 
						|
    // Each argument passed in has a cost at both the caller and the callee
 | 
						|
    // sides.  Measurements show that each argument costs about the same as an
 | 
						|
    // instruction.
 | 
						|
    InlineCost -= InlineConstants::InstrCost;
 | 
						|
 | 
						|
    // If an alloca is passed in, inlining this function is likely to allow
 | 
						|
    // significant future optimization possibilities (like scalar promotion, and
 | 
						|
    // scalarization), so encourage the inlining of the function.
 | 
						|
    //
 | 
						|
    if (isa<AllocaInst>(I)) {
 | 
						|
      if (ArgNo < CalleeFI->ArgumentWeights.size())
 | 
						|
        InlineCost -= CalleeFI->ArgumentWeights[ArgNo].AllocaWeight;
 | 
						|
 | 
						|
      // If this is a constant being passed into the function, use the argument
 | 
						|
      // weights calculated for the callee to determine how much will be folded
 | 
						|
      // away with this information.
 | 
						|
    } else if (isa<Constant>(I)) {
 | 
						|
      if (ArgNo < CalleeFI->ArgumentWeights.size())
 | 
						|
        InlineCost -= (CalleeFI->ArgumentWeights[ArgNo].ConstantWeight +
 | 
						|
                       CalleeFI->ArgumentWeights[ArgNo].ConstantBonus);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Now that we have considered all of the factors that make the call site more
 | 
						|
  // likely to be inlined, look at factors that make us not want to inline it.
 | 
						|
 | 
						|
  // Calls usually take a long time, so they make the inlining gain smaller.
 | 
						|
  InlineCost += CalleeFI->Metrics.NumCalls * InlineConstants::CallPenalty;
 | 
						|
 | 
						|
  // Look at the size of the callee. Each instruction counts as 5.
 | 
						|
  InlineCost += CalleeFI->Metrics.NumInsts*InlineConstants::InstrCost;
 | 
						|
 | 
						|
  return llvm::InlineCost::get(InlineCost);
 | 
						|
}
 | 
						|
 | 
						|
// getSpecializationCost - The heuristic used to determine the code-size
 | 
						|
// impact of creating a specialized version of Callee with argument
 | 
						|
// SpecializedArgNo replaced by a constant.
 | 
						|
InlineCost InlineCostAnalyzer::getSpecializationCost(Function *Callee,
 | 
						|
                               SmallVectorImpl<unsigned> &SpecializedArgNos)
 | 
						|
{
 | 
						|
  // Don't specialize functions which can be redefined at link-time to mean
 | 
						|
  // something else.
 | 
						|
  if (Callee->mayBeOverridden())
 | 
						|
    return llvm::InlineCost::getNever();
 | 
						|
  
 | 
						|
  // Get information about the callee.
 | 
						|
  FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee];
 | 
						|
  
 | 
						|
  // If we haven't calculated this information yet, do so now.
 | 
						|
  if (CalleeFI->Metrics.NumBlocks == 0)
 | 
						|
    CalleeFI->analyzeFunction(Callee);
 | 
						|
 | 
						|
  int Cost = 0;
 | 
						|
  
 | 
						|
  // Look at the orginal size of the callee.  Each instruction counts as 5.
 | 
						|
  Cost += CalleeFI->Metrics.NumInsts * InlineConstants::InstrCost;
 | 
						|
 | 
						|
  // Offset that with the amount of code that can be constant-folded
 | 
						|
  // away with the given arguments replaced by constants.
 | 
						|
  for (SmallVectorImpl<unsigned>::iterator an = SpecializedArgNos.begin(),
 | 
						|
       ae = SpecializedArgNos.end(); an != ae; ++an)
 | 
						|
  {
 | 
						|
    Cost -= CalleeFI->ArgumentWeights[*an].ConstantWeight;
 | 
						|
  }
 | 
						|
 | 
						|
  return llvm::InlineCost::get(Cost);
 | 
						|
}
 | 
						|
 | 
						|
// getInlineFudgeFactor - Return a > 1.0 factor if the inliner should use a
 | 
						|
// higher threshold to determine if the function call should be inlined.
 | 
						|
float InlineCostAnalyzer::getInlineFudgeFactor(CallSite CS) {
 | 
						|
  Function *Callee = CS.getCalledFunction();
 | 
						|
  
 | 
						|
  // Get information about the callee.
 | 
						|
  FunctionInfo &CalleeFI = CachedFunctionInfo[Callee];
 | 
						|
  
 | 
						|
  // If we haven't calculated this information yet, do so now.
 | 
						|
  if (CalleeFI.Metrics.NumBlocks == 0)
 | 
						|
    CalleeFI.analyzeFunction(Callee);
 | 
						|
 | 
						|
  float Factor = 1.0f;
 | 
						|
  // Single BB functions are often written to be inlined.
 | 
						|
  if (CalleeFI.Metrics.NumBlocks == 1)
 | 
						|
    Factor += 0.5f;
 | 
						|
 | 
						|
  // Be more aggressive if the function contains a good chunk (if it mades up
 | 
						|
  // at least 10% of the instructions) of vector instructions.
 | 
						|
  if (CalleeFI.Metrics.NumVectorInsts > CalleeFI.Metrics.NumInsts/2)
 | 
						|
    Factor += 2.0f;
 | 
						|
  else if (CalleeFI.Metrics.NumVectorInsts > CalleeFI.Metrics.NumInsts/10)
 | 
						|
    Factor += 1.5f;
 | 
						|
  return Factor;
 | 
						|
}
 | 
						|
 | 
						|
/// growCachedCostInfo - update the cached cost info for Caller after Callee has
 | 
						|
/// been inlined.
 | 
						|
void
 | 
						|
InlineCostAnalyzer::growCachedCostInfo(Function *Caller, Function *Callee) {
 | 
						|
  CodeMetrics &CallerMetrics = CachedFunctionInfo[Caller].Metrics;
 | 
						|
 | 
						|
  // For small functions we prefer to recalculate the cost for better accuracy.
 | 
						|
  if (CallerMetrics.NumBlocks < 10 || CallerMetrics.NumInsts < 1000) {
 | 
						|
    resetCachedCostInfo(Caller);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // For large functions, we can save a lot of computation time by skipping
 | 
						|
  // recalculations.
 | 
						|
  if (CallerMetrics.NumCalls > 0)
 | 
						|
    --CallerMetrics.NumCalls;
 | 
						|
 | 
						|
  if (Callee == 0) return;
 | 
						|
  
 | 
						|
  CodeMetrics &CalleeMetrics = CachedFunctionInfo[Callee].Metrics;
 | 
						|
 | 
						|
  // If we don't have metrics for the callee, don't recalculate them just to
 | 
						|
  // update an approximation in the caller.  Instead, just recalculate the
 | 
						|
  // caller info from scratch.
 | 
						|
  if (CalleeMetrics.NumBlocks == 0) {
 | 
						|
    resetCachedCostInfo(Caller);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Since CalleeMetrics were already calculated, we know that the CallerMetrics
 | 
						|
  // reference isn't invalidated: both were in the DenseMap.
 | 
						|
  CallerMetrics.usesDynamicAlloca |= CalleeMetrics.usesDynamicAlloca;
 | 
						|
 | 
						|
  // FIXME: If any of these three are true for the callee, the callee was
 | 
						|
  // not inlined into the caller, so I think they're redundant here.
 | 
						|
  CallerMetrics.callsSetJmp |= CalleeMetrics.callsSetJmp;
 | 
						|
  CallerMetrics.isRecursive |= CalleeMetrics.isRecursive;
 | 
						|
  CallerMetrics.containsIndirectBr |= CalleeMetrics.containsIndirectBr;
 | 
						|
 | 
						|
  CallerMetrics.NumInsts += CalleeMetrics.NumInsts;
 | 
						|
  CallerMetrics.NumBlocks += CalleeMetrics.NumBlocks;
 | 
						|
  CallerMetrics.NumCalls += CalleeMetrics.NumCalls;
 | 
						|
  CallerMetrics.NumVectorInsts += CalleeMetrics.NumVectorInsts;
 | 
						|
  CallerMetrics.NumRets += CalleeMetrics.NumRets;
 | 
						|
 | 
						|
  // analyzeBasicBlock counts each function argument as an inst.
 | 
						|
  if (CallerMetrics.NumInsts >= Callee->arg_size())
 | 
						|
    CallerMetrics.NumInsts -= Callee->arg_size();
 | 
						|
  else
 | 
						|
    CallerMetrics.NumInsts = 0;
 | 
						|
  
 | 
						|
  // We are not updating the argument weights. We have already determined that
 | 
						|
  // Caller is a fairly large function, so we accept the loss of precision.
 | 
						|
}
 | 
						|
 | 
						|
/// clear - empty the cache of inline costs
 | 
						|
void InlineCostAnalyzer::clear() {
 | 
						|
  CachedFunctionInfo.clear();
 | 
						|
}
 |