llvm-6502/examples/Fibonacci/fibonacci.cpp
2004-08-19 20:10:04 +00:00

189 lines
5.5 KiB
C++

//===--- fibonacci.cpp - An example use of the JIT ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Valery A. Khamenya and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This small program provides an example of how to build quickly a small
// module with function Fibonacci and execute it with the JIT.
//
// This simple example shows as well 30% speed up with LLVM 1.3
// in comparison to gcc 3.3.3 at AMD Athlon XP 1500+ .
//
// (Modified from HowToUseJIT.cpp and Stacker/lib/compiler/StackerCompiler.cpp)
//
//===------------------------------------------------------------------------===
// Goal:
// The goal of this snippet is to create in the memory
// the LLVM module consisting of one function as follow:
//
// int fib(int x) {
// if(x<=2) return 1;
// return fib(x-1)+fib(x-2);
// }
//
// then compile the module via JIT, then execute the `fib'
// function and return result to a driver, i.e. to a "host program".
//
#include <iostream>
#include <llvm/Module.h>
#include <llvm/DerivedTypes.h>
#include <llvm/Constants.h>
#include <llvm/Instructions.h>
#include <llvm/ModuleProvider.h>
#include <llvm/Analysis/Verifier.h>
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/GenericValue.h"
using namespace llvm;
int main(int argc, char**argv) {
int n = argc > 1 ? atol(argv[1]) : 44;
// Create some module to put our function into it.
Module *M = new Module("test");
// We are about to create the "fib" function:
Function *FibF;
{
// first create type for the single argument of fib function:
// the type is 'int ()'
std::vector<const Type*> ArgT(1);
ArgT[0] = Type::IntTy;
// now create full type of the "fib" function:
FunctionType *FibT = FunctionType::get(Type::IntTy, // type of result
ArgT,
/*not vararg*/false);
// Now create the fib function entry and
// insert this entry into module M
// (By passing a module as the last parameter to the Function constructor,
// it automatically gets appended to the Module.)
FibF = new Function(FibT,
Function::ExternalLinkage, // maybe too much
"fib", M);
// Add a basic block to the function... (again, it automatically inserts
// because of the last argument.)
BasicBlock *BB = new BasicBlock("EntryBlock of fib function", FibF);
// Get pointers to the constants ...
Value *One = ConstantSInt::get(Type::IntTy, 1);
Value *Two = ConstantSInt::get(Type::IntTy, 2);
// Get pointers to the integer argument of the add1 function...
assert(FibF->abegin() != FibF->aend()); // Make sure there's an arg
Argument &ArgX = FibF->afront(); // Get the arg
ArgX.setName("AnArg"); // Give it a nice symbolic name for fun.
SetCondInst* CondInst
= new SetCondInst( Instruction::SetLE,
&ArgX, Two );
BB->getInstList().push_back(CondInst);
// Create the true_block
BasicBlock* true_bb = new BasicBlock("arg<=2");
// Create the return instruction and add it
// to the basic block for true case:
true_bb->getInstList().push_back(new ReturnInst(One));
// Create an exit block
BasicBlock* exit_bb = new BasicBlock("arg>2");
{
// create fib(x-1)
CallInst* CallFibX1;
{
// Create the sub instruction... does not insert...
Instruction *Sub
= BinaryOperator::create(Instruction::Sub, &ArgX, One,
"arg");
exit_bb->getInstList().push_back(Sub);
CallFibX1 = new CallInst(FibF, Sub, "fib(x-1)");
exit_bb->getInstList().push_back(CallFibX1);
}
// create fib(x-2)
CallInst* CallFibX2;
{
// Create the sub instruction... does not insert...
Instruction * Sub
= BinaryOperator::create(Instruction::Sub, &ArgX, Two,
"arg");
exit_bb->getInstList().push_back(Sub);
CallFibX2 = new CallInst(FibF, Sub, "fib(x-2)");
exit_bb->getInstList().push_back(CallFibX2);
}
// Create the add instruction... does not insert...
Instruction *Add =
BinaryOperator::create(Instruction::Add,
CallFibX1, CallFibX2, "addresult");
// explicitly insert it into the basic block...
exit_bb->getInstList().push_back(Add);
// Create the return instruction and add it to the basic block
exit_bb->getInstList().push_back(new ReturnInst(Add));
}
// Create a branch on the SetCond
BranchInst* br_inst =
new BranchInst( true_bb, exit_bb, CondInst );
BB->getInstList().push_back( br_inst );
FibF->getBasicBlockList().push_back(true_bb);
FibF->getBasicBlockList().push_back(exit_bb);
}
// Now we going to create JIT
ExistingModuleProvider* MP = new ExistingModuleProvider(M);
ExecutionEngine* EE = ExecutionEngine::create( MP, false );
// Call the `foo' function with argument n:
std::vector<GenericValue> args(1);
args[0].IntVal = n;
std::clog << "verifying... ";
if (verifyModule(*M)) {
std::cerr << argv[0]
<< ": assembly parsed, but does not verify as correct!\n";
return 1;
}
else
std::clog << "OK\n";
std::clog << "We just constructed this LLVM module:\n\n---------\n" << *M;
std::clog << "---------\nstarting fibonacci("
<< n << ") with JIT...\n" << std::flush;
GenericValue gv = EE->runFunction(FibF, args);
// import result of execution:
std::cout << "Result: " << gv.IntVal << std:: endl;
return 0;
}