mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	NFC. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240198 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			879 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			879 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file includes support code use by SelectionDAGBuilder when lowering a
 | 
						|
// statepoint sequence in SelectionDAG IR.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "StatepointLowering.h"
 | 
						|
#include "SelectionDAGBuilder.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/CodeGen/FunctionLoweringInfo.h"
 | 
						|
#include "llvm/CodeGen/GCMetadata.h"
 | 
						|
#include "llvm/CodeGen/GCStrategy.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAG.h"
 | 
						|
#include "llvm/CodeGen/StackMaps.h"
 | 
						|
#include "llvm/IR/CallingConv.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/Statepoint.h"
 | 
						|
#include "llvm/Target/TargetLowering.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "statepoint-lowering"
 | 
						|
 | 
						|
STATISTIC(NumSlotsAllocatedForStatepoints,
 | 
						|
          "Number of stack slots allocated for statepoints");
 | 
						|
STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
 | 
						|
STATISTIC(StatepointMaxSlotsRequired,
 | 
						|
          "Maximum number of stack slots required for a singe statepoint");
 | 
						|
 | 
						|
static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
 | 
						|
                                 SelectionDAGBuilder &Builder, uint64_t Value) {
 | 
						|
  SDLoc L = Builder.getCurSDLoc();
 | 
						|
  Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
 | 
						|
                                              MVT::i64));
 | 
						|
  Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
 | 
						|
}
 | 
						|
 | 
						|
void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
 | 
						|
  // Consistency check
 | 
						|
  assert(PendingGCRelocateCalls.empty() &&
 | 
						|
         "Trying to visit statepoint before finished processing previous one");
 | 
						|
  Locations.clear();
 | 
						|
  NextSlotToAllocate = 0;
 | 
						|
  // Need to resize this on each safepoint - we need the two to stay in
 | 
						|
  // sync and the clear patterns of a SelectionDAGBuilder have no relation
 | 
						|
  // to FunctionLoweringInfo.
 | 
						|
  AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
 | 
						|
  for (size_t i = 0; i < AllocatedStackSlots.size(); i++) {
 | 
						|
    AllocatedStackSlots[i] = false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void StatepointLoweringState::clear() {
 | 
						|
  Locations.clear();
 | 
						|
  AllocatedStackSlots.clear();
 | 
						|
  assert(PendingGCRelocateCalls.empty() &&
 | 
						|
         "cleared before statepoint sequence completed");
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
StatepointLoweringState::allocateStackSlot(EVT ValueType,
 | 
						|
                                           SelectionDAGBuilder &Builder) {
 | 
						|
 | 
						|
  NumSlotsAllocatedForStatepoints++;
 | 
						|
 | 
						|
  // The basic scheme here is to first look for a previously created stack slot
 | 
						|
  // which is not in use (accounting for the fact arbitrary slots may already
 | 
						|
  // be reserved), or to create a new stack slot and use it.
 | 
						|
 | 
						|
  // If this doesn't succeed in 40000 iterations, something is seriously wrong
 | 
						|
  for (int i = 0; i < 40000; i++) {
 | 
						|
    assert(Builder.FuncInfo.StatepointStackSlots.size() ==
 | 
						|
               AllocatedStackSlots.size() &&
 | 
						|
           "broken invariant");
 | 
						|
    const size_t NumSlots = AllocatedStackSlots.size();
 | 
						|
    assert(NextSlotToAllocate <= NumSlots && "broken invariant");
 | 
						|
 | 
						|
    if (NextSlotToAllocate >= NumSlots) {
 | 
						|
      assert(NextSlotToAllocate == NumSlots);
 | 
						|
      // record stats
 | 
						|
      if (NumSlots + 1 > StatepointMaxSlotsRequired) {
 | 
						|
        StatepointMaxSlotsRequired = NumSlots + 1;
 | 
						|
      }
 | 
						|
 | 
						|
      SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
 | 
						|
      const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
 | 
						|
      Builder.FuncInfo.StatepointStackSlots.push_back(FI);
 | 
						|
      AllocatedStackSlots.push_back(true);
 | 
						|
      return SpillSlot;
 | 
						|
    }
 | 
						|
    if (!AllocatedStackSlots[NextSlotToAllocate]) {
 | 
						|
      const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
 | 
						|
      AllocatedStackSlots[NextSlotToAllocate] = true;
 | 
						|
      return Builder.DAG.getFrameIndex(FI, ValueType);
 | 
						|
    }
 | 
						|
    // Note: We deliberately choose to advance this only on the failing path.
 | 
						|
    // Doing so on the suceeding path involes a bit of complexity that caused a
 | 
						|
    // minor bug previously.  Unless performance shows this matters, please
 | 
						|
    // keep this code as simple as possible.
 | 
						|
    NextSlotToAllocate++;
 | 
						|
  }
 | 
						|
  llvm_unreachable("infinite loop?");
 | 
						|
}
 | 
						|
 | 
						|
/// Utility function for reservePreviousStackSlotForValue. Tries to find
 | 
						|
/// stack slot index to which we have spilled value for previous statepoints.
 | 
						|
/// LookUpDepth specifies maximum DFS depth this function is allowed to look.
 | 
						|
static Optional<int> findPreviousSpillSlot(const Value *Val,
 | 
						|
                                           SelectionDAGBuilder &Builder,
 | 
						|
                                           int LookUpDepth) {
 | 
						|
  // Can not look any futher - give up now
 | 
						|
  if (LookUpDepth <= 0)
 | 
						|
    return Optional<int>();
 | 
						|
 | 
						|
  // Spill location is known for gc relocates
 | 
						|
  if (isGCRelocate(Val)) {
 | 
						|
    GCRelocateOperands RelocOps(cast<Instruction>(Val));
 | 
						|
 | 
						|
    FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap =
 | 
						|
        Builder.FuncInfo.StatepointRelocatedValues[RelocOps.getStatepoint()];
 | 
						|
 | 
						|
    auto It = SpillMap.find(RelocOps.getDerivedPtr());
 | 
						|
    if (It == SpillMap.end())
 | 
						|
      return Optional<int>();
 | 
						|
 | 
						|
    return It->second;
 | 
						|
  }
 | 
						|
 | 
						|
  // Look through bitcast instructions.
 | 
						|
  if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) {
 | 
						|
    return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Look through phi nodes
 | 
						|
  // All incoming values should have same known stack slot, otherwise result
 | 
						|
  // is unknown.
 | 
						|
  if (const PHINode *Phi = dyn_cast<PHINode>(Val)) {
 | 
						|
    Optional<int> MergedResult = None;
 | 
						|
 | 
						|
    for (auto &IncomingValue : Phi->incoming_values()) {
 | 
						|
      Optional<int> SpillSlot =
 | 
						|
          findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1);
 | 
						|
      if (!SpillSlot.hasValue())
 | 
						|
        return Optional<int>();
 | 
						|
 | 
						|
      if (MergedResult.hasValue() && *MergedResult != *SpillSlot)
 | 
						|
        return Optional<int>();
 | 
						|
 | 
						|
      MergedResult = SpillSlot;
 | 
						|
    }
 | 
						|
    return MergedResult;
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: We can do better for PHI nodes. In cases like this:
 | 
						|
  //   ptr = phi(relocated_pointer, not_relocated_pointer)
 | 
						|
  //   statepoint(ptr)
 | 
						|
  // We will return that stack slot for ptr is unknown. And later we might
 | 
						|
  // assign different stack slots for ptr and relocated_pointer. This limits
 | 
						|
  // llvm's ability to remove redundant stores.
 | 
						|
  // Unfortunately it's hard to accomplish in current infrastructure.
 | 
						|
  // We use this function to eliminate spill store completely, while
 | 
						|
  // in example we still need to emit store, but instead of any location
 | 
						|
  // we need to use special "preferred" location.
 | 
						|
 | 
						|
  // TODO: handle simple updates.  If a value is modified and the original
 | 
						|
  // value is no longer live, it would be nice to put the modified value in the
 | 
						|
  // same slot.  This allows folding of the memory accesses for some
 | 
						|
  // instructions types (like an increment).
 | 
						|
  //   statepoint (i)
 | 
						|
  //   i1 = i+1
 | 
						|
  //   statepoint (i1)
 | 
						|
  // However we need to be careful for cases like this:
 | 
						|
  //   statepoint(i)
 | 
						|
  //   i1 = i+1
 | 
						|
  //   statepoint(i, i1)
 | 
						|
  // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
 | 
						|
  // put handling of simple modifications in this function like it's done
 | 
						|
  // for bitcasts we might end up reserving i's slot for 'i+1' because order in
 | 
						|
  // which we visit values is unspecified.
 | 
						|
 | 
						|
  // Don't know any information about this instruction
 | 
						|
  return Optional<int>();
 | 
						|
}
 | 
						|
 | 
						|
/// Try to find existing copies of the incoming values in stack slots used for
 | 
						|
/// statepoint spilling.  If we can find a spill slot for the incoming value,
 | 
						|
/// mark that slot as allocated, and reuse the same slot for this safepoint.
 | 
						|
/// This helps to avoid series of loads and stores that only serve to resuffle
 | 
						|
/// values on the stack between calls.
 | 
						|
static void reservePreviousStackSlotForValue(const Value *IncomingValue,
 | 
						|
                                             SelectionDAGBuilder &Builder) {
 | 
						|
 | 
						|
  SDValue Incoming = Builder.getValue(IncomingValue);
 | 
						|
 | 
						|
  if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) {
 | 
						|
    // We won't need to spill this, so no need to check for previously
 | 
						|
    // allocated stack slots
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
 | 
						|
  if (OldLocation.getNode())
 | 
						|
    // duplicates in input
 | 
						|
    return;
 | 
						|
 | 
						|
  const int LookUpDepth = 6;
 | 
						|
  Optional<int> Index =
 | 
						|
      findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
 | 
						|
  if (!Index.hasValue())
 | 
						|
    return;
 | 
						|
 | 
						|
  auto Itr = std::find(Builder.FuncInfo.StatepointStackSlots.begin(),
 | 
						|
                       Builder.FuncInfo.StatepointStackSlots.end(), *Index);
 | 
						|
  assert(Itr != Builder.FuncInfo.StatepointStackSlots.end() &&
 | 
						|
         "value spilled to the unknown stack slot");
 | 
						|
 | 
						|
  // This is one of our dedicated lowering slots
 | 
						|
  const int Offset =
 | 
						|
      std::distance(Builder.FuncInfo.StatepointStackSlots.begin(), Itr);
 | 
						|
  if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
 | 
						|
    // stack slot already assigned to someone else, can't use it!
 | 
						|
    // TODO: currently we reserve space for gc arguments after doing
 | 
						|
    // normal allocation for deopt arguments.  We should reserve for
 | 
						|
    // _all_ deopt and gc arguments, then start allocating.  This
 | 
						|
    // will prevent some moves being inserted when vm state changes,
 | 
						|
    // but gc state doesn't between two calls.
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // Reserve this stack slot
 | 
						|
  Builder.StatepointLowering.reserveStackSlot(Offset);
 | 
						|
 | 
						|
  // Cache this slot so we find it when going through the normal
 | 
						|
  // assignment loop.
 | 
						|
  SDValue Loc = Builder.DAG.getTargetFrameIndex(*Index, Incoming.getValueType());
 | 
						|
  Builder.StatepointLowering.setLocation(Incoming, Loc);
 | 
						|
}
 | 
						|
 | 
						|
/// Remove any duplicate (as SDValues) from the derived pointer pairs.  This
 | 
						|
/// is not required for correctness.  It's purpose is to reduce the size of
 | 
						|
/// StackMap section.  It has no effect on the number of spill slots required
 | 
						|
/// or the actual lowering.
 | 
						|
static void removeDuplicatesGCPtrs(SmallVectorImpl<const Value *> &Bases,
 | 
						|
                                   SmallVectorImpl<const Value *> &Ptrs,
 | 
						|
                                   SmallVectorImpl<const Value *> &Relocs,
 | 
						|
                                   SelectionDAGBuilder &Builder) {
 | 
						|
 | 
						|
  // This is horribly ineffecient, but I don't care right now
 | 
						|
  SmallSet<SDValue, 64> Seen;
 | 
						|
 | 
						|
  SmallVector<const Value *, 64> NewBases, NewPtrs, NewRelocs;
 | 
						|
  for (size_t i = 0; i < Ptrs.size(); i++) {
 | 
						|
    SDValue SD = Builder.getValue(Ptrs[i]);
 | 
						|
    // Only add non-duplicates
 | 
						|
    if (Seen.count(SD) == 0) {
 | 
						|
      NewBases.push_back(Bases[i]);
 | 
						|
      NewPtrs.push_back(Ptrs[i]);
 | 
						|
      NewRelocs.push_back(Relocs[i]);
 | 
						|
    }
 | 
						|
    Seen.insert(SD);
 | 
						|
  }
 | 
						|
  assert(Bases.size() >= NewBases.size());
 | 
						|
  assert(Ptrs.size() >= NewPtrs.size());
 | 
						|
  assert(Relocs.size() >= NewRelocs.size());
 | 
						|
  Bases = NewBases;
 | 
						|
  Ptrs = NewPtrs;
 | 
						|
  Relocs = NewRelocs;
 | 
						|
  assert(Ptrs.size() == Bases.size());
 | 
						|
  assert(Ptrs.size() == Relocs.size());
 | 
						|
}
 | 
						|
 | 
						|
/// Extract call from statepoint, lower it and return pointer to the
 | 
						|
/// call node. Also update NodeMap so that getValue(statepoint) will
 | 
						|
/// reference lowered call result
 | 
						|
static SDNode *
 | 
						|
lowerCallFromStatepoint(ImmutableStatepoint ISP, MachineBasicBlock *LandingPad,
 | 
						|
                        SelectionDAGBuilder &Builder,
 | 
						|
                        SmallVectorImpl<SDValue> &PendingExports) {
 | 
						|
 | 
						|
  ImmutableCallSite CS(ISP.getCallSite());
 | 
						|
 | 
						|
  SDValue ActualCallee = Builder.getValue(ISP.getActualCallee());
 | 
						|
 | 
						|
  assert(CS.getCallingConv() != CallingConv::AnyReg &&
 | 
						|
         "anyregcc is not supported on statepoints!");
 | 
						|
 | 
						|
  Type *DefTy = ISP.getActualReturnType();
 | 
						|
  bool HasDef = !DefTy->isVoidTy();
 | 
						|
 | 
						|
  SDValue ReturnValue, CallEndVal;
 | 
						|
  std::tie(ReturnValue, CallEndVal) = Builder.lowerCallOperands(
 | 
						|
      ISP.getCallSite(), ImmutableStatepoint::CallArgsBeginPos,
 | 
						|
      ISP.getNumCallArgs(), ActualCallee, DefTy, LandingPad,
 | 
						|
      false /* IsPatchPoint */);
 | 
						|
 | 
						|
  SDNode *CallEnd = CallEndVal.getNode();
 | 
						|
 | 
						|
  // Get a call instruction from the call sequence chain.  Tail calls are not
 | 
						|
  // allowed.  The following code is essentially reverse engineering X86's
 | 
						|
  // LowerCallTo.
 | 
						|
  //
 | 
						|
  // We are expecting DAG to have the following form:
 | 
						|
  //
 | 
						|
  // ch = eh_label (only in case of invoke statepoint)
 | 
						|
  //   ch, glue = callseq_start ch
 | 
						|
  //   ch, glue = X86::Call ch, glue
 | 
						|
  //   ch, glue = callseq_end ch, glue
 | 
						|
  //   get_return_value ch, glue
 | 
						|
  //
 | 
						|
  // get_return_value can either be a CopyFromReg to grab the return value from
 | 
						|
  // %RAX, or it can be a LOAD to load a value returned by reference via a stack
 | 
						|
  // slot.
 | 
						|
 | 
						|
  if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg ||
 | 
						|
                 CallEnd->getOpcode() == ISD::LOAD))
 | 
						|
    CallEnd = CallEnd->getOperand(0).getNode();
 | 
						|
 | 
						|
  assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!");
 | 
						|
 | 
						|
  if (HasDef) {
 | 
						|
    if (CS.isInvoke()) {
 | 
						|
      // Result value will be used in different basic block for invokes
 | 
						|
      // so we need to export it now. But statepoint call has a different type
 | 
						|
      // than the actuall call. It means that standart exporting mechanism will
 | 
						|
      // create register of the wrong type. So instead we need to create
 | 
						|
      // register with correct type and save value into it manually.
 | 
						|
      // TODO: To eliminate this problem we can remove gc.result intrinsics
 | 
						|
      //       completelly and make statepoint call to return a tuple.
 | 
						|
      unsigned Reg = Builder.FuncInfo.CreateRegs(ISP.getActualReturnType());
 | 
						|
      RegsForValue RFV(*Builder.DAG.getContext(),
 | 
						|
                       Builder.DAG.getTargetLoweringInfo(), Reg,
 | 
						|
                       ISP.getActualReturnType());
 | 
						|
      SDValue Chain = Builder.DAG.getEntryNode();
 | 
						|
 | 
						|
      RFV.getCopyToRegs(ReturnValue, Builder.DAG, Builder.getCurSDLoc(), Chain,
 | 
						|
                        nullptr);
 | 
						|
      PendingExports.push_back(Chain);
 | 
						|
      Builder.FuncInfo.ValueMap[CS.getInstruction()] = Reg;
 | 
						|
    } else {
 | 
						|
      // The value of the statepoint itself will be the value of call itself.
 | 
						|
      // We'll replace the actually call node shortly.  gc_result will grab
 | 
						|
      // this value.
 | 
						|
      Builder.setValue(CS.getInstruction(), ReturnValue);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // The token value is never used from here on, just generate a poison value
 | 
						|
    Builder.setValue(CS.getInstruction(),
 | 
						|
                     Builder.DAG.getIntPtrConstant(-1, Builder.getCurSDLoc()));
 | 
						|
  }
 | 
						|
 | 
						|
  return CallEnd->getOperand(0).getNode();
 | 
						|
}
 | 
						|
 | 
						|
/// Callect all gc pointers coming into statepoint intrinsic, clean them up,
 | 
						|
/// and return two arrays:
 | 
						|
///   Bases - base pointers incoming to this statepoint
 | 
						|
///   Ptrs - derived pointers incoming to this statepoint
 | 
						|
///   Relocs - the gc_relocate corresponding to each base/ptr pair
 | 
						|
/// Elements of this arrays should be in one-to-one correspondence with each
 | 
						|
/// other i.e Bases[i], Ptrs[i] are from the same gcrelocate call
 | 
						|
static void getIncomingStatepointGCValues(
 | 
						|
    SmallVectorImpl<const Value *> &Bases, SmallVectorImpl<const Value *> &Ptrs,
 | 
						|
    SmallVectorImpl<const Value *> &Relocs, ImmutableStatepoint StatepointSite,
 | 
						|
    SelectionDAGBuilder &Builder) {
 | 
						|
  for (GCRelocateOperands relocateOpers : StatepointSite.getRelocates()) {
 | 
						|
    Relocs.push_back(relocateOpers.getUnderlyingCallSite().getInstruction());
 | 
						|
    Bases.push_back(relocateOpers.getBasePtr());
 | 
						|
    Ptrs.push_back(relocateOpers.getDerivedPtr());
 | 
						|
  }
 | 
						|
 | 
						|
  // Remove any redundant llvm::Values which map to the same SDValue as another
 | 
						|
  // input.  Also has the effect of removing duplicates in the original
 | 
						|
  // llvm::Value input list as well.  This is a useful optimization for
 | 
						|
  // reducing the size of the StackMap section.  It has no other impact.
 | 
						|
  removeDuplicatesGCPtrs(Bases, Ptrs, Relocs, Builder);
 | 
						|
 | 
						|
  assert(Bases.size() == Ptrs.size() && Ptrs.size() == Relocs.size());
 | 
						|
}
 | 
						|
 | 
						|
/// Spill a value incoming to the statepoint. It might be either part of
 | 
						|
/// vmstate
 | 
						|
/// or gcstate. In both cases unconditionally spill it on the stack unless it
 | 
						|
/// is a null constant. Return pair with first element being frame index
 | 
						|
/// containing saved value and second element with outgoing chain from the
 | 
						|
/// emitted store
 | 
						|
static std::pair<SDValue, SDValue>
 | 
						|
spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
 | 
						|
                             SelectionDAGBuilder &Builder) {
 | 
						|
  SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
 | 
						|
 | 
						|
  // Emit new store if we didn't do it for this ptr before
 | 
						|
  if (!Loc.getNode()) {
 | 
						|
    Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
 | 
						|
                                                       Builder);
 | 
						|
    assert(isa<FrameIndexSDNode>(Loc));
 | 
						|
    int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
 | 
						|
    // We use TargetFrameIndex so that isel will not select it into LEA
 | 
						|
    Loc = Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType());
 | 
						|
 | 
						|
    // TODO: We can create TokenFactor node instead of
 | 
						|
    //       chaining stores one after another, this may allow
 | 
						|
    //       a bit more optimal scheduling for them
 | 
						|
    Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
 | 
						|
                                 MachinePointerInfo::getFixedStack(Index),
 | 
						|
                                 false, false, 0);
 | 
						|
 | 
						|
    Builder.StatepointLowering.setLocation(Incoming, Loc);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(Loc.getNode());
 | 
						|
  return std::make_pair(Loc, Chain);
 | 
						|
}
 | 
						|
 | 
						|
/// Lower a single value incoming to a statepoint node.  This value can be
 | 
						|
/// either a deopt value or a gc value, the handling is the same.  We special
 | 
						|
/// case constants and allocas, then fall back to spilling if required.
 | 
						|
static void lowerIncomingStatepointValue(SDValue Incoming,
 | 
						|
                                         SmallVectorImpl<SDValue> &Ops,
 | 
						|
                                         SelectionDAGBuilder &Builder) {
 | 
						|
  SDValue Chain = Builder.getRoot();
 | 
						|
 | 
						|
  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
 | 
						|
    // If the original value was a constant, make sure it gets recorded as
 | 
						|
    // such in the stackmap.  This is required so that the consumer can
 | 
						|
    // parse any internal format to the deopt state.  It also handles null
 | 
						|
    // pointers and other constant pointers in GC states
 | 
						|
    pushStackMapConstant(Ops, Builder, C->getSExtValue());
 | 
						|
  } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
 | 
						|
    // This handles allocas as arguments to the statepoint (this is only
 | 
						|
    // really meaningful for a deopt value.  For GC, we'd be trying to
 | 
						|
    // relocate the address of the alloca itself?)
 | 
						|
    Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
 | 
						|
                                                  Incoming.getValueType()));
 | 
						|
  } else {
 | 
						|
    // Otherwise, locate a spill slot and explicitly spill it so it
 | 
						|
    // can be found by the runtime later.  We currently do not support
 | 
						|
    // tracking values through callee saved registers to their eventual
 | 
						|
    // spill location.  This would be a useful optimization, but would
 | 
						|
    // need to be optional since it requires a lot of complexity on the
 | 
						|
    // runtime side which not all would support.
 | 
						|
    std::pair<SDValue, SDValue> Res =
 | 
						|
        spillIncomingStatepointValue(Incoming, Chain, Builder);
 | 
						|
    Ops.push_back(Res.first);
 | 
						|
    Chain = Res.second;
 | 
						|
  }
 | 
						|
 | 
						|
  Builder.DAG.setRoot(Chain);
 | 
						|
}
 | 
						|
 | 
						|
/// Lower deopt state and gc pointer arguments of the statepoint.  The actual
 | 
						|
/// lowering is described in lowerIncomingStatepointValue.  This function is
 | 
						|
/// responsible for lowering everything in the right position and playing some
 | 
						|
/// tricks to avoid redundant stack manipulation where possible.  On
 | 
						|
/// completion, 'Ops' will contain ready to use operands for machine code
 | 
						|
/// statepoint. The chain nodes will have already been created and the DAG root
 | 
						|
/// will be set to the last value spilled (if any were).
 | 
						|
static void lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
 | 
						|
                                    ImmutableStatepoint StatepointSite,
 | 
						|
                                    SelectionDAGBuilder &Builder) {
 | 
						|
 | 
						|
  // Lower the deopt and gc arguments for this statepoint.  Layout will
 | 
						|
  // be: deopt argument length, deopt arguments.., gc arguments...
 | 
						|
 | 
						|
  SmallVector<const Value *, 64> Bases, Ptrs, Relocations;
 | 
						|
  getIncomingStatepointGCValues(Bases, Ptrs, Relocations, StatepointSite,
 | 
						|
                                Builder);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Check that each of the gc pointer and bases we've gotten out of the
 | 
						|
  // safepoint is something the strategy thinks might be a pointer into the GC
 | 
						|
  // heap.  This is basically just here to help catch errors during statepoint
 | 
						|
  // insertion. TODO: This should actually be in the Verifier, but we can't get
 | 
						|
  // to the GCStrategy from there (yet).
 | 
						|
  GCStrategy &S = Builder.GFI->getStrategy();
 | 
						|
  for (const Value *V : Bases) {
 | 
						|
    auto Opt = S.isGCManagedPointer(V);
 | 
						|
    if (Opt.hasValue()) {
 | 
						|
      assert(Opt.getValue() &&
 | 
						|
             "non gc managed base pointer found in statepoint");
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for (const Value *V : Ptrs) {
 | 
						|
    auto Opt = S.isGCManagedPointer(V);
 | 
						|
    if (Opt.hasValue()) {
 | 
						|
      assert(Opt.getValue() &&
 | 
						|
             "non gc managed derived pointer found in statepoint");
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for (const Value *V : Relocations) {
 | 
						|
    auto Opt = S.isGCManagedPointer(V);
 | 
						|
    if (Opt.hasValue()) {
 | 
						|
      assert(Opt.getValue() && "non gc managed pointer relocated");
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  // Before we actually start lowering (and allocating spill slots for values),
 | 
						|
  // reserve any stack slots which we judge to be profitable to reuse for a
 | 
						|
  // particular value.  This is purely an optimization over the code below and
 | 
						|
  // doesn't change semantics at all.  It is important for performance that we
 | 
						|
  // reserve slots for both deopt and gc values before lowering either.
 | 
						|
  for (const Value *V : StatepointSite.vm_state_args()) {
 | 
						|
    reservePreviousStackSlotForValue(V, Builder);
 | 
						|
  }
 | 
						|
  for (unsigned i = 0; i < Bases.size(); ++i) {
 | 
						|
    reservePreviousStackSlotForValue(Bases[i], Builder);
 | 
						|
    reservePreviousStackSlotForValue(Ptrs[i], Builder);
 | 
						|
  }
 | 
						|
 | 
						|
  // First, prefix the list with the number of unique values to be
 | 
						|
  // lowered.  Note that this is the number of *Values* not the
 | 
						|
  // number of SDValues required to lower them.
 | 
						|
  const int NumVMSArgs = StatepointSite.getNumTotalVMSArgs();
 | 
						|
  pushStackMapConstant(Ops, Builder, NumVMSArgs);
 | 
						|
 | 
						|
  assert(NumVMSArgs == std::distance(StatepointSite.vm_state_begin(),
 | 
						|
                                     StatepointSite.vm_state_end()));
 | 
						|
 | 
						|
  // The vm state arguments are lowered in an opaque manner.  We do
 | 
						|
  // not know what type of values are contained within.  We skip the
 | 
						|
  // first one since that happens to be the total number we lowered
 | 
						|
  // explicitly just above.  We could have left it in the loop and
 | 
						|
  // not done it explicitly, but it's far easier to understand this
 | 
						|
  // way.
 | 
						|
  for (const Value *V : StatepointSite.vm_state_args()) {
 | 
						|
    SDValue Incoming = Builder.getValue(V);
 | 
						|
    lowerIncomingStatepointValue(Incoming, Ops, Builder);
 | 
						|
  }
 | 
						|
 | 
						|
  // Finally, go ahead and lower all the gc arguments.  There's no prefixed
 | 
						|
  // length for this one.  After lowering, we'll have the base and pointer
 | 
						|
  // arrays interwoven with each (lowered) base pointer immediately followed by
 | 
						|
  // it's (lowered) derived pointer.  i.e
 | 
						|
  // (base[0], ptr[0], base[1], ptr[1], ...)
 | 
						|
  for (unsigned i = 0; i < Bases.size(); ++i) {
 | 
						|
    const Value *Base = Bases[i];
 | 
						|
    lowerIncomingStatepointValue(Builder.getValue(Base), Ops, Builder);
 | 
						|
 | 
						|
    const Value *Ptr = Ptrs[i];
 | 
						|
    lowerIncomingStatepointValue(Builder.getValue(Ptr), Ops, Builder);
 | 
						|
  }
 | 
						|
 | 
						|
  // If there are any explicit spill slots passed to the statepoint, record
 | 
						|
  // them, but otherwise do not do anything special.  These are user provided
 | 
						|
  // allocas and give control over placement to the consumer.  In this case,
 | 
						|
  // it is the contents of the slot which may get updated, not the pointer to
 | 
						|
  // the alloca
 | 
						|
  for (Value *V : StatepointSite.gc_args()) {
 | 
						|
    SDValue Incoming = Builder.getValue(V);
 | 
						|
    if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
 | 
						|
      // This handles allocas as arguments to the statepoint
 | 
						|
      Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
 | 
						|
                                                    Incoming.getValueType()));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Record computed locations for all lowered values.
 | 
						|
  // This can not be embedded in lowering loops as we need to record *all*
 | 
						|
  // values, while previous loops account only values with unique SDValues.
 | 
						|
  const Instruction *StatepointInstr =
 | 
						|
    StatepointSite.getCallSite().getInstruction();
 | 
						|
  FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap =
 | 
						|
    Builder.FuncInfo.StatepointRelocatedValues[StatepointInstr];
 | 
						|
 | 
						|
  for (GCRelocateOperands RelocateOpers : StatepointSite.getRelocates()) {
 | 
						|
    const Value *V = RelocateOpers.getDerivedPtr();
 | 
						|
    SDValue SDV = Builder.getValue(V);
 | 
						|
    SDValue Loc = Builder.StatepointLowering.getLocation(SDV);
 | 
						|
 | 
						|
    if (Loc.getNode()) {
 | 
						|
      SpillMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex();
 | 
						|
    } else {
 | 
						|
      // Record value as visited, but not spilled. This is case for allocas
 | 
						|
      // and constants. For this values we can avoid emiting spill load while
 | 
						|
      // visiting corresponding gc_relocate.
 | 
						|
      // Actually we do not need to record them in this map at all.
 | 
						|
      // We do this only to check that we are not relocating any unvisited value.
 | 
						|
      SpillMap[V] = None;
 | 
						|
 | 
						|
      // Default llvm mechanisms for exporting values which are used in
 | 
						|
      // different basic blocks does not work for gc relocates.
 | 
						|
      // Note that it would be incorrect to teach llvm that all relocates are
 | 
						|
      // uses of the corresponging values so that it would automatically
 | 
						|
      // export them. Relocates of the spilled values does not use original
 | 
						|
      // value.
 | 
						|
      if (StatepointSite.getCallSite().isInvoke())
 | 
						|
        Builder.ExportFromCurrentBlock(V);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGBuilder::visitStatepoint(const CallInst &CI) {
 | 
						|
  // Check some preconditions for sanity
 | 
						|
  assert(isStatepoint(&CI) &&
 | 
						|
         "function called must be the statepoint function");
 | 
						|
 | 
						|
  LowerStatepoint(ImmutableStatepoint(&CI));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGBuilder::LowerStatepoint(
 | 
						|
    ImmutableStatepoint ISP, MachineBasicBlock *LandingPad /*=nullptr*/) {
 | 
						|
  // The basic scheme here is that information about both the original call and
 | 
						|
  // the safepoint is encoded in the CallInst.  We create a temporary call and
 | 
						|
  // lower it, then reverse engineer the calling sequence.
 | 
						|
 | 
						|
  NumOfStatepoints++;
 | 
						|
  // Clear state
 | 
						|
  StatepointLowering.startNewStatepoint(*this);
 | 
						|
 | 
						|
  ImmutableCallSite CS(ISP.getCallSite());
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Consistency check. Don't do this for invokes. It would be too
 | 
						|
  // expensive to preserve this information across different basic blocks
 | 
						|
  if (!CS.isInvoke()) {
 | 
						|
    for (const User *U : CS->users()) {
 | 
						|
      const CallInst *Call = cast<CallInst>(U);
 | 
						|
      if (isGCRelocate(Call))
 | 
						|
        StatepointLowering.scheduleRelocCall(*Call);
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // If this is a malformed statepoint, report it early to simplify debugging.
 | 
						|
  // This should catch any IR level mistake that's made when constructing or
 | 
						|
  // transforming statepoints.
 | 
						|
  ISP.verify();
 | 
						|
 | 
						|
  // Check that the associated GCStrategy expects to encounter statepoints.
 | 
						|
  assert(GFI->getStrategy().useStatepoints() &&
 | 
						|
         "GCStrategy does not expect to encounter statepoints");
 | 
						|
#endif
 | 
						|
 | 
						|
  // Lower statepoint vmstate and gcstate arguments
 | 
						|
  SmallVector<SDValue, 10> LoweredMetaArgs;
 | 
						|
  lowerStatepointMetaArgs(LoweredMetaArgs, ISP, *this);
 | 
						|
 | 
						|
  // Get call node, we will replace it later with statepoint
 | 
						|
  SDNode *CallNode =
 | 
						|
      lowerCallFromStatepoint(ISP, LandingPad, *this, PendingExports);
 | 
						|
 | 
						|
  // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
 | 
						|
  // nodes with all the appropriate arguments and return values.
 | 
						|
 | 
						|
  // Call Node: Chain, Target, {Args}, RegMask, [Glue]
 | 
						|
  SDValue Chain = CallNode->getOperand(0);
 | 
						|
 | 
						|
  SDValue Glue;
 | 
						|
  bool CallHasIncomingGlue = CallNode->getGluedNode();
 | 
						|
  if (CallHasIncomingGlue) {
 | 
						|
    // Glue is always last operand
 | 
						|
    Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Build the GC_TRANSITION_START node if necessary.
 | 
						|
  //
 | 
						|
  // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
 | 
						|
  // order in which they appear in the call to the statepoint intrinsic. If
 | 
						|
  // any of the operands is a pointer-typed, that operand is immediately
 | 
						|
  // followed by a SRCVALUE for the pointer that may be used during lowering
 | 
						|
  // (e.g. to form MachinePointerInfo values for loads/stores).
 | 
						|
  const bool IsGCTransition =
 | 
						|
      (ISP.getFlags() & (uint64_t)StatepointFlags::GCTransition) ==
 | 
						|
          (uint64_t)StatepointFlags::GCTransition;
 | 
						|
  if (IsGCTransition) {
 | 
						|
    SmallVector<SDValue, 8> TSOps;
 | 
						|
 | 
						|
    // Add chain
 | 
						|
    TSOps.push_back(Chain);
 | 
						|
 | 
						|
    // Add GC transition arguments
 | 
						|
    for (const Value *V : ISP.gc_transition_args()) {
 | 
						|
      TSOps.push_back(getValue(V));
 | 
						|
      if (V->getType()->isPointerTy())
 | 
						|
        TSOps.push_back(DAG.getSrcValue(V));
 | 
						|
    }
 | 
						|
 | 
						|
    // Add glue if necessary
 | 
						|
    if (CallHasIncomingGlue)
 | 
						|
      TSOps.push_back(Glue);
 | 
						|
 | 
						|
    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | 
						|
 | 
						|
    SDValue GCTransitionStart =
 | 
						|
        DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);
 | 
						|
 | 
						|
    Chain = GCTransitionStart.getValue(0);
 | 
						|
    Glue = GCTransitionStart.getValue(1);
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: Currently, all of these operands are being marked as read/write in
 | 
						|
  // PrologEpilougeInserter.cpp, we should special case the VMState arguments
 | 
						|
  // and flags to be read-only.
 | 
						|
  SmallVector<SDValue, 40> Ops;
 | 
						|
 | 
						|
  // Add the <id> and <numBytes> constants.
 | 
						|
  Ops.push_back(DAG.getTargetConstant(ISP.getID(), getCurSDLoc(), MVT::i64));
 | 
						|
  Ops.push_back(
 | 
						|
      DAG.getTargetConstant(ISP.getNumPatchBytes(), getCurSDLoc(), MVT::i32));
 | 
						|
 | 
						|
  // Calculate and push starting position of vmstate arguments
 | 
						|
  // Get number of arguments incoming directly into call node
 | 
						|
  unsigned NumCallRegArgs =
 | 
						|
      CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
 | 
						|
  Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));
 | 
						|
 | 
						|
  // Add call target
 | 
						|
  SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
 | 
						|
  Ops.push_back(CallTarget);
 | 
						|
 | 
						|
  // Add call arguments
 | 
						|
  // Get position of register mask in the call
 | 
						|
  SDNode::op_iterator RegMaskIt;
 | 
						|
  if (CallHasIncomingGlue)
 | 
						|
    RegMaskIt = CallNode->op_end() - 2;
 | 
						|
  else
 | 
						|
    RegMaskIt = CallNode->op_end() - 1;
 | 
						|
  Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
 | 
						|
 | 
						|
  // Add a constant argument for the calling convention
 | 
						|
  pushStackMapConstant(Ops, *this, CS.getCallingConv());
 | 
						|
 | 
						|
  // Add a constant argument for the flags
 | 
						|
  uint64_t Flags = ISP.getFlags();
 | 
						|
  assert(
 | 
						|
      ((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0)
 | 
						|
          && "unknown flag used");
 | 
						|
  pushStackMapConstant(Ops, *this, Flags);
 | 
						|
 | 
						|
  // Insert all vmstate and gcstate arguments
 | 
						|
  Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end());
 | 
						|
 | 
						|
  // Add register mask from call node
 | 
						|
  Ops.push_back(*RegMaskIt);
 | 
						|
 | 
						|
  // Add chain
 | 
						|
  Ops.push_back(Chain);
 | 
						|
 | 
						|
  // Same for the glue, but we add it only if original call had it
 | 
						|
  if (Glue.getNode())
 | 
						|
    Ops.push_back(Glue);
 | 
						|
 | 
						|
  // Compute return values.  Provide a glue output since we consume one as
 | 
						|
  // input.  This allows someone else to chain off us as needed.
 | 
						|
  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | 
						|
 | 
						|
  SDNode *StatepointMCNode =
 | 
						|
      DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
 | 
						|
 | 
						|
  SDNode *SinkNode = StatepointMCNode;
 | 
						|
 | 
						|
  // Build the GC_TRANSITION_END node if necessary.
 | 
						|
  //
 | 
						|
  // See the comment above regarding GC_TRANSITION_START for the layout of
 | 
						|
  // the operands to the GC_TRANSITION_END node.
 | 
						|
  if (IsGCTransition) {
 | 
						|
    SmallVector<SDValue, 8> TEOps;
 | 
						|
 | 
						|
    // Add chain
 | 
						|
    TEOps.push_back(SDValue(StatepointMCNode, 0));
 | 
						|
 | 
						|
    // Add GC transition arguments
 | 
						|
    for (const Value *V : ISP.gc_transition_args()) {
 | 
						|
      TEOps.push_back(getValue(V));
 | 
						|
      if (V->getType()->isPointerTy())
 | 
						|
        TEOps.push_back(DAG.getSrcValue(V));
 | 
						|
    }
 | 
						|
 | 
						|
    // Add glue
 | 
						|
    TEOps.push_back(SDValue(StatepointMCNode, 1));
 | 
						|
 | 
						|
    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | 
						|
 | 
						|
    SDValue GCTransitionStart =
 | 
						|
        DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);
 | 
						|
 | 
						|
    SinkNode = GCTransitionStart.getNode();
 | 
						|
  }
 | 
						|
 | 
						|
  // Replace original call
 | 
						|
  DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root
 | 
						|
  // Remove originall call node
 | 
						|
  DAG.DeleteNode(CallNode);
 | 
						|
 | 
						|
  // DON'T set the root - under the assumption that it's already set past the
 | 
						|
  // inserted node we created.
 | 
						|
 | 
						|
  // TODO: A better future implementation would be to emit a single variable
 | 
						|
  // argument, variable return value STATEPOINT node here and then hookup the
 | 
						|
  // return value of each gc.relocate to the respective output of the
 | 
						|
  // previously emitted STATEPOINT value.  Unfortunately, this doesn't appear
 | 
						|
  // to actually be possible today.
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGBuilder::visitGCResult(const CallInst &CI) {
 | 
						|
  // The result value of the gc_result is simply the result of the actual
 | 
						|
  // call.  We've already emitted this, so just grab the value.
 | 
						|
  Instruction *I = cast<Instruction>(CI.getArgOperand(0));
 | 
						|
  assert(isStatepoint(I) && "first argument must be a statepoint token");
 | 
						|
 | 
						|
  if (isa<InvokeInst>(I)) {
 | 
						|
    // For invokes we should have stored call result in a virtual register.
 | 
						|
    // We can not use default getValue() functionality to copy value from this
 | 
						|
    // register because statepoint and actuall call return types can be
 | 
						|
    // different, and getValue() will use CopyFromReg of the wrong type,
 | 
						|
    // which is always i32 in our case.
 | 
						|
    PointerType *CalleeType =
 | 
						|
        cast<PointerType>(ImmutableStatepoint(I).getActualCallee()->getType());
 | 
						|
    Type *RetTy =
 | 
						|
        cast<FunctionType>(CalleeType->getElementType())->getReturnType();
 | 
						|
    SDValue CopyFromReg = getCopyFromRegs(I, RetTy);
 | 
						|
 | 
						|
    assert(CopyFromReg.getNode());
 | 
						|
    setValue(&CI, CopyFromReg);
 | 
						|
  } else {
 | 
						|
    setValue(&CI, getValue(I));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGBuilder::visitGCRelocate(const CallInst &CI) {
 | 
						|
  GCRelocateOperands RelocateOpers(&CI);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Consistency check
 | 
						|
  // We skip this check for invoke statepoints. It would be too expensive to
 | 
						|
  // preserve validation info through different basic blocks.
 | 
						|
  if (!RelocateOpers.isTiedToInvoke()) {
 | 
						|
    StatepointLowering.relocCallVisited(CI);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  const Value *DerivedPtr = RelocateOpers.getDerivedPtr();
 | 
						|
  SDValue SD = getValue(DerivedPtr);
 | 
						|
 | 
						|
  FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap =
 | 
						|
    FuncInfo.StatepointRelocatedValues[RelocateOpers.getStatepoint()];
 | 
						|
 | 
						|
  // We should have recorded location for this pointer
 | 
						|
  assert(SpillMap.count(DerivedPtr) && "Relocating not lowered gc value");
 | 
						|
  Optional<int> DerivedPtrLocation = SpillMap[DerivedPtr];
 | 
						|
 | 
						|
  // We didn't need to spill these special cases (constants and allocas).
 | 
						|
  // See the handling in spillIncomingValueForStatepoint for detail.
 | 
						|
  if (!DerivedPtrLocation) {
 | 
						|
    setValue(&CI, SD);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue SpillSlot = DAG.getTargetFrameIndex(*DerivedPtrLocation,
 | 
						|
                                              SD.getValueType());
 | 
						|
 | 
						|
  // Be conservative: flush all pending loads
 | 
						|
  // TODO: Probably we can be less restrictive on this,
 | 
						|
  // it may allow more scheduling opprtunities
 | 
						|
  SDValue Chain = getRoot();
 | 
						|
 | 
						|
  SDValue SpillLoad =
 | 
						|
    DAG.getLoad(SpillSlot.getValueType(), getCurSDLoc(), Chain, SpillSlot,
 | 
						|
                MachinePointerInfo::getFixedStack(*DerivedPtrLocation),
 | 
						|
                false, false, false, 0);
 | 
						|
 | 
						|
  // Again, be conservative, don't emit pending loads
 | 
						|
  DAG.setRoot(SpillLoad.getValue(1));
 | 
						|
 | 
						|
  assert(SpillLoad.getNode());
 | 
						|
  setValue(&CI, SpillLoad);
 | 
						|
}
 |