mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	uint64_t, plus fixes for places I missed before. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116875 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			846 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			846 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass performs various transformations related to eliminating memcpy
 | 
						|
// calls, or transforming sets of stores into memset's.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "memcpyopt"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/LLVMContext.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include <list>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
 | 
						|
STATISTIC(NumMemSetInfer, "Number of memsets inferred");
 | 
						|
STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
 | 
						|
 | 
						|
/// isBytewiseValue - If the specified value can be set by repeating the same
 | 
						|
/// byte in memory, return the i8 value that it is represented with.  This is
 | 
						|
/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
 | 
						|
/// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
 | 
						|
/// byte store (e.g. i16 0x1234), return null.
 | 
						|
static Value *isBytewiseValue(Value *V) {
 | 
						|
  LLVMContext &Context = V->getContext();
 | 
						|
  
 | 
						|
  // All byte-wide stores are splatable, even of arbitrary variables.
 | 
						|
  if (V->getType()->isIntegerTy(8)) return V;
 | 
						|
  
 | 
						|
  // Constant float and double values can be handled as integer values if the
 | 
						|
  // corresponding integer value is "byteable".  An important case is 0.0. 
 | 
						|
  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
 | 
						|
    if (CFP->getType()->isFloatTy())
 | 
						|
      V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(Context));
 | 
						|
    if (CFP->getType()->isDoubleTy())
 | 
						|
      V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(Context));
 | 
						|
    // Don't handle long double formats, which have strange constraints.
 | 
						|
  }
 | 
						|
  
 | 
						|
  // We can handle constant integers that are power of two in size and a 
 | 
						|
  // multiple of 8 bits.
 | 
						|
  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | 
						|
    unsigned Width = CI->getBitWidth();
 | 
						|
    if (isPowerOf2_32(Width) && Width > 8) {
 | 
						|
      // We can handle this value if the recursive binary decomposition is the
 | 
						|
      // same at all levels.
 | 
						|
      APInt Val = CI->getValue();
 | 
						|
      APInt Val2;
 | 
						|
      while (Val.getBitWidth() != 8) {
 | 
						|
        unsigned NextWidth = Val.getBitWidth()/2;
 | 
						|
        Val2  = Val.lshr(NextWidth);
 | 
						|
        Val2.trunc(Val.getBitWidth()/2);
 | 
						|
        Val.trunc(Val.getBitWidth()/2);
 | 
						|
 | 
						|
        // If the top/bottom halves aren't the same, reject it.
 | 
						|
        if (Val != Val2)
 | 
						|
          return 0;
 | 
						|
      }
 | 
						|
      return ConstantInt::get(Context, Val);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Conceptually, we could handle things like:
 | 
						|
  //   %a = zext i8 %X to i16
 | 
						|
  //   %b = shl i16 %a, 8
 | 
						|
  //   %c = or i16 %a, %b
 | 
						|
  // but until there is an example that actually needs this, it doesn't seem
 | 
						|
  // worth worrying about.
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int64_t GetOffsetFromIndex(const GetElementPtrInst *GEP, unsigned Idx,
 | 
						|
                                  bool &VariableIdxFound, TargetData &TD) {
 | 
						|
  // Skip over the first indices.
 | 
						|
  gep_type_iterator GTI = gep_type_begin(GEP);
 | 
						|
  for (unsigned i = 1; i != Idx; ++i, ++GTI)
 | 
						|
    /*skip along*/;
 | 
						|
  
 | 
						|
  // Compute the offset implied by the rest of the indices.
 | 
						|
  int64_t Offset = 0;
 | 
						|
  for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
 | 
						|
    ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
 | 
						|
    if (OpC == 0)
 | 
						|
      return VariableIdxFound = true;
 | 
						|
    if (OpC->isZero()) continue;  // No offset.
 | 
						|
 | 
						|
    // Handle struct indices, which add their field offset to the pointer.
 | 
						|
    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
 | 
						|
      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Otherwise, we have a sequential type like an array or vector.  Multiply
 | 
						|
    // the index by the ElementSize.
 | 
						|
    uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
 | 
						|
    Offset += Size*OpC->getSExtValue();
 | 
						|
  }
 | 
						|
 | 
						|
  return Offset;
 | 
						|
}
 | 
						|
 | 
						|
/// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
 | 
						|
/// constant offset, and return that constant offset.  For example, Ptr1 might
 | 
						|
/// be &A[42], and Ptr2 might be &A[40].  In this case offset would be -8.
 | 
						|
static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
 | 
						|
                            TargetData &TD) {
 | 
						|
  // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
 | 
						|
  // base.  After that base, they may have some number of common (and
 | 
						|
  // potentially variable) indices.  After that they handle some constant
 | 
						|
  // offset, which determines their offset from each other.  At this point, we
 | 
						|
  // handle no other case.
 | 
						|
  GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1);
 | 
						|
  GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2);
 | 
						|
  if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Skip any common indices and track the GEP types.
 | 
						|
  unsigned Idx = 1;
 | 
						|
  for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
 | 
						|
    if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
 | 
						|
      break;
 | 
						|
 | 
						|
  bool VariableIdxFound = false;
 | 
						|
  int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD);
 | 
						|
  int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD);
 | 
						|
  if (VariableIdxFound) return false;
 | 
						|
  
 | 
						|
  Offset = Offset2-Offset1;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
 | 
						|
/// This allows us to analyze stores like:
 | 
						|
///   store 0 -> P+1
 | 
						|
///   store 0 -> P+0
 | 
						|
///   store 0 -> P+3
 | 
						|
///   store 0 -> P+2
 | 
						|
/// which sometimes happens with stores to arrays of structs etc.  When we see
 | 
						|
/// the first store, we make a range [1, 2).  The second store extends the range
 | 
						|
/// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
 | 
						|
/// two ranges into [0, 3) which is memset'able.
 | 
						|
namespace {
 | 
						|
struct MemsetRange {
 | 
						|
  // Start/End - A semi range that describes the span that this range covers.
 | 
						|
  // The range is closed at the start and open at the end: [Start, End).  
 | 
						|
  int64_t Start, End;
 | 
						|
 | 
						|
  /// StartPtr - The getelementptr instruction that points to the start of the
 | 
						|
  /// range.
 | 
						|
  Value *StartPtr;
 | 
						|
  
 | 
						|
  /// Alignment - The known alignment of the first store.
 | 
						|
  unsigned Alignment;
 | 
						|
  
 | 
						|
  /// TheStores - The actual stores that make up this range.
 | 
						|
  SmallVector<StoreInst*, 16> TheStores;
 | 
						|
  
 | 
						|
  bool isProfitableToUseMemset(const TargetData &TD) const;
 | 
						|
 | 
						|
};
 | 
						|
} // end anon namespace
 | 
						|
 | 
						|
bool MemsetRange::isProfitableToUseMemset(const TargetData &TD) const {
 | 
						|
  // If we found more than 8 stores to merge or 64 bytes, use memset.
 | 
						|
  if (TheStores.size() >= 8 || End-Start >= 64) return true;
 | 
						|
  
 | 
						|
  // Assume that the code generator is capable of merging pairs of stores
 | 
						|
  // together if it wants to.
 | 
						|
  if (TheStores.size() <= 2) return false;
 | 
						|
  
 | 
						|
  // If we have fewer than 8 stores, it can still be worthwhile to do this.
 | 
						|
  // For example, merging 4 i8 stores into an i32 store is useful almost always.
 | 
						|
  // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
 | 
						|
  // memset will be split into 2 32-bit stores anyway) and doing so can
 | 
						|
  // pessimize the llvm optimizer.
 | 
						|
  //
 | 
						|
  // Since we don't have perfect knowledge here, make some assumptions: assume
 | 
						|
  // the maximum GPR width is the same size as the pointer size and assume that
 | 
						|
  // this width can be stored.  If so, check to see whether we will end up
 | 
						|
  // actually reducing the number of stores used.
 | 
						|
  unsigned Bytes = unsigned(End-Start);
 | 
						|
  unsigned NumPointerStores = Bytes/TD.getPointerSize();
 | 
						|
  
 | 
						|
  // Assume the remaining bytes if any are done a byte at a time.
 | 
						|
  unsigned NumByteStores = Bytes - NumPointerStores*TD.getPointerSize();
 | 
						|
  
 | 
						|
  // If we will reduce the # stores (according to this heuristic), do the
 | 
						|
  // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
 | 
						|
  // etc.
 | 
						|
  return TheStores.size() > NumPointerStores+NumByteStores;
 | 
						|
}    
 | 
						|
 | 
						|
 | 
						|
namespace {
 | 
						|
class MemsetRanges {
 | 
						|
  /// Ranges - A sorted list of the memset ranges.  We use std::list here
 | 
						|
  /// because each element is relatively large and expensive to copy.
 | 
						|
  std::list<MemsetRange> Ranges;
 | 
						|
  typedef std::list<MemsetRange>::iterator range_iterator;
 | 
						|
  TargetData &TD;
 | 
						|
public:
 | 
						|
  MemsetRanges(TargetData &td) : TD(td) {}
 | 
						|
  
 | 
						|
  typedef std::list<MemsetRange>::const_iterator const_iterator;
 | 
						|
  const_iterator begin() const { return Ranges.begin(); }
 | 
						|
  const_iterator end() const { return Ranges.end(); }
 | 
						|
  bool empty() const { return Ranges.empty(); }
 | 
						|
  
 | 
						|
  void addStore(int64_t OffsetFromFirst, StoreInst *SI);
 | 
						|
};
 | 
						|
  
 | 
						|
} // end anon namespace
 | 
						|
 | 
						|
 | 
						|
/// addStore - Add a new store to the MemsetRanges data structure.  This adds a
 | 
						|
/// new range for the specified store at the specified offset, merging into
 | 
						|
/// existing ranges as appropriate.
 | 
						|
void MemsetRanges::addStore(int64_t Start, StoreInst *SI) {
 | 
						|
  int64_t End = Start+TD.getTypeStoreSize(SI->getOperand(0)->getType());
 | 
						|
  
 | 
						|
  // Do a linear search of the ranges to see if this can be joined and/or to
 | 
						|
  // find the insertion point in the list.  We keep the ranges sorted for
 | 
						|
  // simplicity here.  This is a linear search of a linked list, which is ugly,
 | 
						|
  // however the number of ranges is limited, so this won't get crazy slow.
 | 
						|
  range_iterator I = Ranges.begin(), E = Ranges.end();
 | 
						|
  
 | 
						|
  while (I != E && Start > I->End)
 | 
						|
    ++I;
 | 
						|
  
 | 
						|
  // We now know that I == E, in which case we didn't find anything to merge
 | 
						|
  // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
 | 
						|
  // to insert a new range.  Handle this now.
 | 
						|
  if (I == E || End < I->Start) {
 | 
						|
    MemsetRange &R = *Ranges.insert(I, MemsetRange());
 | 
						|
    R.Start        = Start;
 | 
						|
    R.End          = End;
 | 
						|
    R.StartPtr     = SI->getPointerOperand();
 | 
						|
    R.Alignment    = SI->getAlignment();
 | 
						|
    R.TheStores.push_back(SI);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // This store overlaps with I, add it.
 | 
						|
  I->TheStores.push_back(SI);
 | 
						|
  
 | 
						|
  // At this point, we may have an interval that completely contains our store.
 | 
						|
  // If so, just add it to the interval and return.
 | 
						|
  if (I->Start <= Start && I->End >= End)
 | 
						|
    return;
 | 
						|
  
 | 
						|
  // Now we know that Start <= I->End and End >= I->Start so the range overlaps
 | 
						|
  // but is not entirely contained within the range.
 | 
						|
  
 | 
						|
  // See if the range extends the start of the range.  In this case, it couldn't
 | 
						|
  // possibly cause it to join the prior range, because otherwise we would have
 | 
						|
  // stopped on *it*.
 | 
						|
  if (Start < I->Start) {
 | 
						|
    I->Start = Start;
 | 
						|
    I->StartPtr = SI->getPointerOperand();
 | 
						|
    I->Alignment = SI->getAlignment();
 | 
						|
  }
 | 
						|
    
 | 
						|
  // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
 | 
						|
  // is in or right at the end of I), and that End >= I->Start.  Extend I out to
 | 
						|
  // End.
 | 
						|
  if (End > I->End) {
 | 
						|
    I->End = End;
 | 
						|
    range_iterator NextI = I;
 | 
						|
    while (++NextI != E && End >= NextI->Start) {
 | 
						|
      // Merge the range in.
 | 
						|
      I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
 | 
						|
      if (NextI->End > I->End)
 | 
						|
        I->End = NextI->End;
 | 
						|
      Ranges.erase(NextI);
 | 
						|
      NextI = I;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                         MemCpyOpt Pass
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
  class MemCpyOpt : public FunctionPass {
 | 
						|
    bool runOnFunction(Function &F);
 | 
						|
  public:
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    MemCpyOpt() : FunctionPass(ID) {
 | 
						|
      initializeMemCpyOptPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    // This transformation requires dominator postdominator info
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.setPreservesCFG();
 | 
						|
      AU.addRequired<DominatorTree>();
 | 
						|
      AU.addRequired<MemoryDependenceAnalysis>();
 | 
						|
      AU.addRequired<AliasAnalysis>();
 | 
						|
      AU.addPreserved<AliasAnalysis>();
 | 
						|
      AU.addPreserved<MemoryDependenceAnalysis>();
 | 
						|
    }
 | 
						|
  
 | 
						|
    // Helper fuctions
 | 
						|
    bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
 | 
						|
    bool processMemCpy(MemCpyInst *M);
 | 
						|
    bool processMemMove(MemMoveInst *M);
 | 
						|
    bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc,
 | 
						|
                              uint64_t cpyLen, CallInst *C);
 | 
						|
    bool iterateOnFunction(Function &F);
 | 
						|
  };
 | 
						|
  
 | 
						|
  char MemCpyOpt::ID = 0;
 | 
						|
}
 | 
						|
 | 
						|
// createMemCpyOptPass - The public interface to this file...
 | 
						|
FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
 | 
						|
                      false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
 | 
						|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | 
						|
INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
 | 
						|
                    false, false)
 | 
						|
 | 
						|
/// processStore - When GVN is scanning forward over instructions, we look for
 | 
						|
/// some other patterns to fold away.  In particular, this looks for stores to
 | 
						|
/// neighboring locations of memory.  If it sees enough consequtive ones
 | 
						|
/// (currently 4) it attempts to merge them together into a memcpy/memset.
 | 
						|
bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
 | 
						|
  if (SI->isVolatile()) return false;
 | 
						|
  
 | 
						|
  TargetData *TD = getAnalysisIfAvailable<TargetData>();
 | 
						|
  if (!TD) return false;
 | 
						|
 | 
						|
  // Detect cases where we're performing call slot forwarding, but
 | 
						|
  // happen to be using a load-store pair to implement it, rather than
 | 
						|
  // a memcpy.
 | 
						|
  if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
 | 
						|
    if (!LI->isVolatile() && LI->hasOneUse()) {
 | 
						|
      MemoryDependenceAnalysis &MD = getAnalysis<MemoryDependenceAnalysis>();
 | 
						|
 | 
						|
      MemDepResult dep = MD.getDependency(LI);
 | 
						|
      CallInst *C = 0;
 | 
						|
      if (dep.isClobber() && !isa<MemCpyInst>(dep.getInst()))
 | 
						|
        C = dyn_cast<CallInst>(dep.getInst());
 | 
						|
      
 | 
						|
      if (C) {
 | 
						|
        bool changed = performCallSlotOptzn(LI,
 | 
						|
                        SI->getPointerOperand()->stripPointerCasts(), 
 | 
						|
                        LI->getPointerOperand()->stripPointerCasts(),
 | 
						|
                        TD->getTypeStoreSize(SI->getOperand(0)->getType()), C);
 | 
						|
        if (changed) {
 | 
						|
          MD.removeInstruction(SI);
 | 
						|
          SI->eraseFromParent();
 | 
						|
          LI->eraseFromParent();
 | 
						|
          ++NumMemCpyInstr;
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  LLVMContext &Context = SI->getContext();
 | 
						|
 | 
						|
  // There are two cases that are interesting for this code to handle: memcpy
 | 
						|
  // and memset.  Right now we only handle memset.
 | 
						|
  
 | 
						|
  // Ensure that the value being stored is something that can be memset'able a
 | 
						|
  // byte at a time like "0" or "-1" or any width, as well as things like
 | 
						|
  // 0xA0A0A0A0 and 0.0.
 | 
						|
  Value *ByteVal = isBytewiseValue(SI->getOperand(0));
 | 
						|
  if (!ByteVal)
 | 
						|
    return false;
 | 
						|
 | 
						|
  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
 | 
						|
  Module *M = SI->getParent()->getParent()->getParent();
 | 
						|
 | 
						|
  // Okay, so we now have a single store that can be splatable.  Scan to find
 | 
						|
  // all subsequent stores of the same value to offset from the same pointer.
 | 
						|
  // Join these together into ranges, so we can decide whether contiguous blocks
 | 
						|
  // are stored.
 | 
						|
  MemsetRanges Ranges(*TD);
 | 
						|
  
 | 
						|
  Value *StartPtr = SI->getPointerOperand();
 | 
						|
  
 | 
						|
  BasicBlock::iterator BI = SI;
 | 
						|
  for (++BI; !isa<TerminatorInst>(BI); ++BI) {
 | 
						|
    if (isa<CallInst>(BI) || isa<InvokeInst>(BI)) { 
 | 
						|
      // If the call is readnone, ignore it, otherwise bail out.  We don't even
 | 
						|
      // allow readonly here because we don't want something like:
 | 
						|
      // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
 | 
						|
      if (AA.getModRefBehavior(CallSite(BI)) ==
 | 
						|
            AliasAnalysis::DoesNotAccessMemory)
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      // TODO: If this is a memset, try to join it in.
 | 
						|
      
 | 
						|
      break;
 | 
						|
    } else if (isa<VAArgInst>(BI) || isa<LoadInst>(BI))
 | 
						|
      break;
 | 
						|
 | 
						|
    // If this is a non-store instruction it is fine, ignore it.
 | 
						|
    StoreInst *NextStore = dyn_cast<StoreInst>(BI);
 | 
						|
    if (NextStore == 0) continue;
 | 
						|
    
 | 
						|
    // If this is a store, see if we can merge it in.
 | 
						|
    if (NextStore->isVolatile()) break;
 | 
						|
    
 | 
						|
    // Check to see if this stored value is of the same byte-splattable value.
 | 
						|
    if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
 | 
						|
      break;
 | 
						|
 | 
						|
    // Check to see if this store is to a constant offset from the start ptr.
 | 
						|
    int64_t Offset;
 | 
						|
    if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset, *TD))
 | 
						|
      break;
 | 
						|
 | 
						|
    Ranges.addStore(Offset, NextStore);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have no ranges, then we just had a single store with nothing that
 | 
						|
  // could be merged in.  This is a very common case of course.
 | 
						|
  if (Ranges.empty())
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // If we had at least one store that could be merged in, add the starting
 | 
						|
  // store as well.  We try to avoid this unless there is at least something
 | 
						|
  // interesting as a small compile-time optimization.
 | 
						|
  Ranges.addStore(0, SI);
 | 
						|
  
 | 
						|
  
 | 
						|
  // Now that we have full information about ranges, loop over the ranges and
 | 
						|
  // emit memset's for anything big enough to be worthwhile.
 | 
						|
  bool MadeChange = false;
 | 
						|
  for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    const MemsetRange &Range = *I;
 | 
						|
 | 
						|
    if (Range.TheStores.size() == 1) continue;
 | 
						|
    
 | 
						|
    // If it is profitable to lower this range to memset, do so now.
 | 
						|
    if (!Range.isProfitableToUseMemset(*TD))
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    // Otherwise, we do want to transform this!  Create a new memset.  We put
 | 
						|
    // the memset right before the first instruction that isn't part of this
 | 
						|
    // memset block.  This ensure that the memset is dominated by any addressing
 | 
						|
    // instruction needed by the start of the block.
 | 
						|
    BasicBlock::iterator InsertPt = BI;
 | 
						|
 | 
						|
    // Get the starting pointer of the block.
 | 
						|
    StartPtr = Range.StartPtr;
 | 
						|
 | 
						|
    // Determine alignment
 | 
						|
    unsigned Alignment = Range.Alignment;
 | 
						|
    if (Alignment == 0) {
 | 
						|
      const Type *EltType = 
 | 
						|
         cast<PointerType>(StartPtr->getType())->getElementType();
 | 
						|
      Alignment = TD->getABITypeAlignment(EltType);
 | 
						|
    }
 | 
						|
 | 
						|
    // Cast the start ptr to be i8* as memset requires.
 | 
						|
    const PointerType* StartPTy = cast<PointerType>(StartPtr->getType());
 | 
						|
    const PointerType *i8Ptr = Type::getInt8PtrTy(Context,
 | 
						|
                                                  StartPTy->getAddressSpace());
 | 
						|
    if (StartPTy!= i8Ptr)
 | 
						|
      StartPtr = new BitCastInst(StartPtr, i8Ptr, StartPtr->getName(),
 | 
						|
                                 InsertPt);
 | 
						|
 | 
						|
    Value *Ops[] = {
 | 
						|
      StartPtr, ByteVal,   // Start, value
 | 
						|
      // size
 | 
						|
      ConstantInt::get(Type::getInt64Ty(Context), Range.End-Range.Start),
 | 
						|
      // align
 | 
						|
      ConstantInt::get(Type::getInt32Ty(Context), Alignment),
 | 
						|
      // volatile
 | 
						|
      ConstantInt::get(Type::getInt1Ty(Context), 0),
 | 
						|
    };
 | 
						|
    const Type *Tys[] = { Ops[0]->getType(), Ops[2]->getType() };
 | 
						|
 | 
						|
    Function *MemSetF = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys, 2);
 | 
						|
 | 
						|
    Value *C = CallInst::Create(MemSetF, Ops, Ops+5, "", InsertPt);
 | 
						|
    DEBUG(dbgs() << "Replace stores:\n";
 | 
						|
          for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
 | 
						|
            dbgs() << *Range.TheStores[i];
 | 
						|
          dbgs() << "With: " << *C); C=C;
 | 
						|
  
 | 
						|
    // Don't invalidate the iterator
 | 
						|
    BBI = BI;
 | 
						|
  
 | 
						|
    // Zap all the stores.
 | 
						|
    for (SmallVector<StoreInst*, 16>::const_iterator
 | 
						|
         SI = Range.TheStores.begin(),
 | 
						|
         SE = Range.TheStores.end(); SI != SE; ++SI)
 | 
						|
      (*SI)->eraseFromParent();
 | 
						|
    ++NumMemSetInfer;
 | 
						|
    MadeChange = true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// performCallSlotOptzn - takes a memcpy and a call that it depends on,
 | 
						|
/// and checks for the possibility of a call slot optimization by having
 | 
						|
/// the call write its result directly into the destination of the memcpy.
 | 
						|
bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
 | 
						|
                                     Value *cpyDest, Value *cpySrc,
 | 
						|
                                     uint64_t cpyLen, CallInst *C) {
 | 
						|
  // The general transformation to keep in mind is
 | 
						|
  //
 | 
						|
  //   call @func(..., src, ...)
 | 
						|
  //   memcpy(dest, src, ...)
 | 
						|
  //
 | 
						|
  // ->
 | 
						|
  //
 | 
						|
  //   memcpy(dest, src, ...)
 | 
						|
  //   call @func(..., dest, ...)
 | 
						|
  //
 | 
						|
  // Since moving the memcpy is technically awkward, we additionally check that
 | 
						|
  // src only holds uninitialized values at the moment of the call, meaning that
 | 
						|
  // the memcpy can be discarded rather than moved.
 | 
						|
 | 
						|
  // Deliberately get the source and destination with bitcasts stripped away,
 | 
						|
  // because we'll need to do type comparisons based on the underlying type.
 | 
						|
  CallSite CS(C);
 | 
						|
 | 
						|
  // Require that src be an alloca.  This simplifies the reasoning considerably.
 | 
						|
  AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
 | 
						|
  if (!srcAlloca)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that all of src is copied to dest.
 | 
						|
  TargetData *TD = getAnalysisIfAvailable<TargetData>();
 | 
						|
  if (!TD) return false;
 | 
						|
 | 
						|
  ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
 | 
						|
  if (!srcArraySize)
 | 
						|
    return false;
 | 
						|
 | 
						|
  uint64_t srcSize = TD->getTypeAllocSize(srcAlloca->getAllocatedType()) *
 | 
						|
    srcArraySize->getZExtValue();
 | 
						|
 | 
						|
  if (cpyLen < srcSize)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that accessing the first srcSize bytes of dest will not cause a
 | 
						|
  // trap.  Otherwise the transform is invalid since it might cause a trap
 | 
						|
  // to occur earlier than it otherwise would.
 | 
						|
  if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
 | 
						|
    // The destination is an alloca.  Check it is larger than srcSize.
 | 
						|
    ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
 | 
						|
    if (!destArraySize)
 | 
						|
      return false;
 | 
						|
 | 
						|
    uint64_t destSize = TD->getTypeAllocSize(A->getAllocatedType()) *
 | 
						|
      destArraySize->getZExtValue();
 | 
						|
 | 
						|
    if (destSize < srcSize)
 | 
						|
      return false;
 | 
						|
  } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
 | 
						|
    // If the destination is an sret parameter then only accesses that are
 | 
						|
    // outside of the returned struct type can trap.
 | 
						|
    if (!A->hasStructRetAttr())
 | 
						|
      return false;
 | 
						|
 | 
						|
    const Type *StructTy = cast<PointerType>(A->getType())->getElementType();
 | 
						|
    uint64_t destSize = TD->getTypeAllocSize(StructTy);
 | 
						|
 | 
						|
    if (destSize < srcSize)
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that src is not accessed except via the call and the memcpy.  This
 | 
						|
  // guarantees that it holds only undefined values when passed in (so the final
 | 
						|
  // memcpy can be dropped), that it is not read or written between the call and
 | 
						|
  // the memcpy, and that writing beyond the end of it is undefined.
 | 
						|
  SmallVector<User*, 8> srcUseList(srcAlloca->use_begin(),
 | 
						|
                                   srcAlloca->use_end());
 | 
						|
  while (!srcUseList.empty()) {
 | 
						|
    User *UI = srcUseList.pop_back_val();
 | 
						|
 | 
						|
    if (isa<BitCastInst>(UI)) {
 | 
						|
      for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
 | 
						|
           I != E; ++I)
 | 
						|
        srcUseList.push_back(*I);
 | 
						|
    } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(UI)) {
 | 
						|
      if (G->hasAllZeroIndices())
 | 
						|
        for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
 | 
						|
             I != E; ++I)
 | 
						|
          srcUseList.push_back(*I);
 | 
						|
      else
 | 
						|
        return false;
 | 
						|
    } else if (UI != C && UI != cpy) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Since we're changing the parameter to the callsite, we need to make sure
 | 
						|
  // that what would be the new parameter dominates the callsite.
 | 
						|
  DominatorTree &DT = getAnalysis<DominatorTree>();
 | 
						|
  if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
 | 
						|
    if (!DT.dominates(cpyDestInst, C))
 | 
						|
      return false;
 | 
						|
 | 
						|
  // In addition to knowing that the call does not access src in some
 | 
						|
  // unexpected manner, for example via a global, which we deduce from
 | 
						|
  // the use analysis, we also need to know that it does not sneakily
 | 
						|
  // access dest.  We rely on AA to figure this out for us.
 | 
						|
  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
 | 
						|
  if (AA.getModRefInfo(C, cpyDest, srcSize) !=
 | 
						|
      AliasAnalysis::NoModRef)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // All the checks have passed, so do the transformation.
 | 
						|
  bool changedArgument = false;
 | 
						|
  for (unsigned i = 0; i < CS.arg_size(); ++i)
 | 
						|
    if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
 | 
						|
      if (cpySrc->getType() != cpyDest->getType())
 | 
						|
        cpyDest = CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
 | 
						|
                                              cpyDest->getName(), C);
 | 
						|
      changedArgument = true;
 | 
						|
      if (CS.getArgument(i)->getType() == cpyDest->getType())
 | 
						|
        CS.setArgument(i, cpyDest);
 | 
						|
      else
 | 
						|
        CS.setArgument(i, CastInst::CreatePointerCast(cpyDest, 
 | 
						|
                          CS.getArgument(i)->getType(), cpyDest->getName(), C));
 | 
						|
    }
 | 
						|
 | 
						|
  if (!changedArgument)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Drop any cached information about the call, because we may have changed
 | 
						|
  // its dependence information by changing its parameter.
 | 
						|
  MemoryDependenceAnalysis &MD = getAnalysis<MemoryDependenceAnalysis>();
 | 
						|
  MD.removeInstruction(C);
 | 
						|
 | 
						|
  // Remove the memcpy
 | 
						|
  MD.removeInstruction(cpy);
 | 
						|
  ++NumMemCpyInstr;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// processMemCpy - perform simplification of memcpy's.  If we have memcpy A
 | 
						|
/// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
 | 
						|
/// B to be a memcpy from X to Z (or potentially a memmove, depending on
 | 
						|
/// circumstances). This allows later passes to remove the first memcpy
 | 
						|
/// altogether.
 | 
						|
bool MemCpyOpt::processMemCpy(MemCpyInst *M) {
 | 
						|
  MemoryDependenceAnalysis &MD = getAnalysis<MemoryDependenceAnalysis>();
 | 
						|
 | 
						|
  // We can only optimize statically-sized memcpy's.
 | 
						|
  ConstantInt *cpyLen = dyn_cast<ConstantInt>(M->getLength());
 | 
						|
  if (!cpyLen) return false;
 | 
						|
 | 
						|
  // The are two possible optimizations we can do for memcpy:
 | 
						|
  //   a) memcpy-memcpy xform which exposes redundance for DSE.
 | 
						|
  //   b) call-memcpy xform for return slot optimization.
 | 
						|
  MemDepResult dep = MD.getDependency(M);
 | 
						|
  if (!dep.isClobber())
 | 
						|
    return false;
 | 
						|
  if (!isa<MemCpyInst>(dep.getInst())) {
 | 
						|
    if (CallInst *C = dyn_cast<CallInst>(dep.getInst())) {
 | 
						|
      bool changed = performCallSlotOptzn(M, M->getDest(), M->getSource(),
 | 
						|
                                  cpyLen->getZExtValue(), C);
 | 
						|
      if (changed) M->eraseFromParent();
 | 
						|
      return changed;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  MemCpyInst *MDep = cast<MemCpyInst>(dep.getInst());
 | 
						|
  
 | 
						|
  // We can only transforms memcpy's where the dest of one is the source of the
 | 
						|
  // other
 | 
						|
  if (M->getSource() != MDep->getDest())
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Second, the length of the memcpy's must be the same, or the preceeding one
 | 
						|
  // must be larger than the following one.
 | 
						|
  ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
 | 
						|
  ConstantInt *C2 = dyn_cast<ConstantInt>(M->getLength());
 | 
						|
  if (!C1 || !C2)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  uint64_t DepSize = C1->getValue().getZExtValue();
 | 
						|
  uint64_t CpySize = C2->getValue().getZExtValue();
 | 
						|
  
 | 
						|
  if (DepSize < CpySize)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Finally, we have to make sure that the dest of the second does not
 | 
						|
  // alias the source of the first
 | 
						|
  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
 | 
						|
  if (AA.alias(M->getRawDest(), CpySize, MDep->getRawSource(), DepSize) !=
 | 
						|
      AliasAnalysis::NoAlias)
 | 
						|
    return false;
 | 
						|
  else if (AA.alias(M->getRawDest(), CpySize, M->getRawSource(), CpySize) !=
 | 
						|
           AliasAnalysis::NoAlias)
 | 
						|
    return false;
 | 
						|
  else if (AA.alias(MDep->getRawDest(), DepSize, MDep->getRawSource(), DepSize)
 | 
						|
           != AliasAnalysis::NoAlias)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // If all checks passed, then we can transform these memcpy's
 | 
						|
  const Type *ArgTys[3] = { M->getRawDest()->getType(),
 | 
						|
                            MDep->getRawSource()->getType(),
 | 
						|
                            M->getLength()->getType() };
 | 
						|
  Function *MemCpyFun = Intrinsic::getDeclaration(
 | 
						|
                                 M->getParent()->getParent()->getParent(),
 | 
						|
                                 M->getIntrinsicID(), ArgTys, 3);
 | 
						|
    
 | 
						|
  // Make sure to use the lesser of the alignment of the source and the dest
 | 
						|
  // since we're changing where we're reading from, but don't want to increase
 | 
						|
  // the alignment past what can be read from or written to.
 | 
						|
  // TODO: Is this worth it if we're creating a less aligned memcpy? For
 | 
						|
  // example we could be moving from movaps -> movq on x86.
 | 
						|
  unsigned Align = std::min(MDep->getAlignmentCst()->getZExtValue(),
 | 
						|
                            M->getAlignmentCst()->getZExtValue());
 | 
						|
  LLVMContext &Context = M->getContext();
 | 
						|
  ConstantInt *AlignCI = ConstantInt::get(Type::getInt32Ty(Context), Align);
 | 
						|
  Value *Args[5] = {
 | 
						|
    M->getRawDest(), MDep->getRawSource(), M->getLength(),
 | 
						|
    AlignCI, M->getVolatileCst()
 | 
						|
  };
 | 
						|
  CallInst *C = CallInst::Create(MemCpyFun, Args, Args+5, "", M);
 | 
						|
  
 | 
						|
  // If C and M don't interfere, then this is a valid transformation.  If they
 | 
						|
  // did, this would mean that the two sources overlap, which would be bad.
 | 
						|
  if (MD.getDependency(C) == dep) {
 | 
						|
    MD.removeInstruction(M);
 | 
						|
    M->eraseFromParent();
 | 
						|
    ++NumMemCpyInstr;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Otherwise, there was no point in doing this, so we remove the call we
 | 
						|
  // inserted and act like nothing happened.
 | 
						|
  MD.removeInstruction(C);
 | 
						|
  C->eraseFromParent();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// processMemMove - Transforms memmove calls to memcpy calls when the src/dst
 | 
						|
/// are guaranteed not to alias.
 | 
						|
bool MemCpyOpt::processMemMove(MemMoveInst *M) {
 | 
						|
  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
 | 
						|
 | 
						|
  // If the memmove is a constant size, use it for the alias query, this allows
 | 
						|
  // us to optimize things like: memmove(P, P+64, 64);
 | 
						|
  uint64_t MemMoveSize = AliasAnalysis::UnknownSize;
 | 
						|
  if (ConstantInt *Len = dyn_cast<ConstantInt>(M->getLength()))
 | 
						|
    MemMoveSize = Len->getZExtValue();
 | 
						|
  
 | 
						|
  // See if the pointers alias.
 | 
						|
  if (AA.alias(M->getRawDest(), MemMoveSize, M->getRawSource(), MemMoveSize) !=
 | 
						|
      AliasAnalysis::NoAlias)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n");
 | 
						|
  
 | 
						|
  // If not, then we know we can transform this.
 | 
						|
  Module *Mod = M->getParent()->getParent()->getParent();
 | 
						|
  const Type *ArgTys[3] = { M->getRawDest()->getType(),
 | 
						|
                            M->getRawSource()->getType(),
 | 
						|
                            M->getLength()->getType() };
 | 
						|
  M->setCalledFunction(Intrinsic::getDeclaration(Mod, Intrinsic::memcpy,
 | 
						|
                                                 ArgTys, 3));
 | 
						|
 | 
						|
  // MemDep may have over conservative information about this instruction, just
 | 
						|
  // conservatively flush it from the cache.
 | 
						|
  getAnalysis<MemoryDependenceAnalysis>().removeInstruction(M);
 | 
						|
 | 
						|
  ++NumMoveToCpy;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
  
 | 
						|
 | 
						|
// MemCpyOpt::iterateOnFunction - Executes one iteration of GVN.
 | 
						|
bool MemCpyOpt::iterateOnFunction(Function &F) {
 | 
						|
  bool MadeChange = false;
 | 
						|
 | 
						|
  // Walk all instruction in the function.
 | 
						|
  for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
 | 
						|
    for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
 | 
						|
         BI != BE;) {
 | 
						|
      // Avoid invalidating the iterator.
 | 
						|
      Instruction *I = BI++;
 | 
						|
      
 | 
						|
      if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | 
						|
        MadeChange |= processStore(SI, BI);
 | 
						|
      else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
 | 
						|
        MadeChange |= processMemCpy(M);
 | 
						|
      else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I)) {
 | 
						|
        if (processMemMove(M)) {
 | 
						|
          --BI;         // Reprocess the new memcpy.
 | 
						|
          MadeChange = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
// MemCpyOpt::runOnFunction - This is the main transformation entry point for a
 | 
						|
// function.
 | 
						|
//
 | 
						|
bool MemCpyOpt::runOnFunction(Function &F) {
 | 
						|
  bool MadeChange = false;
 | 
						|
  while (1) {
 | 
						|
    if (!iterateOnFunction(F))
 | 
						|
      break;
 | 
						|
    MadeChange = true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 |