mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@34959 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1061 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1061 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines a MachineCodeEmitter object that is used by the JIT to
 | |
| // write machine code to memory and remember where relocatable values are.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "jit"
 | |
| #include "JIT.h"
 | |
| #include "llvm/Constant.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/CodeGen/MachineCodeEmitter.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineJumpTableInfo.h"
 | |
| #include "llvm/CodeGen/MachineRelocation.h"
 | |
| #include "llvm/ExecutionEngine/GenericValue.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetJITInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/MutexGuard.h"
 | |
| #include "llvm/System/Disassembler.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/System/Memory.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumBytes, "Number of bytes of machine code compiled");
 | |
| STATISTIC(NumRelos, "Number of relocations applied");
 | |
| static JIT *TheJIT = 0;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // JITMemoryManager code.
 | |
| //
 | |
| namespace {
 | |
|   /// MemoryRangeHeader - For a range of memory, this is the header that we put
 | |
|   /// on the block of memory.  It is carefully crafted to be one word of memory.
 | |
|   /// Allocated blocks have just this header, free'd blocks have FreeRangeHeader
 | |
|   /// which starts with this.
 | |
|   struct FreeRangeHeader;
 | |
|   struct MemoryRangeHeader {
 | |
|     /// ThisAllocated - This is true if this block is currently allocated.  If
 | |
|     /// not, this can be converted to a FreeRangeHeader.
 | |
|     intptr_t ThisAllocated : 1;
 | |
|     
 | |
|     /// PrevAllocated - Keep track of whether the block immediately before us is
 | |
|     /// allocated.  If not, the word immediately before this header is the size
 | |
|     /// of the previous block.
 | |
|     intptr_t PrevAllocated : 1;
 | |
|     
 | |
|     /// BlockSize - This is the size in bytes of this memory block,
 | |
|     /// including this header.
 | |
|     uintptr_t BlockSize : (sizeof(intptr_t)*8 - 2);
 | |
|     
 | |
| 
 | |
|     /// getBlockAfter - Return the memory block immediately after this one.
 | |
|     ///
 | |
|     MemoryRangeHeader &getBlockAfter() const {
 | |
|       return *(MemoryRangeHeader*)((char*)this+BlockSize);
 | |
|     }
 | |
|     
 | |
|     /// getFreeBlockBefore - If the block before this one is free, return it,
 | |
|     /// otherwise return null.
 | |
|     FreeRangeHeader *getFreeBlockBefore() const {
 | |
|       if (PrevAllocated) return 0;
 | |
|       intptr_t PrevSize = ((intptr_t *)this)[-1];
 | |
|       return (FreeRangeHeader*)((char*)this-PrevSize);
 | |
|     }
 | |
|     
 | |
|     /// FreeBlock - Turn an allocated block into a free block, adjusting
 | |
|     /// bits in the object headers, and adding an end of region memory block.
 | |
|     FreeRangeHeader *FreeBlock(FreeRangeHeader *FreeList);
 | |
|     
 | |
|     /// TrimAllocationToSize - If this allocated block is significantly larger
 | |
|     /// than NewSize, split it into two pieces (where the former is NewSize
 | |
|     /// bytes, including the header), and add the new block to the free list.
 | |
|     FreeRangeHeader *TrimAllocationToSize(FreeRangeHeader *FreeList, 
 | |
|                                           uint64_t NewSize);
 | |
|   };
 | |
| 
 | |
|   /// FreeRangeHeader - For a memory block that isn't already allocated, this
 | |
|   /// keeps track of the current block and has a pointer to the next free block.
 | |
|   /// Free blocks are kept on a circularly linked list.
 | |
|   struct FreeRangeHeader : public MemoryRangeHeader {
 | |
|     FreeRangeHeader *Prev;
 | |
|     FreeRangeHeader *Next;
 | |
|     
 | |
|     /// getMinBlockSize - Get the minimum size for a memory block.  Blocks
 | |
|     /// smaller than this size cannot be created.
 | |
|     static unsigned getMinBlockSize() {
 | |
|       return sizeof(FreeRangeHeader)+sizeof(intptr_t);
 | |
|     }
 | |
|     
 | |
|     /// SetEndOfBlockSizeMarker - The word at the end of every free block is
 | |
|     /// known to be the size of the free block.  Set it for this block.
 | |
|     void SetEndOfBlockSizeMarker() {
 | |
|       void *EndOfBlock = (char*)this + BlockSize;
 | |
|       ((intptr_t *)EndOfBlock)[-1] = BlockSize;
 | |
|     }
 | |
| 
 | |
|     FreeRangeHeader *RemoveFromFreeList() {
 | |
|       assert(Next->Prev == this && Prev->Next == this && "Freelist broken!");
 | |
|       Next->Prev = Prev;
 | |
|       return Prev->Next = Next;
 | |
|     }
 | |
|     
 | |
|     void AddToFreeList(FreeRangeHeader *FreeList) {
 | |
|       Next = FreeList;
 | |
|       Prev = FreeList->Prev;
 | |
|       Prev->Next = this;
 | |
|       Next->Prev = this;
 | |
|     }
 | |
| 
 | |
|     /// GrowBlock - The block after this block just got deallocated.  Merge it
 | |
|     /// into the current block.
 | |
|     void GrowBlock(uintptr_t NewSize);
 | |
|     
 | |
|     /// AllocateBlock - Mark this entire block allocated, updating freelists
 | |
|     /// etc.  This returns a pointer to the circular free-list.
 | |
|     FreeRangeHeader *AllocateBlock();
 | |
|   };
 | |
| }
 | |
| 
 | |
| 
 | |
| /// AllocateBlock - Mark this entire block allocated, updating freelists
 | |
| /// etc.  This returns a pointer to the circular free-list.
 | |
| FreeRangeHeader *FreeRangeHeader::AllocateBlock() {
 | |
|   assert(!ThisAllocated && !getBlockAfter().PrevAllocated &&
 | |
|          "Cannot allocate an allocated block!");
 | |
|   // Mark this block allocated.
 | |
|   ThisAllocated = 1;
 | |
|   getBlockAfter().PrevAllocated = 1;
 | |
|  
 | |
|   // Remove it from the free list.
 | |
|   return RemoveFromFreeList();
 | |
| }
 | |
| 
 | |
| /// FreeBlock - Turn an allocated block into a free block, adjusting
 | |
| /// bits in the object headers, and adding an end of region memory block.
 | |
| /// If possible, coallesce this block with neighboring blocks.  Return the
 | |
| /// FreeRangeHeader to allocate from.
 | |
| FreeRangeHeader *MemoryRangeHeader::FreeBlock(FreeRangeHeader *FreeList) {
 | |
|   MemoryRangeHeader *FollowingBlock = &getBlockAfter();
 | |
|   assert(ThisAllocated && "This block is already allocated!");
 | |
|   assert(FollowingBlock->PrevAllocated && "Flags out of sync!");
 | |
|   
 | |
|   FreeRangeHeader *FreeListToReturn = FreeList;
 | |
|   
 | |
|   // If the block after this one is free, merge it into this block.
 | |
|   if (!FollowingBlock->ThisAllocated) {
 | |
|     FreeRangeHeader &FollowingFreeBlock = *(FreeRangeHeader *)FollowingBlock;
 | |
|     // "FreeList" always needs to be a valid free block.  If we're about to
 | |
|     // coallesce with it, update our notion of what the free list is.
 | |
|     if (&FollowingFreeBlock == FreeList) {
 | |
|       FreeList = FollowingFreeBlock.Next;
 | |
|       FreeListToReturn = 0;
 | |
|       assert(&FollowingFreeBlock != FreeList && "No tombstone block?");
 | |
|     }
 | |
|     FollowingFreeBlock.RemoveFromFreeList();
 | |
|     
 | |
|     // Include the following block into this one.
 | |
|     BlockSize += FollowingFreeBlock.BlockSize;
 | |
|     FollowingBlock = &FollowingFreeBlock.getBlockAfter();
 | |
|     
 | |
|     // Tell the block after the block we are coallescing that this block is
 | |
|     // allocated.
 | |
|     FollowingBlock->PrevAllocated = 1;
 | |
|   }
 | |
|   
 | |
|   assert(FollowingBlock->ThisAllocated && "Missed coallescing?");
 | |
|   
 | |
|   if (FreeRangeHeader *PrevFreeBlock = getFreeBlockBefore()) {
 | |
|     PrevFreeBlock->GrowBlock(PrevFreeBlock->BlockSize + BlockSize);
 | |
|     return FreeListToReturn ? FreeListToReturn : PrevFreeBlock;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, mark this block free.
 | |
|   FreeRangeHeader &FreeBlock = *(FreeRangeHeader*)this;
 | |
|   FollowingBlock->PrevAllocated = 0;
 | |
|   FreeBlock.ThisAllocated = 0;
 | |
| 
 | |
|   // Link this into the linked list of free blocks.
 | |
|   FreeBlock.AddToFreeList(FreeList);
 | |
| 
 | |
|   // Add a marker at the end of the block, indicating the size of this free
 | |
|   // block.
 | |
|   FreeBlock.SetEndOfBlockSizeMarker();
 | |
|   return FreeListToReturn ? FreeListToReturn : &FreeBlock;
 | |
| }
 | |
| 
 | |
| /// GrowBlock - The block after this block just got deallocated.  Merge it
 | |
| /// into the current block.
 | |
| void FreeRangeHeader::GrowBlock(uintptr_t NewSize) {
 | |
|   assert(NewSize > BlockSize && "Not growing block?");
 | |
|   BlockSize = NewSize;
 | |
|   SetEndOfBlockSizeMarker();
 | |
|   getBlockAfter().PrevAllocated = 0;
 | |
| }
 | |
| 
 | |
| /// TrimAllocationToSize - If this allocated block is significantly larger
 | |
| /// than NewSize, split it into two pieces (where the former is NewSize
 | |
| /// bytes, including the header), and add the new block to the free list.
 | |
| FreeRangeHeader *MemoryRangeHeader::
 | |
| TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize) {
 | |
|   assert(ThisAllocated && getBlockAfter().PrevAllocated &&
 | |
|          "Cannot deallocate part of an allocated block!");
 | |
| 
 | |
|   // Round up size for alignment of header.
 | |
|   unsigned HeaderAlign = __alignof(FreeRangeHeader);
 | |
|   NewSize = (NewSize+ (HeaderAlign-1)) & ~(HeaderAlign-1);
 | |
|   
 | |
|   // Size is now the size of the block we will remove from the start of the
 | |
|   // current block.
 | |
|   assert(NewSize <= BlockSize &&
 | |
|          "Allocating more space from this block than exists!");
 | |
|   
 | |
|   // If splitting this block will cause the remainder to be too small, do not
 | |
|   // split the block.
 | |
|   if (BlockSize <= NewSize+FreeRangeHeader::getMinBlockSize())
 | |
|     return FreeList;
 | |
|   
 | |
|   // Otherwise, we splice the required number of bytes out of this block, form
 | |
|   // a new block immediately after it, then mark this block allocated.
 | |
|   MemoryRangeHeader &FormerNextBlock = getBlockAfter();
 | |
|   
 | |
|   // Change the size of this block.
 | |
|   BlockSize = NewSize;
 | |
|   
 | |
|   // Get the new block we just sliced out and turn it into a free block.
 | |
|   FreeRangeHeader &NewNextBlock = (FreeRangeHeader &)getBlockAfter();
 | |
|   NewNextBlock.BlockSize = (char*)&FormerNextBlock - (char*)&NewNextBlock;
 | |
|   NewNextBlock.ThisAllocated = 0;
 | |
|   NewNextBlock.PrevAllocated = 1;
 | |
|   NewNextBlock.SetEndOfBlockSizeMarker();
 | |
|   FormerNextBlock.PrevAllocated = 0;
 | |
|   NewNextBlock.AddToFreeList(FreeList);
 | |
|   return &NewNextBlock;
 | |
| }
 | |
| 
 | |
|  
 | |
| namespace {  
 | |
|   /// JITMemoryManager - Manage memory for the JIT code generation in a logical,
 | |
|   /// sane way.  This splits a large block of MAP_NORESERVE'd memory into two
 | |
|   /// sections, one for function stubs, one for the functions themselves.  We
 | |
|   /// have to do this because we may need to emit a function stub while in the
 | |
|   /// middle of emitting a function, and we don't know how large the function we
 | |
|   /// are emitting is.  This never bothers to release the memory, because when
 | |
|   /// we are ready to destroy the JIT, the program exits.
 | |
|   class JITMemoryManager {
 | |
|     std::vector<sys::MemoryBlock> Blocks; // Memory blocks allocated by the JIT
 | |
|     FreeRangeHeader *FreeMemoryList;      // Circular list of free blocks.
 | |
|     
 | |
|     // When emitting code into a memory block, this is the block.
 | |
|     MemoryRangeHeader *CurBlock;
 | |
|     
 | |
|     unsigned char *CurStubPtr, *StubBase;
 | |
|     unsigned char *GOTBase;      // Target Specific reserved memory
 | |
| 
 | |
|     // Centralize memory block allocation.
 | |
|     sys::MemoryBlock getNewMemoryBlock(unsigned size);
 | |
|     
 | |
|     std::map<const Function*, MemoryRangeHeader*> FunctionBlocks;
 | |
|   public:
 | |
|     JITMemoryManager(bool useGOT);
 | |
|     ~JITMemoryManager();
 | |
| 
 | |
|     inline unsigned char *allocateStub(unsigned StubSize, unsigned Alignment);
 | |
|     
 | |
|     /// startFunctionBody - When a function starts, allocate a block of free
 | |
|     /// executable memory, returning a pointer to it and its actual size.
 | |
|     unsigned char *startFunctionBody(uintptr_t &ActualSize) {
 | |
|       CurBlock = FreeMemoryList;
 | |
|       
 | |
|       // Allocate the entire memory block.
 | |
|       FreeMemoryList = FreeMemoryList->AllocateBlock();
 | |
|       ActualSize = CurBlock->BlockSize-sizeof(MemoryRangeHeader);
 | |
|       return (unsigned char *)(CurBlock+1);
 | |
|     }
 | |
|     
 | |
|     /// endFunctionBody - The function F is now allocated, and takes the memory
 | |
|     /// in the range [FunctionStart,FunctionEnd).
 | |
|     void endFunctionBody(const Function *F, unsigned char *FunctionStart,
 | |
|                          unsigned char *FunctionEnd) {
 | |
|       assert(FunctionEnd > FunctionStart);
 | |
|       assert(FunctionStart == (unsigned char *)(CurBlock+1) &&
 | |
|              "Mismatched function start/end!");
 | |
|       
 | |
|       uintptr_t BlockSize = FunctionEnd - (unsigned char *)CurBlock;
 | |
|       FunctionBlocks[F] = CurBlock;
 | |
| 
 | |
|       // Release the memory at the end of this block that isn't needed.
 | |
|       FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
 | |
|     }
 | |
|     
 | |
|     unsigned char *getGOTBase() const {
 | |
|       return GOTBase;
 | |
|     }
 | |
|     bool isManagingGOT() const {
 | |
|       return GOTBase != NULL;
 | |
|     }
 | |
|     
 | |
|     /// deallocateMemForFunction - Deallocate all memory for the specified
 | |
|     /// function body.
 | |
|     void deallocateMemForFunction(const Function *F) {
 | |
|       std::map<const Function*, MemoryRangeHeader*>::iterator
 | |
|         I = FunctionBlocks.find(F);
 | |
|       if (I == FunctionBlocks.end()) return;
 | |
|       
 | |
|       // Find the block that is allocated for this function.
 | |
|       MemoryRangeHeader *MemRange = I->second;
 | |
|       assert(MemRange->ThisAllocated && "Block isn't allocated!");
 | |
|       
 | |
|       // Fill the buffer with garbage!
 | |
|       DEBUG(memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange)));
 | |
|       
 | |
|       // Free the memory.
 | |
|       FreeMemoryList = MemRange->FreeBlock(FreeMemoryList);
 | |
|       
 | |
|       // Finally, remove this entry from FunctionBlocks.
 | |
|       FunctionBlocks.erase(I);
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| JITMemoryManager::JITMemoryManager(bool useGOT) {
 | |
|   // Allocate a 16M block of memory for functions.
 | |
|   sys::MemoryBlock MemBlock = getNewMemoryBlock(16 << 20);
 | |
| 
 | |
|   unsigned char *MemBase = reinterpret_cast<unsigned char*>(MemBlock.base());
 | |
| 
 | |
|   // Allocate stubs backwards from the base, allocate functions forward
 | |
|   // from the base.
 | |
|   StubBase   = MemBase;
 | |
|   CurStubPtr = MemBase + 512*1024; // Use 512k for stubs, working backwards.
 | |
|   
 | |
|   // We set up the memory chunk with 4 mem regions, like this:
 | |
|   //  [ START
 | |
|   //    [ Free      #0 ] -> Large space to allocate functions from.
 | |
|   //    [ Allocated #1 ] -> Tiny space to separate regions.
 | |
|   //    [ Free      #2 ] -> Tiny space so there is always at least 1 free block.
 | |
|   //    [ Allocated #3 ] -> Tiny space to prevent looking past end of block.
 | |
|   //  END ]
 | |
|   //
 | |
|   // The last three blocks are never deallocated or touched.
 | |
|   
 | |
|   // Add MemoryRangeHeader to the end of the memory region, indicating that
 | |
|   // the space after the block of memory is allocated.  This is block #3.
 | |
|   MemoryRangeHeader *Mem3 = (MemoryRangeHeader*)(MemBase+MemBlock.size())-1;
 | |
|   Mem3->ThisAllocated = 1;
 | |
|   Mem3->PrevAllocated = 0;
 | |
|   Mem3->BlockSize     = 0;
 | |
|   
 | |
|   /// Add a tiny free region so that the free list always has one entry.
 | |
|   FreeRangeHeader *Mem2 = 
 | |
|     (FreeRangeHeader *)(((char*)Mem3)-FreeRangeHeader::getMinBlockSize());
 | |
|   Mem2->ThisAllocated = 0;
 | |
|   Mem2->PrevAllocated = 1;
 | |
|   Mem2->BlockSize     = FreeRangeHeader::getMinBlockSize();
 | |
|   Mem2->SetEndOfBlockSizeMarker();
 | |
|   Mem2->Prev = Mem2;   // Mem2 *is* the free list for now.
 | |
|   Mem2->Next = Mem2;
 | |
| 
 | |
|   /// Add a tiny allocated region so that Mem2 is never coallesced away.
 | |
|   MemoryRangeHeader *Mem1 = (MemoryRangeHeader*)Mem2-1;
 | |
|   Mem1->ThisAllocated = 1;
 | |
|   Mem1->PrevAllocated = 0;
 | |
|   Mem1->BlockSize     = (char*)Mem2 - (char*)Mem1;
 | |
|   
 | |
|   // Add a FreeRangeHeader to the start of the function body region, indicating
 | |
|   // that the space is free.  Mark the previous block allocated so we never look
 | |
|   // at it.
 | |
|   FreeRangeHeader *Mem0 = (FreeRangeHeader*)CurStubPtr;
 | |
|   Mem0->ThisAllocated = 0;
 | |
|   Mem0->PrevAllocated = 1;
 | |
|   Mem0->BlockSize = (char*)Mem1-(char*)Mem0;
 | |
|   Mem0->SetEndOfBlockSizeMarker();
 | |
|   Mem0->AddToFreeList(Mem2);
 | |
|   
 | |
|   // Start out with the freelist pointing to Mem0.
 | |
|   FreeMemoryList = Mem0;
 | |
| 
 | |
|   // Allocate the GOT.
 | |
|   GOTBase = NULL;
 | |
|   if (useGOT) GOTBase = new unsigned char[sizeof(void*) * 8192];
 | |
| }
 | |
| 
 | |
| JITMemoryManager::~JITMemoryManager() {
 | |
|   for (unsigned i = 0, e = Blocks.size(); i != e; ++i)
 | |
|     sys::Memory::ReleaseRWX(Blocks[i]);
 | |
|   
 | |
|   delete[] GOTBase;
 | |
|   Blocks.clear();
 | |
| }
 | |
| 
 | |
| unsigned char *JITMemoryManager::allocateStub(unsigned StubSize,
 | |
|                                               unsigned Alignment) {
 | |
|   CurStubPtr -= StubSize;
 | |
|   CurStubPtr = (unsigned char*)(((intptr_t)CurStubPtr) &
 | |
|                                 ~(intptr_t)(Alignment-1));
 | |
|   if (CurStubPtr < StubBase) {
 | |
|     // FIXME: allocate a new block
 | |
|     cerr << "JIT ran out of memory for function stubs!\n";
 | |
|     abort();
 | |
|   }
 | |
|   return CurStubPtr;
 | |
| }
 | |
| 
 | |
| sys::MemoryBlock JITMemoryManager::getNewMemoryBlock(unsigned size) {
 | |
|   // Allocate a new block close to the last one.
 | |
|   const sys::MemoryBlock *BOld = Blocks.empty() ? 0 : &Blocks.front();
 | |
|   std::string ErrMsg;
 | |
|   sys::MemoryBlock B = sys::Memory::AllocateRWX(size, BOld, &ErrMsg);
 | |
|   if (B.base() == 0) {
 | |
|     cerr << "Allocation failed when allocating new memory in the JIT\n";
 | |
|     cerr << ErrMsg << "\n";
 | |
|     abort();
 | |
|   }
 | |
|   Blocks.push_back(B);
 | |
|   return B;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // JIT lazy compilation code.
 | |
| //
 | |
| namespace {
 | |
|   class JITResolverState {
 | |
|   private:
 | |
|     /// FunctionToStubMap - Keep track of the stub created for a particular
 | |
|     /// function so that we can reuse them if necessary.
 | |
|     std::map<Function*, void*> FunctionToStubMap;
 | |
| 
 | |
|     /// StubToFunctionMap - Keep track of the function that each stub
 | |
|     /// corresponds to.
 | |
|     std::map<void*, Function*> StubToFunctionMap;
 | |
| 
 | |
|   public:
 | |
|     std::map<Function*, void*>& getFunctionToStubMap(const MutexGuard& locked) {
 | |
|       assert(locked.holds(TheJIT->lock));
 | |
|       return FunctionToStubMap;
 | |
|     }
 | |
| 
 | |
|     std::map<void*, Function*>& getStubToFunctionMap(const MutexGuard& locked) {
 | |
|       assert(locked.holds(TheJIT->lock));
 | |
|       return StubToFunctionMap;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// JITResolver - Keep track of, and resolve, call sites for functions that
 | |
|   /// have not yet been compiled.
 | |
|   class JITResolver {
 | |
|     /// LazyResolverFn - The target lazy resolver function that we actually
 | |
|     /// rewrite instructions to use.
 | |
|     TargetJITInfo::LazyResolverFn LazyResolverFn;
 | |
| 
 | |
|     JITResolverState state;
 | |
| 
 | |
|     /// ExternalFnToStubMap - This is the equivalent of FunctionToStubMap for
 | |
|     /// external functions.
 | |
|     std::map<void*, void*> ExternalFnToStubMap;
 | |
| 
 | |
|     //map addresses to indexes in the GOT
 | |
|     std::map<void*, unsigned> revGOTMap;
 | |
|     unsigned nextGOTIndex;
 | |
| 
 | |
|     static JITResolver *TheJITResolver;
 | |
|   public:
 | |
|     JITResolver(JIT &jit) : nextGOTIndex(0) {
 | |
|       TheJIT = &jit;
 | |
| 
 | |
|       LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
 | |
|       assert(TheJITResolver == 0 && "Multiple JIT resolvers?");
 | |
|       TheJITResolver = this;
 | |
|     }
 | |
|     
 | |
|     ~JITResolver() {
 | |
|       TheJITResolver = 0;
 | |
|     }
 | |
| 
 | |
|     /// getFunctionStub - This returns a pointer to a function stub, creating
 | |
|     /// one on demand as needed.
 | |
|     void *getFunctionStub(Function *F);
 | |
| 
 | |
|     /// getExternalFunctionStub - Return a stub for the function at the
 | |
|     /// specified address, created lazily on demand.
 | |
|     void *getExternalFunctionStub(void *FnAddr);
 | |
| 
 | |
|     /// AddCallbackAtLocation - If the target is capable of rewriting an
 | |
|     /// instruction without the use of a stub, record the location of the use so
 | |
|     /// we know which function is being used at the location.
 | |
|     void *AddCallbackAtLocation(Function *F, void *Location) {
 | |
|       MutexGuard locked(TheJIT->lock);
 | |
|       /// Get the target-specific JIT resolver function.
 | |
|       state.getStubToFunctionMap(locked)[Location] = F;
 | |
|       return (void*)(intptr_t)LazyResolverFn;
 | |
|     }
 | |
| 
 | |
|     /// getGOTIndexForAddress - Return a new or existing index in the GOT for
 | |
|     /// and address.  This function only manages slots, it does not manage the
 | |
|     /// contents of the slots or the memory associated with the GOT.
 | |
|     unsigned getGOTIndexForAddr(void* addr);
 | |
| 
 | |
|     /// JITCompilerFn - This function is called to resolve a stub to a compiled
 | |
|     /// address.  If the LLVM Function corresponding to the stub has not yet
 | |
|     /// been compiled, this function compiles it first.
 | |
|     static void *JITCompilerFn(void *Stub);
 | |
|   };
 | |
| }
 | |
| 
 | |
| JITResolver *JITResolver::TheJITResolver = 0;
 | |
| 
 | |
| #if (defined(__POWERPC__) || defined (__ppc__) || defined(_POWER)) && \
 | |
|     defined(__APPLE__)
 | |
| extern "C" void sys_icache_invalidate(const void *Addr, size_t len);
 | |
| #endif
 | |
| 
 | |
| /// synchronizeICache - On some targets, the JIT emitted code must be
 | |
| /// explicitly refetched to ensure correct execution.
 | |
| static void synchronizeICache(const void *Addr, size_t len) {
 | |
| #if (defined(__POWERPC__) || defined (__ppc__) || defined(_POWER)) && \
 | |
|     defined(__APPLE__)
 | |
|   sys_icache_invalidate(Addr, len);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// getFunctionStub - This returns a pointer to a function stub, creating
 | |
| /// one on demand as needed.
 | |
| void *JITResolver::getFunctionStub(Function *F) {
 | |
|   MutexGuard locked(TheJIT->lock);
 | |
| 
 | |
|   // If we already have a stub for this function, recycle it.
 | |
|   void *&Stub = state.getFunctionToStubMap(locked)[F];
 | |
|   if (Stub) return Stub;
 | |
| 
 | |
|   // Call the lazy resolver function unless we already KNOW it is an external
 | |
|   // function, in which case we just skip the lazy resolution step.
 | |
|   void *Actual = (void*)(intptr_t)LazyResolverFn;
 | |
|   if (F->isDeclaration() && !F->hasNotBeenReadFromBytecode())
 | |
|     Actual = TheJIT->getPointerToFunction(F);
 | |
| 
 | |
|   // Otherwise, codegen a new stub.  For now, the stub will call the lazy
 | |
|   // resolver function.
 | |
|   Stub = TheJIT->getJITInfo().emitFunctionStub(Actual,
 | |
|                                                *TheJIT->getCodeEmitter());
 | |
| 
 | |
|   if (Actual != (void*)(intptr_t)LazyResolverFn) {
 | |
|     // If we are getting the stub for an external function, we really want the
 | |
|     // address of the stub in the GlobalAddressMap for the JIT, not the address
 | |
|     // of the external function.
 | |
|     TheJIT->updateGlobalMapping(F, Stub);
 | |
|   }
 | |
| 
 | |
|   // Invalidate the icache if necessary.
 | |
|   synchronizeICache(Stub, TheJIT->getCodeEmitter()->getCurrentPCValue() -
 | |
|                           (intptr_t)Stub);
 | |
| 
 | |
|   DOUT << "JIT: Stub emitted at [" << Stub << "] for function '"
 | |
|        << F->getName() << "'\n";
 | |
| 
 | |
|   // Finally, keep track of the stub-to-Function mapping so that the
 | |
|   // JITCompilerFn knows which function to compile!
 | |
|   state.getStubToFunctionMap(locked)[Stub] = F;
 | |
|   return Stub;
 | |
| }
 | |
| 
 | |
| /// getExternalFunctionStub - Return a stub for the function at the
 | |
| /// specified address, created lazily on demand.
 | |
| void *JITResolver::getExternalFunctionStub(void *FnAddr) {
 | |
|   // If we already have a stub for this function, recycle it.
 | |
|   void *&Stub = ExternalFnToStubMap[FnAddr];
 | |
|   if (Stub) return Stub;
 | |
| 
 | |
|   Stub = TheJIT->getJITInfo().emitFunctionStub(FnAddr,
 | |
|                                                *TheJIT->getCodeEmitter());
 | |
| 
 | |
|   // Invalidate the icache if necessary.
 | |
|   synchronizeICache(Stub, TheJIT->getCodeEmitter()->getCurrentPCValue() -
 | |
|                     (intptr_t)Stub);
 | |
| 
 | |
|   DOUT << "JIT: Stub emitted at [" << Stub
 | |
|        << "] for external function at '" << FnAddr << "'\n";
 | |
|   return Stub;
 | |
| }
 | |
| 
 | |
| unsigned JITResolver::getGOTIndexForAddr(void* addr) {
 | |
|   unsigned idx = revGOTMap[addr];
 | |
|   if (!idx) {
 | |
|     idx = ++nextGOTIndex;
 | |
|     revGOTMap[addr] = idx;
 | |
|     DOUT << "Adding GOT entry " << idx
 | |
|          << " for addr " << addr << "\n";
 | |
|     //    ((void**)MemMgr.getGOTBase())[idx] = addr;
 | |
|   }
 | |
|   return idx;
 | |
| }
 | |
| 
 | |
| /// JITCompilerFn - This function is called when a lazy compilation stub has
 | |
| /// been entered.  It looks up which function this stub corresponds to, compiles
 | |
| /// it if necessary, then returns the resultant function pointer.
 | |
| void *JITResolver::JITCompilerFn(void *Stub) {
 | |
|   JITResolver &JR = *TheJITResolver;
 | |
| 
 | |
|   MutexGuard locked(TheJIT->lock);
 | |
| 
 | |
|   // The address given to us for the stub may not be exactly right, it might be
 | |
|   // a little bit after the stub.  As such, use upper_bound to find it.
 | |
|   std::map<void*, Function*>::iterator I =
 | |
|     JR.state.getStubToFunctionMap(locked).upper_bound(Stub);
 | |
|   assert(I != JR.state.getStubToFunctionMap(locked).begin() &&
 | |
|          "This is not a known stub!");
 | |
|   Function *F = (--I)->second;
 | |
| 
 | |
|   // If disabled, emit a useful error message and abort.
 | |
|   if (TheJIT->isLazyCompilationDisabled()) {
 | |
|     cerr << "LLVM JIT requested to do lazy compilation of function '"
 | |
|          << F->getName() << "' when lazy compiles are disabled!\n";
 | |
|     abort();
 | |
|   }
 | |
|   
 | |
|   // We might like to remove the stub from the StubToFunction map.
 | |
|   // We can't do that! Multiple threads could be stuck, waiting to acquire the
 | |
|   // lock above. As soon as the 1st function finishes compiling the function,
 | |
|   // the next one will be released, and needs to be able to find the function it
 | |
|   // needs to call.
 | |
|   //JR.state.getStubToFunctionMap(locked).erase(I);
 | |
| 
 | |
|   DOUT << "JIT: Lazily resolving function '" << F->getName()
 | |
|        << "' In stub ptr = " << Stub << " actual ptr = "
 | |
|        << I->first << "\n";
 | |
| 
 | |
|   void *Result = TheJIT->getPointerToFunction(F);
 | |
| 
 | |
|   // We don't need to reuse this stub in the future, as F is now compiled.
 | |
|   JR.state.getFunctionToStubMap(locked).erase(F);
 | |
| 
 | |
|   // FIXME: We could rewrite all references to this stub if we knew them.
 | |
| 
 | |
|   // What we will do is set the compiled function address to map to the
 | |
|   // same GOT entry as the stub so that later clients may update the GOT
 | |
|   // if they see it still using the stub address.
 | |
|   // Note: this is done so the Resolver doesn't have to manage GOT memory
 | |
|   // Do this without allocating map space if the target isn't using a GOT
 | |
|   if(JR.revGOTMap.find(Stub) != JR.revGOTMap.end())
 | |
|     JR.revGOTMap[Result] = JR.revGOTMap[Stub];
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // JITEmitter code.
 | |
| //
 | |
| namespace {
 | |
|   /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
 | |
|   /// used to output functions to memory for execution.
 | |
|   class JITEmitter : public MachineCodeEmitter {
 | |
|     JITMemoryManager MemMgr;
 | |
| 
 | |
|     // When outputting a function stub in the context of some other function, we
 | |
|     // save BufferBegin/BufferEnd/CurBufferPtr here.
 | |
|     unsigned char *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
 | |
| 
 | |
|     /// Relocations - These are the relocations that the function needs, as
 | |
|     /// emitted.
 | |
|     std::vector<MachineRelocation> Relocations;
 | |
|     
 | |
|     /// MBBLocations - This vector is a mapping from MBB ID's to their address.
 | |
|     /// It is filled in by the StartMachineBasicBlock callback and queried by
 | |
|     /// the getMachineBasicBlockAddress callback.
 | |
|     std::vector<intptr_t> MBBLocations;
 | |
| 
 | |
|     /// ConstantPool - The constant pool for the current function.
 | |
|     ///
 | |
|     MachineConstantPool *ConstantPool;
 | |
| 
 | |
|     /// ConstantPoolBase - A pointer to the first entry in the constant pool.
 | |
|     ///
 | |
|     void *ConstantPoolBase;
 | |
| 
 | |
|     /// JumpTable - The jump tables for the current function.
 | |
|     ///
 | |
|     MachineJumpTableInfo *JumpTable;
 | |
|     
 | |
|     /// JumpTableBase - A pointer to the first entry in the jump table.
 | |
|     ///
 | |
|     void *JumpTableBase;
 | |
|     
 | |
|     /// Resolver - This contains info about the currently resolved functions.
 | |
|     JITResolver Resolver;
 | |
|   public:
 | |
|     JITEmitter(JIT &jit)
 | |
|        : MemMgr(jit.getJITInfo().needsGOT()), Resolver(jit) {
 | |
|       if (MemMgr.isManagingGOT()) DOUT << "JIT is managing a GOT\n";
 | |
|     }
 | |
|     
 | |
|     JITResolver &getJITResolver() { return Resolver; }
 | |
| 
 | |
|     virtual void startFunction(MachineFunction &F);
 | |
|     virtual bool finishFunction(MachineFunction &F);
 | |
|     
 | |
|     void emitConstantPool(MachineConstantPool *MCP);
 | |
|     void initJumpTableInfo(MachineJumpTableInfo *MJTI);
 | |
|     void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
 | |
|     
 | |
|     virtual void startFunctionStub(unsigned StubSize, unsigned Alignment = 1);
 | |
|     virtual void* finishFunctionStub(const Function *F);
 | |
| 
 | |
|     virtual void addRelocation(const MachineRelocation &MR) {
 | |
|       Relocations.push_back(MR);
 | |
|     }
 | |
|     
 | |
|     virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
 | |
|       if (MBBLocations.size() <= (unsigned)MBB->getNumber())
 | |
|         MBBLocations.resize((MBB->getNumber()+1)*2);
 | |
|       MBBLocations[MBB->getNumber()] = getCurrentPCValue();
 | |
|     }
 | |
| 
 | |
|     virtual intptr_t getConstantPoolEntryAddress(unsigned Entry) const;
 | |
|     virtual intptr_t getJumpTableEntryAddress(unsigned Entry) const;
 | |
|     
 | |
|     virtual intptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const {
 | |
|       assert(MBBLocations.size() > (unsigned)MBB->getNumber() && 
 | |
|              MBBLocations[MBB->getNumber()] && "MBB not emitted!");
 | |
|       return MBBLocations[MBB->getNumber()];
 | |
|     }
 | |
| 
 | |
|     /// deallocateMemForFunction - Deallocate all memory for the specified
 | |
|     /// function body.
 | |
|     void deallocateMemForFunction(Function *F) {
 | |
|       MemMgr.deallocateMemForFunction(F);
 | |
|     }
 | |
|   private:
 | |
|     void *getPointerToGlobal(GlobalValue *GV, void *Reference, bool NoNeedStub);
 | |
|   };
 | |
| }
 | |
| 
 | |
| void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
 | |
|                                      bool DoesntNeedStub) {
 | |
|   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
 | |
|     /// FIXME: If we straightened things out, this could actually emit the
 | |
|     /// global immediately instead of queuing it for codegen later!
 | |
|     return TheJIT->getOrEmitGlobalVariable(GV);
 | |
|   }
 | |
| 
 | |
|   // If we have already compiled the function, return a pointer to its body.
 | |
|   Function *F = cast<Function>(V);
 | |
|   void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
 | |
|   if (ResultPtr) return ResultPtr;
 | |
| 
 | |
|   if (F->isDeclaration() && !F->hasNotBeenReadFromBytecode()) {
 | |
|     // If this is an external function pointer, we can force the JIT to
 | |
|     // 'compile' it, which really just adds it to the map.
 | |
|     if (DoesntNeedStub)
 | |
|       return TheJIT->getPointerToFunction(F);
 | |
| 
 | |
|     return Resolver.getFunctionStub(F);
 | |
|   }
 | |
| 
 | |
|   // Okay, the function has not been compiled yet, if the target callback
 | |
|   // mechanism is capable of rewriting the instruction directly, prefer to do
 | |
|   // that instead of emitting a stub.
 | |
|   if (DoesntNeedStub)
 | |
|     return Resolver.AddCallbackAtLocation(F, Reference);
 | |
| 
 | |
|   // Otherwise, we have to emit a lazy resolving stub.
 | |
|   return Resolver.getFunctionStub(F);
 | |
| }
 | |
| 
 | |
| void JITEmitter::startFunction(MachineFunction &F) {
 | |
|   uintptr_t ActualSize;
 | |
|   BufferBegin = CurBufferPtr = MemMgr.startFunctionBody(ActualSize);
 | |
|   BufferEnd = BufferBegin+ActualSize;
 | |
|   
 | |
|   // Ensure the constant pool/jump table info is at least 4-byte aligned.
 | |
|   emitAlignment(16);
 | |
| 
 | |
|   emitConstantPool(F.getConstantPool());
 | |
|   initJumpTableInfo(F.getJumpTableInfo());
 | |
| 
 | |
|   // About to start emitting the machine code for the function.
 | |
|   emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
 | |
|   TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
 | |
| 
 | |
|   MBBLocations.clear();
 | |
| }
 | |
| 
 | |
| bool JITEmitter::finishFunction(MachineFunction &F) {
 | |
|   if (CurBufferPtr == BufferEnd) {
 | |
|     // FIXME: Allocate more space, then try again.
 | |
|     cerr << "JIT: Ran out of space for generated machine code!\n";
 | |
|     abort();
 | |
|   }
 | |
|   
 | |
|   emitJumpTableInfo(F.getJumpTableInfo());
 | |
|   
 | |
|   // FnStart is the start of the text, not the start of the constant pool and
 | |
|   // other per-function data.
 | |
|   unsigned char *FnStart =
 | |
|     (unsigned char *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
 | |
|   unsigned char *FnEnd   = CurBufferPtr;
 | |
|   
 | |
|   MemMgr.endFunctionBody(F.getFunction(), BufferBegin, FnEnd);
 | |
|   NumBytes += FnEnd-FnStart;
 | |
| 
 | |
|   if (!Relocations.empty()) {
 | |
|     NumRelos += Relocations.size();
 | |
| 
 | |
|     // Resolve the relocations to concrete pointers.
 | |
|     for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
 | |
|       MachineRelocation &MR = Relocations[i];
 | |
|       void *ResultPtr;
 | |
|       if (MR.isString()) {
 | |
|         ResultPtr = TheJIT->getPointerToNamedFunction(MR.getString());
 | |
| 
 | |
|         // If the target REALLY wants a stub for this function, emit it now.
 | |
|         if (!MR.doesntNeedFunctionStub())
 | |
|           ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
 | |
|       } else if (MR.isGlobalValue()) {
 | |
|         ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
 | |
|                                        BufferBegin+MR.getMachineCodeOffset(),
 | |
|                                        MR.doesntNeedFunctionStub());
 | |
|       } else if (MR.isBasicBlock()) {
 | |
|         ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
 | |
|       } else if (MR.isConstantPoolIndex()) {
 | |
|         ResultPtr=(void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
 | |
|       } else {
 | |
|         assert(MR.isJumpTableIndex());
 | |
|         ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
 | |
|       }
 | |
| 
 | |
|       MR.setResultPointer(ResultPtr);
 | |
| 
 | |
|       // if we are managing the GOT and the relocation wants an index,
 | |
|       // give it one
 | |
|       if (MemMgr.isManagingGOT() && MR.isGOTRelative()) {
 | |
|         unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
 | |
|         MR.setGOTIndex(idx);
 | |
|         if (((void**)MemMgr.getGOTBase())[idx] != ResultPtr) {
 | |
|           DOUT << "GOT was out of date for " << ResultPtr
 | |
|                << " pointing at " << ((void**)MemMgr.getGOTBase())[idx]
 | |
|                << "\n";
 | |
|           ((void**)MemMgr.getGOTBase())[idx] = ResultPtr;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
 | |
|                                   Relocations.size(), MemMgr.getGOTBase());
 | |
|   }
 | |
| 
 | |
|   // Update the GOT entry for F to point to the new code.
 | |
|   if (MemMgr.isManagingGOT()) {
 | |
|     unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
 | |
|     if (((void**)MemMgr.getGOTBase())[idx] != (void*)BufferBegin) {
 | |
|       DOUT << "GOT was out of date for " << (void*)BufferBegin
 | |
|            << " pointing at " << ((void**)MemMgr.getGOTBase())[idx] << "\n";
 | |
|       ((void**)MemMgr.getGOTBase())[idx] = (void*)BufferBegin;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Invalidate the icache if necessary.
 | |
|   synchronizeICache(FnStart, FnEnd-FnStart);
 | |
| 
 | |
|   DOUT << "JIT: Finished CodeGen of [" << (void*)FnStart
 | |
|        << "] Function: " << F.getFunction()->getName()
 | |
|        << ": " << (FnEnd-FnStart) << " bytes of text, "
 | |
|        << Relocations.size() << " relocations\n";
 | |
|   Relocations.clear();
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   if (sys::hasDisassembler())
 | |
|     DOUT << "Disassembled code:\n"
 | |
|          << sys::disassembleBuffer(FnStart, FnEnd-FnStart, (uintptr_t)FnStart);
 | |
| #endif
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
 | |
|   const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
 | |
|   if (Constants.empty()) return;
 | |
| 
 | |
|   MachineConstantPoolEntry CPE = Constants.back();
 | |
|   unsigned Size = CPE.Offset;
 | |
|   const Type *Ty = CPE.isMachineConstantPoolEntry()
 | |
|     ? CPE.Val.MachineCPVal->getType() : CPE.Val.ConstVal->getType();
 | |
|   Size += TheJIT->getTargetData()->getTypeSize(Ty);
 | |
| 
 | |
|   ConstantPoolBase = allocateSpace(Size, 1 << MCP->getConstantPoolAlignment());
 | |
|   ConstantPool = MCP;
 | |
| 
 | |
|   if (ConstantPoolBase == 0) return;  // Buffer overflow.
 | |
| 
 | |
|   // Initialize the memory for all of the constant pool entries.
 | |
|   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
 | |
|     void *CAddr = (char*)ConstantPoolBase+Constants[i].Offset;
 | |
|     if (Constants[i].isMachineConstantPoolEntry()) {
 | |
|       // FIXME: add support to lower machine constant pool values into bytes!
 | |
|       cerr << "Initialize memory with machine specific constant pool entry"
 | |
|            << " has not been implemented!\n";
 | |
|       abort();
 | |
|     }
 | |
|     TheJIT->InitializeMemory(Constants[i].Val.ConstVal, CAddr);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
 | |
|   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
 | |
|   if (JT.empty()) return;
 | |
|   
 | |
|   unsigned NumEntries = 0;
 | |
|   for (unsigned i = 0, e = JT.size(); i != e; ++i)
 | |
|     NumEntries += JT[i].MBBs.size();
 | |
| 
 | |
|   unsigned EntrySize = MJTI->getEntrySize();
 | |
| 
 | |
|   // Just allocate space for all the jump tables now.  We will fix up the actual
 | |
|   // MBB entries in the tables after we emit the code for each block, since then
 | |
|   // we will know the final locations of the MBBs in memory.
 | |
|   JumpTable = MJTI;
 | |
|   JumpTableBase = allocateSpace(NumEntries * EntrySize, MJTI->getAlignment());
 | |
| }
 | |
| 
 | |
| void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
 | |
|   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
 | |
|   if (JT.empty() || JumpTableBase == 0) return;
 | |
|   
 | |
|   if (TargetMachine::getRelocationModel() == Reloc::PIC_) {
 | |
|     assert(MJTI->getEntrySize() == 4 && "Cross JIT'ing?");
 | |
|     // For each jump table, place the offset from the beginning of the table
 | |
|     // to the target address.
 | |
|     int *SlotPtr = (int*)JumpTableBase;
 | |
| 
 | |
|     for (unsigned i = 0, e = JT.size(); i != e; ++i) {
 | |
|       const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
 | |
|       // Store the offset of the basic block for this jump table slot in the
 | |
|       // memory we allocated for the jump table in 'initJumpTableInfo'
 | |
|       intptr_t Base = (intptr_t)SlotPtr;
 | |
|       for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
 | |
|         *SlotPtr++ = (intptr_t)getMachineBasicBlockAddress(MBBs[mi]) - Base;
 | |
|     }
 | |
|   } else {
 | |
|     assert(MJTI->getEntrySize() == sizeof(void*) && "Cross JIT'ing?");
 | |
|     
 | |
|     // For each jump table, map each target in the jump table to the address of 
 | |
|     // an emitted MachineBasicBlock.
 | |
|     intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
 | |
| 
 | |
|     for (unsigned i = 0, e = JT.size(); i != e; ++i) {
 | |
|       const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
 | |
|       // Store the address of the basic block for this jump table slot in the
 | |
|       // memory we allocated for the jump table in 'initJumpTableInfo'
 | |
|       for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
 | |
|         *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void JITEmitter::startFunctionStub(unsigned StubSize, unsigned Alignment) {
 | |
|   SavedBufferBegin = BufferBegin;
 | |
|   SavedBufferEnd = BufferEnd;
 | |
|   SavedCurBufferPtr = CurBufferPtr;
 | |
|   
 | |
|   BufferBegin = CurBufferPtr = MemMgr.allocateStub(StubSize, Alignment);
 | |
|   BufferEnd = BufferBegin+StubSize+1;
 | |
| }
 | |
| 
 | |
| void *JITEmitter::finishFunctionStub(const Function *F) {
 | |
|   NumBytes += getCurrentPCOffset();
 | |
|   std::swap(SavedBufferBegin, BufferBegin);
 | |
|   BufferEnd = SavedBufferEnd;
 | |
|   CurBufferPtr = SavedCurBufferPtr;
 | |
|   return SavedBufferBegin;
 | |
| }
 | |
| 
 | |
| // getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
 | |
| // in the constant pool that was last emitted with the 'emitConstantPool'
 | |
| // method.
 | |
| //
 | |
| intptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
 | |
|   assert(ConstantNum < ConstantPool->getConstants().size() &&
 | |
|          "Invalid ConstantPoolIndex!");
 | |
|   return (intptr_t)ConstantPoolBase +
 | |
|          ConstantPool->getConstants()[ConstantNum].Offset;
 | |
| }
 | |
| 
 | |
| // getJumpTableEntryAddress - Return the address of the JumpTable with index
 | |
| // 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
 | |
| //
 | |
| intptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
 | |
|   const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
 | |
|   assert(Index < JT.size() && "Invalid jump table index!");
 | |
|   
 | |
|   unsigned Offset = 0;
 | |
|   unsigned EntrySize = JumpTable->getEntrySize();
 | |
|   
 | |
|   for (unsigned i = 0; i < Index; ++i)
 | |
|     Offset += JT[i].MBBs.size();
 | |
|   
 | |
|    Offset *= EntrySize;
 | |
|   
 | |
|   return (intptr_t)((char *)JumpTableBase + Offset);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Public interface to this file
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| MachineCodeEmitter *JIT::createEmitter(JIT &jit) {
 | |
|   return new JITEmitter(jit);
 | |
| }
 | |
| 
 | |
| // getPointerToNamedFunction - This function is used as a global wrapper to
 | |
| // JIT::getPointerToNamedFunction for the purpose of resolving symbols when
 | |
| // bugpoint is debugging the JIT. In that scenario, we are loading an .so and
 | |
| // need to resolve function(s) that are being mis-codegenerated, so we need to
 | |
| // resolve their addresses at runtime, and this is the way to do it.
 | |
| extern "C" {
 | |
|   void *getPointerToNamedFunction(const char *Name) {
 | |
|     if (Function *F = TheJIT->FindFunctionNamed(Name))
 | |
|       return TheJIT->getPointerToFunction(F);
 | |
|     return TheJIT->getPointerToNamedFunction(Name);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // getPointerToFunctionOrStub - If the specified function has been
 | |
| // code-gen'd, return a pointer to the function.  If not, compile it, or use
 | |
| // a stub to implement lazy compilation if available.
 | |
| //
 | |
| void *JIT::getPointerToFunctionOrStub(Function *F) {
 | |
|   // If we have already code generated the function, just return the address.
 | |
|   if (void *Addr = getPointerToGlobalIfAvailable(F))
 | |
|     return Addr;
 | |
|   
 | |
|   // Get a stub if the target supports it.
 | |
|   assert(dynamic_cast<JITEmitter*>(MCE) && "Unexpected MCE?");
 | |
|   JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter());
 | |
|   return JE->getJITResolver().getFunctionStub(F);
 | |
| }
 | |
| 
 | |
| /// freeMachineCodeForFunction - release machine code memory for given Function.
 | |
| ///
 | |
| void JIT::freeMachineCodeForFunction(Function *F) {
 | |
|   // Delete translation for this from the ExecutionEngine, so it will get
 | |
|   // retranslated next time it is used.
 | |
|   updateGlobalMapping(F, 0);
 | |
| 
 | |
|   // Free the actual memory for the function body and related stuff.
 | |
|   assert(dynamic_cast<JITEmitter*>(MCE) && "Unexpected MCE?");
 | |
|   static_cast<JITEmitter*>(MCE)->deallocateMemForFunction(F);
 | |
| }
 | |
| 
 |