mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129708 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1379 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1379 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// It contains the tablegen backend that emits the decoder functions for
 | 
						|
// targets with fixed length instruction set.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "decoder-emitter"
 | 
						|
 | 
						|
#include "FixedLenDecoderEmitter.h"
 | 
						|
#include "CodeGenTarget.h"
 | 
						|
#include "Record.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
 | 
						|
#include <vector>
 | 
						|
#include <map>
 | 
						|
#include <string>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
// The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
 | 
						|
// for a bit value.
 | 
						|
//
 | 
						|
// BIT_UNFILTERED is used as the init value for a filter position.  It is used
 | 
						|
// only for filter processings.
 | 
						|
typedef enum {
 | 
						|
  BIT_TRUE,      // '1'
 | 
						|
  BIT_FALSE,     // '0'
 | 
						|
  BIT_UNSET,     // '?'
 | 
						|
  BIT_UNFILTERED // unfiltered
 | 
						|
} bit_value_t;
 | 
						|
 | 
						|
static bool ValueSet(bit_value_t V) {
 | 
						|
  return (V == BIT_TRUE || V == BIT_FALSE);
 | 
						|
}
 | 
						|
static bool ValueNotSet(bit_value_t V) {
 | 
						|
  return (V == BIT_UNSET);
 | 
						|
}
 | 
						|
static int Value(bit_value_t V) {
 | 
						|
  return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
 | 
						|
}
 | 
						|
static bit_value_t bitFromBits(BitsInit &bits, unsigned index) {
 | 
						|
  if (BitInit *bit = dynamic_cast<BitInit*>(bits.getBit(index)))
 | 
						|
    return bit->getValue() ? BIT_TRUE : BIT_FALSE;
 | 
						|
 | 
						|
  // The bit is uninitialized.
 | 
						|
  return BIT_UNSET;
 | 
						|
}
 | 
						|
// Prints the bit value for each position.
 | 
						|
static void dumpBits(raw_ostream &o, BitsInit &bits) {
 | 
						|
  unsigned index;
 | 
						|
 | 
						|
  for (index = bits.getNumBits(); index > 0; index--) {
 | 
						|
    switch (bitFromBits(bits, index - 1)) {
 | 
						|
    case BIT_TRUE:
 | 
						|
      o << "1";
 | 
						|
      break;
 | 
						|
    case BIT_FALSE:
 | 
						|
      o << "0";
 | 
						|
      break;
 | 
						|
    case BIT_UNSET:
 | 
						|
      o << "_";
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      assert(0 && "unexpected return value from bitFromBits");
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static BitsInit &getBitsField(const Record &def, const char *str) {
 | 
						|
  BitsInit *bits = def.getValueAsBitsInit(str);
 | 
						|
  return *bits;
 | 
						|
}
 | 
						|
 | 
						|
// Forward declaration.
 | 
						|
class FilterChooser;
 | 
						|
 | 
						|
// FIXME: Possibly auto-detected?
 | 
						|
#define BIT_WIDTH 32
 | 
						|
 | 
						|
// Representation of the instruction to work on.
 | 
						|
typedef bit_value_t insn_t[BIT_WIDTH];
 | 
						|
 | 
						|
/// Filter - Filter works with FilterChooser to produce the decoding tree for
 | 
						|
/// the ISA.
 | 
						|
///
 | 
						|
/// It is useful to think of a Filter as governing the switch stmts of the
 | 
						|
/// decoding tree in a certain level.  Each case stmt delegates to an inferior
 | 
						|
/// FilterChooser to decide what further decoding logic to employ, or in another
 | 
						|
/// words, what other remaining bits to look at.  The FilterChooser eventually
 | 
						|
/// chooses a best Filter to do its job.
 | 
						|
///
 | 
						|
/// This recursive scheme ends when the number of Opcodes assigned to the
 | 
						|
/// FilterChooser becomes 1 or if there is a conflict.  A conflict happens when
 | 
						|
/// the Filter/FilterChooser combo does not know how to distinguish among the
 | 
						|
/// Opcodes assigned.
 | 
						|
///
 | 
						|
/// An example of a conflict is
 | 
						|
///
 | 
						|
/// Conflict:
 | 
						|
///                     111101000.00........00010000....
 | 
						|
///                     111101000.00........0001........
 | 
						|
///                     1111010...00........0001........
 | 
						|
///                     1111010...00....................
 | 
						|
///                     1111010.........................
 | 
						|
///                     1111............................
 | 
						|
///                     ................................
 | 
						|
///     VST4q8a         111101000_00________00010000____
 | 
						|
///     VST4q8b         111101000_00________00010000____
 | 
						|
///
 | 
						|
/// The Debug output shows the path that the decoding tree follows to reach the
 | 
						|
/// the conclusion that there is a conflict.  VST4q8a is a vst4 to double-spaced
 | 
						|
/// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters.
 | 
						|
///
 | 
						|
/// The encoding info in the .td files does not specify this meta information,
 | 
						|
/// which could have been used by the decoder to resolve the conflict.  The
 | 
						|
/// decoder could try to decode the even/odd register numbering and assign to
 | 
						|
/// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
 | 
						|
/// version and return the Opcode since the two have the same Asm format string.
 | 
						|
class Filter {
 | 
						|
protected:
 | 
						|
  FilterChooser *Owner; // points to the FilterChooser who owns this filter
 | 
						|
  unsigned StartBit; // the starting bit position
 | 
						|
  unsigned NumBits; // number of bits to filter
 | 
						|
  bool Mixed; // a mixed region contains both set and unset bits
 | 
						|
 | 
						|
  // Map of well-known segment value to the set of uid's with that value.
 | 
						|
  std::map<uint64_t, std::vector<unsigned> > FilteredInstructions;
 | 
						|
 | 
						|
  // Set of uid's with non-constant segment values.
 | 
						|
  std::vector<unsigned> VariableInstructions;
 | 
						|
 | 
						|
  // Map of well-known segment value to its delegate.
 | 
						|
  std::map<unsigned, FilterChooser*> FilterChooserMap;
 | 
						|
 | 
						|
  // Number of instructions which fall under FilteredInstructions category.
 | 
						|
  unsigned NumFiltered;
 | 
						|
 | 
						|
  // Keeps track of the last opcode in the filtered bucket.
 | 
						|
  unsigned LastOpcFiltered;
 | 
						|
 | 
						|
  // Number of instructions which fall under VariableInstructions category.
 | 
						|
  unsigned NumVariable;
 | 
						|
 | 
						|
public:
 | 
						|
  unsigned getNumFiltered() { return NumFiltered; }
 | 
						|
  unsigned getNumVariable() { return NumVariable; }
 | 
						|
  unsigned getSingletonOpc() {
 | 
						|
    assert(NumFiltered == 1);
 | 
						|
    return LastOpcFiltered;
 | 
						|
  }
 | 
						|
  // Return the filter chooser for the group of instructions without constant
 | 
						|
  // segment values.
 | 
						|
  FilterChooser &getVariableFC() {
 | 
						|
    assert(NumFiltered == 1);
 | 
						|
    assert(FilterChooserMap.size() == 1);
 | 
						|
    return *(FilterChooserMap.find((unsigned)-1)->second);
 | 
						|
  }
 | 
						|
 | 
						|
  Filter(const Filter &f);
 | 
						|
  Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);
 | 
						|
 | 
						|
  ~Filter();
 | 
						|
 | 
						|
  // Divides the decoding task into sub tasks and delegates them to the
 | 
						|
  // inferior FilterChooser's.
 | 
						|
  //
 | 
						|
  // A special case arises when there's only one entry in the filtered
 | 
						|
  // instructions.  In order to unambiguously decode the singleton, we need to
 | 
						|
  // match the remaining undecoded encoding bits against the singleton.
 | 
						|
  void recurse();
 | 
						|
 | 
						|
  // Emit code to decode instructions given a segment or segments of bits.
 | 
						|
  void emit(raw_ostream &o, unsigned &Indentation);
 | 
						|
 | 
						|
  // Returns the number of fanout produced by the filter.  More fanout implies
 | 
						|
  // the filter distinguishes more categories of instructions.
 | 
						|
  unsigned usefulness() const;
 | 
						|
}; // End of class Filter
 | 
						|
 | 
						|
// These are states of our finite state machines used in FilterChooser's
 | 
						|
// filterProcessor() which produces the filter candidates to use.
 | 
						|
typedef enum {
 | 
						|
  ATTR_NONE,
 | 
						|
  ATTR_FILTERED,
 | 
						|
  ATTR_ALL_SET,
 | 
						|
  ATTR_ALL_UNSET,
 | 
						|
  ATTR_MIXED
 | 
						|
} bitAttr_t;
 | 
						|
 | 
						|
/// FilterChooser - FilterChooser chooses the best filter among a set of Filters
 | 
						|
/// in order to perform the decoding of instructions at the current level.
 | 
						|
///
 | 
						|
/// Decoding proceeds from the top down.  Based on the well-known encoding bits
 | 
						|
/// of instructions available, FilterChooser builds up the possible Filters that
 | 
						|
/// can further the task of decoding by distinguishing among the remaining
 | 
						|
/// candidate instructions.
 | 
						|
///
 | 
						|
/// Once a filter has been chosen, it is called upon to divide the decoding task
 | 
						|
/// into sub-tasks and delegates them to its inferior FilterChoosers for further
 | 
						|
/// processings.
 | 
						|
///
 | 
						|
/// It is useful to think of a Filter as governing the switch stmts of the
 | 
						|
/// decoding tree.  And each case is delegated to an inferior FilterChooser to
 | 
						|
/// decide what further remaining bits to look at.
 | 
						|
class FilterChooser {
 | 
						|
protected:
 | 
						|
  friend class Filter;
 | 
						|
 | 
						|
  // Vector of codegen instructions to choose our filter.
 | 
						|
  const std::vector<const CodeGenInstruction*> &AllInstructions;
 | 
						|
 | 
						|
  // Vector of uid's for this filter chooser to work on.
 | 
						|
  const std::vector<unsigned> Opcodes;
 | 
						|
 | 
						|
  // Lookup table for the operand decoding of instructions.
 | 
						|
  std::map<unsigned, std::vector<OperandInfo> > &Operands;
 | 
						|
 | 
						|
  // Vector of candidate filters.
 | 
						|
  std::vector<Filter> Filters;
 | 
						|
 | 
						|
  // Array of bit values passed down from our parent.
 | 
						|
  // Set to all BIT_UNFILTERED's for Parent == NULL.
 | 
						|
  bit_value_t FilterBitValues[BIT_WIDTH];
 | 
						|
 | 
						|
  // Links to the FilterChooser above us in the decoding tree.
 | 
						|
  FilterChooser *Parent;
 | 
						|
 | 
						|
  // Index of the best filter from Filters.
 | 
						|
  int BestIndex;
 | 
						|
 | 
						|
public:
 | 
						|
  FilterChooser(const FilterChooser &FC) :
 | 
						|
    AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes),
 | 
						|
      Operands(FC.Operands), Filters(FC.Filters), Parent(FC.Parent),
 | 
						|
      BestIndex(FC.BestIndex) {
 | 
						|
    memcpy(FilterBitValues, FC.FilterBitValues, sizeof(FilterBitValues));
 | 
						|
  }
 | 
						|
 | 
						|
  FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
 | 
						|
                const std::vector<unsigned> &IDs,
 | 
						|
    std::map<unsigned, std::vector<OperandInfo> > &Ops) :
 | 
						|
      AllInstructions(Insts), Opcodes(IDs), Operands(Ops), Filters(),
 | 
						|
      Parent(NULL), BestIndex(-1) {
 | 
						|
    for (unsigned i = 0; i < BIT_WIDTH; ++i)
 | 
						|
      FilterBitValues[i] = BIT_UNFILTERED;
 | 
						|
 | 
						|
    doFilter();
 | 
						|
  }
 | 
						|
 | 
						|
  FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
 | 
						|
                const std::vector<unsigned> &IDs,
 | 
						|
        std::map<unsigned, std::vector<OperandInfo> > &Ops,
 | 
						|
                bit_value_t (&ParentFilterBitValues)[BIT_WIDTH],
 | 
						|
                FilterChooser &parent) :
 | 
						|
      AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
 | 
						|
      Filters(), Parent(&parent), BestIndex(-1) {
 | 
						|
    for (unsigned i = 0; i < BIT_WIDTH; ++i)
 | 
						|
      FilterBitValues[i] = ParentFilterBitValues[i];
 | 
						|
 | 
						|
    doFilter();
 | 
						|
  }
 | 
						|
 | 
						|
  // The top level filter chooser has NULL as its parent.
 | 
						|
  bool isTopLevel() { return Parent == NULL; }
 | 
						|
 | 
						|
  // Emit the top level typedef and decodeInstruction() function.
 | 
						|
  void emitTop(raw_ostream &o, unsigned Indentation);
 | 
						|
 | 
						|
protected:
 | 
						|
  // Populates the insn given the uid.
 | 
						|
  void insnWithID(insn_t &Insn, unsigned Opcode) const {
 | 
						|
    BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst");
 | 
						|
 | 
						|
    for (unsigned i = 0; i < BIT_WIDTH; ++i)
 | 
						|
      Insn[i] = bitFromBits(Bits, i);
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns the record name.
 | 
						|
  const std::string &nameWithID(unsigned Opcode) const {
 | 
						|
    return AllInstructions[Opcode]->TheDef->getName();
 | 
						|
  }
 | 
						|
 | 
						|
  // Populates the field of the insn given the start position and the number of
 | 
						|
  // consecutive bits to scan for.
 | 
						|
  //
 | 
						|
  // Returns false if there exists any uninitialized bit value in the range.
 | 
						|
  // Returns true, otherwise.
 | 
						|
  bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
 | 
						|
      unsigned NumBits) const;
 | 
						|
 | 
						|
  /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
 | 
						|
  /// filter array as a series of chars.
 | 
						|
  void dumpFilterArray(raw_ostream &o, bit_value_t (&filter)[BIT_WIDTH]);
 | 
						|
 | 
						|
  /// dumpStack - dumpStack traverses the filter chooser chain and calls
 | 
						|
  /// dumpFilterArray on each filter chooser up to the top level one.
 | 
						|
  void dumpStack(raw_ostream &o, const char *prefix);
 | 
						|
 | 
						|
  Filter &bestFilter() {
 | 
						|
    assert(BestIndex != -1 && "BestIndex not set");
 | 
						|
    return Filters[BestIndex];
 | 
						|
  }
 | 
						|
 | 
						|
  // Called from Filter::recurse() when singleton exists.  For debug purpose.
 | 
						|
  void SingletonExists(unsigned Opc);
 | 
						|
 | 
						|
  bool PositionFiltered(unsigned i) {
 | 
						|
    return ValueSet(FilterBitValues[i]);
 | 
						|
  }
 | 
						|
 | 
						|
  // Calculates the island(s) needed to decode the instruction.
 | 
						|
  // This returns a lit of undecoded bits of an instructions, for example,
 | 
						|
  // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
 | 
						|
  // decoded bits in order to verify that the instruction matches the Opcode.
 | 
						|
  unsigned getIslands(std::vector<unsigned> &StartBits,
 | 
						|
      std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
 | 
						|
      insn_t &Insn);
 | 
						|
 | 
						|
  // Emits code to decode the singleton.  Return true if we have matched all the
 | 
						|
  // well-known bits.
 | 
						|
  bool emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,unsigned Opc);
 | 
						|
 | 
						|
  // Emits code to decode the singleton, and then to decode the rest.
 | 
						|
  void emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,Filter &Best);
 | 
						|
 | 
						|
  // Assign a single filter and run with it.
 | 
						|
  void runSingleFilter(FilterChooser &owner, unsigned startBit, unsigned numBit,
 | 
						|
      bool mixed);
 | 
						|
 | 
						|
  // reportRegion is a helper function for filterProcessor to mark a region as
 | 
						|
  // eligible for use as a filter region.
 | 
						|
  void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
 | 
						|
      bool AllowMixed);
 | 
						|
 | 
						|
  // FilterProcessor scans the well-known encoding bits of the instructions and
 | 
						|
  // builds up a list of candidate filters.  It chooses the best filter and
 | 
						|
  // recursively descends down the decoding tree.
 | 
						|
  bool filterProcessor(bool AllowMixed, bool Greedy = true);
 | 
						|
 | 
						|
  // Decides on the best configuration of filter(s) to use in order to decode
 | 
						|
  // the instructions.  A conflict of instructions may occur, in which case we
 | 
						|
  // dump the conflict set to the standard error.
 | 
						|
  void doFilter();
 | 
						|
 | 
						|
  // Emits code to decode our share of instructions.  Returns true if the
 | 
						|
  // emitted code causes a return, which occurs if we know how to decode
 | 
						|
  // the instruction at this level or the instruction is not decodeable.
 | 
						|
  bool emit(raw_ostream &o, unsigned &Indentation);
 | 
						|
};
 | 
						|
 | 
						|
///////////////////////////
 | 
						|
//                       //
 | 
						|
// Filter Implmenetation //
 | 
						|
//                       //
 | 
						|
///////////////////////////
 | 
						|
 | 
						|
Filter::Filter(const Filter &f) :
 | 
						|
  Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
 | 
						|
  FilteredInstructions(f.FilteredInstructions),
 | 
						|
  VariableInstructions(f.VariableInstructions),
 | 
						|
  FilterChooserMap(f.FilterChooserMap), NumFiltered(f.NumFiltered),
 | 
						|
  LastOpcFiltered(f.LastOpcFiltered), NumVariable(f.NumVariable) {
 | 
						|
}
 | 
						|
 | 
						|
Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
 | 
						|
    bool mixed) : Owner(&owner), StartBit(startBit), NumBits(numBits),
 | 
						|
                  Mixed(mixed) {
 | 
						|
  assert(StartBit + NumBits - 1 < BIT_WIDTH);
 | 
						|
 | 
						|
  NumFiltered = 0;
 | 
						|
  LastOpcFiltered = 0;
 | 
						|
  NumVariable = 0;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
 | 
						|
    insn_t Insn;
 | 
						|
 | 
						|
    // Populates the insn given the uid.
 | 
						|
    Owner->insnWithID(Insn, Owner->Opcodes[i]);
 | 
						|
 | 
						|
    uint64_t Field;
 | 
						|
    // Scans the segment for possibly well-specified encoding bits.
 | 
						|
    bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
 | 
						|
 | 
						|
    if (ok) {
 | 
						|
      // The encoding bits are well-known.  Lets add the uid of the
 | 
						|
      // instruction into the bucket keyed off the constant field value.
 | 
						|
      LastOpcFiltered = Owner->Opcodes[i];
 | 
						|
      FilteredInstructions[Field].push_back(LastOpcFiltered);
 | 
						|
      ++NumFiltered;
 | 
						|
    } else {
 | 
						|
      // Some of the encoding bit(s) are unspecfied.  This contributes to
 | 
						|
      // one additional member of "Variable" instructions.
 | 
						|
      VariableInstructions.push_back(Owner->Opcodes[i]);
 | 
						|
      ++NumVariable;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
 | 
						|
         && "Filter returns no instruction categories");
 | 
						|
}
 | 
						|
 | 
						|
Filter::~Filter() {
 | 
						|
  std::map<unsigned, FilterChooser*>::iterator filterIterator;
 | 
						|
  for (filterIterator = FilterChooserMap.begin();
 | 
						|
       filterIterator != FilterChooserMap.end();
 | 
						|
       filterIterator++) {
 | 
						|
    delete filterIterator->second;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Divides the decoding task into sub tasks and delegates them to the
 | 
						|
// inferior FilterChooser's.
 | 
						|
//
 | 
						|
// A special case arises when there's only one entry in the filtered
 | 
						|
// instructions.  In order to unambiguously decode the singleton, we need to
 | 
						|
// match the remaining undecoded encoding bits against the singleton.
 | 
						|
void Filter::recurse() {
 | 
						|
  std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator;
 | 
						|
 | 
						|
  bit_value_t BitValueArray[BIT_WIDTH];
 | 
						|
  // Starts by inheriting our parent filter chooser's filter bit values.
 | 
						|
  memcpy(BitValueArray, Owner->FilterBitValues, sizeof(BitValueArray));
 | 
						|
 | 
						|
  unsigned bitIndex;
 | 
						|
 | 
						|
  if (VariableInstructions.size()) {
 | 
						|
    // Conservatively marks each segment position as BIT_UNSET.
 | 
						|
    for (bitIndex = 0; bitIndex < NumBits; bitIndex++)
 | 
						|
      BitValueArray[StartBit + bitIndex] = BIT_UNSET;
 | 
						|
 | 
						|
    // Delegates to an inferior filter chooser for further processing on this
 | 
						|
    // group of instructions whose segment values are variable.
 | 
						|
    FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>(
 | 
						|
                              (unsigned)-1,
 | 
						|
                              new FilterChooser(Owner->AllInstructions,
 | 
						|
                                                VariableInstructions,
 | 
						|
                                                Owner->Operands,
 | 
						|
                                                BitValueArray,
 | 
						|
                                                *Owner)
 | 
						|
                              ));
 | 
						|
  }
 | 
						|
 | 
						|
  // No need to recurse for a singleton filtered instruction.
 | 
						|
  // See also Filter::emit().
 | 
						|
  if (getNumFiltered() == 1) {
 | 
						|
    //Owner->SingletonExists(LastOpcFiltered);
 | 
						|
    assert(FilterChooserMap.size() == 1);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, create sub choosers.
 | 
						|
  for (mapIterator = FilteredInstructions.begin();
 | 
						|
       mapIterator != FilteredInstructions.end();
 | 
						|
       mapIterator++) {
 | 
						|
 | 
						|
    // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
 | 
						|
    for (bitIndex = 0; bitIndex < NumBits; bitIndex++) {
 | 
						|
      if (mapIterator->first & (1ULL << bitIndex))
 | 
						|
        BitValueArray[StartBit + bitIndex] = BIT_TRUE;
 | 
						|
      else
 | 
						|
        BitValueArray[StartBit + bitIndex] = BIT_FALSE;
 | 
						|
    }
 | 
						|
 | 
						|
    // Delegates to an inferior filter chooser for further processing on this
 | 
						|
    // category of instructions.
 | 
						|
    FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>(
 | 
						|
                              mapIterator->first,
 | 
						|
                              new FilterChooser(Owner->AllInstructions,
 | 
						|
                                                mapIterator->second,
 | 
						|
                                                Owner->Operands,
 | 
						|
                                                BitValueArray,
 | 
						|
                                                *Owner)
 | 
						|
                              ));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Emit code to decode instructions given a segment or segments of bits.
 | 
						|
void Filter::emit(raw_ostream &o, unsigned &Indentation) {
 | 
						|
  o.indent(Indentation) << "// Check Inst{";
 | 
						|
 | 
						|
  if (NumBits > 1)
 | 
						|
    o << (StartBit + NumBits - 1) << '-';
 | 
						|
 | 
						|
  o << StartBit << "} ...\n";
 | 
						|
 | 
						|
  o.indent(Indentation) << "switch (fieldFromInstruction(insn, "
 | 
						|
                        << StartBit << ", " << NumBits << ")) {\n";
 | 
						|
 | 
						|
  std::map<unsigned, FilterChooser*>::iterator filterIterator;
 | 
						|
 | 
						|
  bool DefaultCase = false;
 | 
						|
  for (filterIterator = FilterChooserMap.begin();
 | 
						|
       filterIterator != FilterChooserMap.end();
 | 
						|
       filterIterator++) {
 | 
						|
 | 
						|
    // Field value -1 implies a non-empty set of variable instructions.
 | 
						|
    // See also recurse().
 | 
						|
    if (filterIterator->first == (unsigned)-1) {
 | 
						|
      DefaultCase = true;
 | 
						|
 | 
						|
      o.indent(Indentation) << "default:\n";
 | 
						|
      o.indent(Indentation) << "  break; // fallthrough\n";
 | 
						|
 | 
						|
      // Closing curly brace for the switch statement.
 | 
						|
      // This is unconventional because we want the default processing to be
 | 
						|
      // performed for the fallthrough cases as well, i.e., when the "cases"
 | 
						|
      // did not prove a decoded instruction.
 | 
						|
      o.indent(Indentation) << "}\n";
 | 
						|
 | 
						|
    } else
 | 
						|
      o.indent(Indentation) << "case " << filterIterator->first << ":\n";
 | 
						|
 | 
						|
    // We arrive at a category of instructions with the same segment value.
 | 
						|
    // Now delegate to the sub filter chooser for further decodings.
 | 
						|
    // The case may fallthrough, which happens if the remaining well-known
 | 
						|
    // encoding bits do not match exactly.
 | 
						|
    if (!DefaultCase) { ++Indentation; ++Indentation; }
 | 
						|
 | 
						|
    bool finished = filterIterator->second->emit(o, Indentation);
 | 
						|
    // For top level default case, there's no need for a break statement.
 | 
						|
    if (Owner->isTopLevel() && DefaultCase)
 | 
						|
      break;
 | 
						|
    if (!finished)
 | 
						|
      o.indent(Indentation) << "break;\n";
 | 
						|
 | 
						|
    if (!DefaultCase) { --Indentation; --Indentation; }
 | 
						|
  }
 | 
						|
 | 
						|
  // If there is no default case, we still need to supply a closing brace.
 | 
						|
  if (!DefaultCase) {
 | 
						|
    // Closing curly brace for the switch statement.
 | 
						|
    o.indent(Indentation) << "}\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Returns the number of fanout produced by the filter.  More fanout implies
 | 
						|
// the filter distinguishes more categories of instructions.
 | 
						|
unsigned Filter::usefulness() const {
 | 
						|
  if (VariableInstructions.size())
 | 
						|
    return FilteredInstructions.size();
 | 
						|
  else
 | 
						|
    return FilteredInstructions.size() + 1;
 | 
						|
}
 | 
						|
 | 
						|
//////////////////////////////////
 | 
						|
//                              //
 | 
						|
// Filterchooser Implementation //
 | 
						|
//                              //
 | 
						|
//////////////////////////////////
 | 
						|
 | 
						|
// Emit the top level typedef and decodeInstruction() function.
 | 
						|
void FilterChooser::emitTop(raw_ostream &o, unsigned Indentation) {
 | 
						|
  switch (BIT_WIDTH) {
 | 
						|
  case 8:
 | 
						|
    o.indent(Indentation) << "typedef uint8_t field_t;\n";
 | 
						|
    break;
 | 
						|
  case 16:
 | 
						|
    o.indent(Indentation) << "typedef uint16_t field_t;\n";
 | 
						|
    break;
 | 
						|
  case 32:
 | 
						|
    o.indent(Indentation) << "typedef uint32_t field_t;\n";
 | 
						|
    break;
 | 
						|
  case 64:
 | 
						|
    o.indent(Indentation) << "typedef uint64_t field_t;\n";
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    assert(0 && "Unexpected instruction size!");
 | 
						|
  }
 | 
						|
 | 
						|
  o << '\n';
 | 
						|
 | 
						|
  o.indent(Indentation) << "static field_t " <<
 | 
						|
    "fieldFromInstruction(field_t insn, unsigned startBit, unsigned numBits)\n";
 | 
						|
 | 
						|
  o.indent(Indentation) << "{\n";
 | 
						|
 | 
						|
  ++Indentation; ++Indentation;
 | 
						|
  o.indent(Indentation) << "assert(startBit + numBits <= " << BIT_WIDTH
 | 
						|
                        << " && \"Instruction field out of bounds!\");\n";
 | 
						|
  o << '\n';
 | 
						|
  o.indent(Indentation) << "field_t fieldMask;\n";
 | 
						|
  o << '\n';
 | 
						|
  o.indent(Indentation) << "if (numBits == " << BIT_WIDTH << ")\n";
 | 
						|
 | 
						|
  ++Indentation; ++Indentation;
 | 
						|
  o.indent(Indentation) << "fieldMask = (field_t)-1;\n";
 | 
						|
  --Indentation; --Indentation;
 | 
						|
 | 
						|
  o.indent(Indentation) << "else\n";
 | 
						|
 | 
						|
  ++Indentation; ++Indentation;
 | 
						|
  o.indent(Indentation) << "fieldMask = ((1 << numBits) - 1) << startBit;\n";
 | 
						|
  --Indentation; --Indentation;
 | 
						|
 | 
						|
  o << '\n';
 | 
						|
  o.indent(Indentation) << "return (insn & fieldMask) >> startBit;\n";
 | 
						|
  --Indentation; --Indentation;
 | 
						|
 | 
						|
  o.indent(Indentation) << "}\n";
 | 
						|
 | 
						|
  o << '\n';
 | 
						|
 | 
						|
  o.indent(Indentation) <<
 | 
						|
    "static bool decodeInstruction(MCInst &MI, field_t insn, "
 | 
						|
    "uint64_t Address, const void *Decoder) {\n";
 | 
						|
  o.indent(Indentation) << "  unsigned tmp = 0;\n";
 | 
						|
 | 
						|
  ++Indentation; ++Indentation;
 | 
						|
  // Emits code to decode the instructions.
 | 
						|
  emit(o, Indentation);
 | 
						|
 | 
						|
  o << '\n';
 | 
						|
  o.indent(Indentation) << "return false;\n";
 | 
						|
  --Indentation; --Indentation;
 | 
						|
 | 
						|
  o.indent(Indentation) << "}\n";
 | 
						|
 | 
						|
  o << '\n';
 | 
						|
}
 | 
						|
 | 
						|
// Populates the field of the insn given the start position and the number of
 | 
						|
// consecutive bits to scan for.
 | 
						|
//
 | 
						|
// Returns false if and on the first uninitialized bit value encountered.
 | 
						|
// Returns true, otherwise.
 | 
						|
bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
 | 
						|
    unsigned StartBit, unsigned NumBits) const {
 | 
						|
  Field = 0;
 | 
						|
 | 
						|
  for (unsigned i = 0; i < NumBits; ++i) {
 | 
						|
    if (Insn[StartBit + i] == BIT_UNSET)
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (Insn[StartBit + i] == BIT_TRUE)
 | 
						|
      Field = Field | (1ULL << i);
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// dumpFilterArray - dumpFilterArray prints out debugging info for the given
 | 
						|
/// filter array as a series of chars.
 | 
						|
void FilterChooser::dumpFilterArray(raw_ostream &o,
 | 
						|
                                    bit_value_t (&filter)[BIT_WIDTH]) {
 | 
						|
  unsigned bitIndex;
 | 
						|
 | 
						|
  for (bitIndex = BIT_WIDTH; bitIndex > 0; bitIndex--) {
 | 
						|
    switch (filter[bitIndex - 1]) {
 | 
						|
    case BIT_UNFILTERED:
 | 
						|
      o << ".";
 | 
						|
      break;
 | 
						|
    case BIT_UNSET:
 | 
						|
      o << "_";
 | 
						|
      break;
 | 
						|
    case BIT_TRUE:
 | 
						|
      o << "1";
 | 
						|
      break;
 | 
						|
    case BIT_FALSE:
 | 
						|
      o << "0";
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// dumpStack - dumpStack traverses the filter chooser chain and calls
 | 
						|
/// dumpFilterArray on each filter chooser up to the top level one.
 | 
						|
void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) {
 | 
						|
  FilterChooser *current = this;
 | 
						|
 | 
						|
  while (current) {
 | 
						|
    o << prefix;
 | 
						|
    dumpFilterArray(o, current->FilterBitValues);
 | 
						|
    o << '\n';
 | 
						|
    current = current->Parent;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Called from Filter::recurse() when singleton exists.  For debug purpose.
 | 
						|
void FilterChooser::SingletonExists(unsigned Opc) {
 | 
						|
  insn_t Insn0;
 | 
						|
  insnWithID(Insn0, Opc);
 | 
						|
 | 
						|
  errs() << "Singleton exists: " << nameWithID(Opc)
 | 
						|
         << " with its decoding dominating ";
 | 
						|
  for (unsigned i = 0; i < Opcodes.size(); ++i) {
 | 
						|
    if (Opcodes[i] == Opc) continue;
 | 
						|
    errs() << nameWithID(Opcodes[i]) << ' ';
 | 
						|
  }
 | 
						|
  errs() << '\n';
 | 
						|
 | 
						|
  dumpStack(errs(), "\t\t");
 | 
						|
  for (unsigned i = 0; i < Opcodes.size(); i++) {
 | 
						|
    const std::string &Name = nameWithID(Opcodes[i]);
 | 
						|
 | 
						|
    errs() << '\t' << Name << " ";
 | 
						|
    dumpBits(errs(),
 | 
						|
             getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
 | 
						|
    errs() << '\n';
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Calculates the island(s) needed to decode the instruction.
 | 
						|
// This returns a list of undecoded bits of an instructions, for example,
 | 
						|
// Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
 | 
						|
// decoded bits in order to verify that the instruction matches the Opcode.
 | 
						|
unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
 | 
						|
    std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
 | 
						|
    insn_t &Insn) {
 | 
						|
  unsigned Num, BitNo;
 | 
						|
  Num = BitNo = 0;
 | 
						|
 | 
						|
  uint64_t FieldVal = 0;
 | 
						|
 | 
						|
  // 0: Init
 | 
						|
  // 1: Water (the bit value does not affect decoding)
 | 
						|
  // 2: Island (well-known bit value needed for decoding)
 | 
						|
  int State = 0;
 | 
						|
  int Val = -1;
 | 
						|
 | 
						|
  for (unsigned i = 0; i < BIT_WIDTH; ++i) {
 | 
						|
    Val = Value(Insn[i]);
 | 
						|
    bool Filtered = PositionFiltered(i);
 | 
						|
    switch (State) {
 | 
						|
    default:
 | 
						|
      assert(0 && "Unreachable code!");
 | 
						|
      break;
 | 
						|
    case 0:
 | 
						|
    case 1:
 | 
						|
      if (Filtered || Val == -1)
 | 
						|
        State = 1; // Still in Water
 | 
						|
      else {
 | 
						|
        State = 2; // Into the Island
 | 
						|
        BitNo = 0;
 | 
						|
        StartBits.push_back(i);
 | 
						|
        FieldVal = Val;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case 2:
 | 
						|
      if (Filtered || Val == -1) {
 | 
						|
        State = 1; // Into the Water
 | 
						|
        EndBits.push_back(i - 1);
 | 
						|
        FieldVals.push_back(FieldVal);
 | 
						|
        ++Num;
 | 
						|
      } else {
 | 
						|
        State = 2; // Still in Island
 | 
						|
        ++BitNo;
 | 
						|
        FieldVal = FieldVal | Val << BitNo;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // If we are still in Island after the loop, do some housekeeping.
 | 
						|
  if (State == 2) {
 | 
						|
    EndBits.push_back(BIT_WIDTH - 1);
 | 
						|
    FieldVals.push_back(FieldVal);
 | 
						|
    ++Num;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(StartBits.size() == Num && EndBits.size() == Num &&
 | 
						|
         FieldVals.size() == Num);
 | 
						|
  return Num;
 | 
						|
}
 | 
						|
 | 
						|
// Emits code to decode the singleton.  Return true if we have matched all the
 | 
						|
// well-known bits.
 | 
						|
bool FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
 | 
						|
                                         unsigned Opc) {
 | 
						|
  std::vector<unsigned> StartBits;
 | 
						|
  std::vector<unsigned> EndBits;
 | 
						|
  std::vector<uint64_t> FieldVals;
 | 
						|
  insn_t Insn;
 | 
						|
  insnWithID(Insn, Opc);
 | 
						|
 | 
						|
  // Look for islands of undecoded bits of the singleton.
 | 
						|
  getIslands(StartBits, EndBits, FieldVals, Insn);
 | 
						|
 | 
						|
  unsigned Size = StartBits.size();
 | 
						|
  unsigned I, NumBits;
 | 
						|
 | 
						|
  // If we have matched all the well-known bits, just issue a return.
 | 
						|
  if (Size == 0) {
 | 
						|
    o.indent(Indentation) << "{\n";
 | 
						|
    o.indent(Indentation) << "  MI.setOpcode(" << Opc << ");\n";
 | 
						|
    std::vector<OperandInfo>& InsnOperands = Operands[Opc];
 | 
						|
    for (std::vector<OperandInfo>::iterator
 | 
						|
         I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) {
 | 
						|
      // If a custom instruction decoder was specified, use that.
 | 
						|
      if (I->FieldBase == ~0U && I->FieldLength == ~0U) {
 | 
						|
        o.indent(Indentation) << "  " << I->Decoder
 | 
						|
                              << "(MI, insn, Address, Decoder);\n";
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      o.indent(Indentation)
 | 
						|
        << "  tmp = fieldFromInstruction(insn, " << I->FieldBase
 | 
						|
        << ", " << I->FieldLength << ");\n";
 | 
						|
      if (I->Decoder != "") {
 | 
						|
        o.indent(Indentation) << "  " << I->Decoder
 | 
						|
                              << "(MI, tmp, Address, Decoder);\n";
 | 
						|
      } else {
 | 
						|
        o.indent(Indentation)
 | 
						|
          << "  MI.addOperand(MCOperand::CreateImm(tmp));\n";
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    o.indent(Indentation) << "  return true; // " << nameWithID(Opc)
 | 
						|
                          << '\n';
 | 
						|
    o.indent(Indentation) << "}\n";
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, there are more decodings to be done!
 | 
						|
 | 
						|
  // Emit code to match the island(s) for the singleton.
 | 
						|
  o.indent(Indentation) << "// Check ";
 | 
						|
 | 
						|
  for (I = Size; I != 0; --I) {
 | 
						|
    o << "Inst{" << EndBits[I-1] << '-' << StartBits[I-1] << "} ";
 | 
						|
    if (I > 1)
 | 
						|
      o << "&& ";
 | 
						|
    else
 | 
						|
      o << "for singleton decoding...\n";
 | 
						|
  }
 | 
						|
 | 
						|
  o.indent(Indentation) << "if (";
 | 
						|
 | 
						|
  for (I = Size; I != 0; --I) {
 | 
						|
    NumBits = EndBits[I-1] - StartBits[I-1] + 1;
 | 
						|
    o << "fieldFromInstruction(insn, " << StartBits[I-1] << ", " << NumBits
 | 
						|
      << ") == " << FieldVals[I-1];
 | 
						|
    if (I > 1)
 | 
						|
      o << " && ";
 | 
						|
    else
 | 
						|
      o << ") {\n";
 | 
						|
  }
 | 
						|
  o.indent(Indentation) << "  MI.setOpcode(" << Opc << ");\n";
 | 
						|
  std::vector<OperandInfo>& InsnOperands = Operands[Opc];
 | 
						|
  for (std::vector<OperandInfo>::iterator
 | 
						|
       I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) {
 | 
						|
    // If a custom instruction decoder was specified, use that.
 | 
						|
    if (I->FieldBase == ~0U && I->FieldLength == ~0U) {
 | 
						|
      o.indent(Indentation) << "  " << I->Decoder
 | 
						|
                            << "(MI, insn, Address, Decoder);\n";
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    o.indent(Indentation)
 | 
						|
      << "  tmp = fieldFromInstruction(insn, " << I->FieldBase
 | 
						|
      << ", " << I->FieldLength << ");\n";
 | 
						|
    if (I->Decoder != "") {
 | 
						|
      o.indent(Indentation) << "  " << I->Decoder
 | 
						|
                            << "(MI, tmp, Address, Decoder);\n";
 | 
						|
    } else {
 | 
						|
      o.indent(Indentation)
 | 
						|
        << "  MI.addOperand(MCOperand::CreateImm(tmp));\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
  o.indent(Indentation) << "  return true; // " << nameWithID(Opc)
 | 
						|
                        << '\n';
 | 
						|
  o.indent(Indentation) << "}\n";
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Emits code to decode the singleton, and then to decode the rest.
 | 
						|
void FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
 | 
						|
    Filter &Best) {
 | 
						|
 | 
						|
  unsigned Opc = Best.getSingletonOpc();
 | 
						|
 | 
						|
  emitSingletonDecoder(o, Indentation, Opc);
 | 
						|
 | 
						|
  // Emit code for the rest.
 | 
						|
  o.indent(Indentation) << "else\n";
 | 
						|
 | 
						|
  Indentation += 2;
 | 
						|
  Best.getVariableFC().emit(o, Indentation);
 | 
						|
  Indentation -= 2;
 | 
						|
}
 | 
						|
 | 
						|
// Assign a single filter and run with it.  Top level API client can initialize
 | 
						|
// with a single filter to start the filtering process.
 | 
						|
void FilterChooser::runSingleFilter(FilterChooser &owner, unsigned startBit,
 | 
						|
    unsigned numBit, bool mixed) {
 | 
						|
  Filters.clear();
 | 
						|
  Filter F(*this, startBit, numBit, true);
 | 
						|
  Filters.push_back(F);
 | 
						|
  BestIndex = 0; // Sole Filter instance to choose from.
 | 
						|
  bestFilter().recurse();
 | 
						|
}
 | 
						|
 | 
						|
// reportRegion is a helper function for filterProcessor to mark a region as
 | 
						|
// eligible for use as a filter region.
 | 
						|
void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
 | 
						|
    unsigned BitIndex, bool AllowMixed) {
 | 
						|
  if (RA == ATTR_MIXED && AllowMixed)
 | 
						|
    Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, true));
 | 
						|
  else if (RA == ATTR_ALL_SET && !AllowMixed)
 | 
						|
    Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, false));
 | 
						|
}
 | 
						|
 | 
						|
// FilterProcessor scans the well-known encoding bits of the instructions and
 | 
						|
// builds up a list of candidate filters.  It chooses the best filter and
 | 
						|
// recursively descends down the decoding tree.
 | 
						|
bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
 | 
						|
  Filters.clear();
 | 
						|
  BestIndex = -1;
 | 
						|
  unsigned numInstructions = Opcodes.size();
 | 
						|
 | 
						|
  assert(numInstructions && "Filter created with no instructions");
 | 
						|
 | 
						|
  // No further filtering is necessary.
 | 
						|
  if (numInstructions == 1)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Heuristics.  See also doFilter()'s "Heuristics" comment when num of
 | 
						|
  // instructions is 3.
 | 
						|
  if (AllowMixed && !Greedy) {
 | 
						|
    assert(numInstructions == 3);
 | 
						|
 | 
						|
    for (unsigned i = 0; i < Opcodes.size(); ++i) {
 | 
						|
      std::vector<unsigned> StartBits;
 | 
						|
      std::vector<unsigned> EndBits;
 | 
						|
      std::vector<uint64_t> FieldVals;
 | 
						|
      insn_t Insn;
 | 
						|
 | 
						|
      insnWithID(Insn, Opcodes[i]);
 | 
						|
 | 
						|
      // Look for islands of undecoded bits of any instruction.
 | 
						|
      if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
 | 
						|
        // Found an instruction with island(s).  Now just assign a filter.
 | 
						|
        runSingleFilter(*this, StartBits[0], EndBits[0] - StartBits[0] + 1,
 | 
						|
                        true);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned BitIndex, InsnIndex;
 | 
						|
 | 
						|
  // We maintain BIT_WIDTH copies of the bitAttrs automaton.
 | 
						|
  // The automaton consumes the corresponding bit from each
 | 
						|
  // instruction.
 | 
						|
  //
 | 
						|
  //   Input symbols: 0, 1, and _ (unset).
 | 
						|
  //   States:        NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
 | 
						|
  //   Initial state: NONE.
 | 
						|
  //
 | 
						|
  // (NONE) ------- [01] -> (ALL_SET)
 | 
						|
  // (NONE) ------- _ ----> (ALL_UNSET)
 | 
						|
  // (ALL_SET) ---- [01] -> (ALL_SET)
 | 
						|
  // (ALL_SET) ---- _ ----> (MIXED)
 | 
						|
  // (ALL_UNSET) -- [01] -> (MIXED)
 | 
						|
  // (ALL_UNSET) -- _ ----> (ALL_UNSET)
 | 
						|
  // (MIXED) ------ . ----> (MIXED)
 | 
						|
  // (FILTERED)---- . ----> (FILTERED)
 | 
						|
 | 
						|
  bitAttr_t bitAttrs[BIT_WIDTH];
 | 
						|
 | 
						|
  // FILTERED bit positions provide no entropy and are not worthy of pursuing.
 | 
						|
  // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
 | 
						|
  for (BitIndex = 0; BitIndex < BIT_WIDTH; ++BitIndex)
 | 
						|
    if (FilterBitValues[BitIndex] == BIT_TRUE ||
 | 
						|
        FilterBitValues[BitIndex] == BIT_FALSE)
 | 
						|
      bitAttrs[BitIndex] = ATTR_FILTERED;
 | 
						|
    else
 | 
						|
      bitAttrs[BitIndex] = ATTR_NONE;
 | 
						|
 | 
						|
  for (InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
 | 
						|
    insn_t insn;
 | 
						|
 | 
						|
    insnWithID(insn, Opcodes[InsnIndex]);
 | 
						|
 | 
						|
    for (BitIndex = 0; BitIndex < BIT_WIDTH; ++BitIndex) {
 | 
						|
      switch (bitAttrs[BitIndex]) {
 | 
						|
      case ATTR_NONE:
 | 
						|
        if (insn[BitIndex] == BIT_UNSET)
 | 
						|
          bitAttrs[BitIndex] = ATTR_ALL_UNSET;
 | 
						|
        else
 | 
						|
          bitAttrs[BitIndex] = ATTR_ALL_SET;
 | 
						|
        break;
 | 
						|
      case ATTR_ALL_SET:
 | 
						|
        if (insn[BitIndex] == BIT_UNSET)
 | 
						|
          bitAttrs[BitIndex] = ATTR_MIXED;
 | 
						|
        break;
 | 
						|
      case ATTR_ALL_UNSET:
 | 
						|
        if (insn[BitIndex] != BIT_UNSET)
 | 
						|
          bitAttrs[BitIndex] = ATTR_MIXED;
 | 
						|
        break;
 | 
						|
      case ATTR_MIXED:
 | 
						|
      case ATTR_FILTERED:
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // The regionAttr automaton consumes the bitAttrs automatons' state,
 | 
						|
  // lowest-to-highest.
 | 
						|
  //
 | 
						|
  //   Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
 | 
						|
  //   States:        NONE, ALL_SET, MIXED
 | 
						|
  //   Initial state: NONE
 | 
						|
  //
 | 
						|
  // (NONE) ----- F --> (NONE)
 | 
						|
  // (NONE) ----- S --> (ALL_SET)     ; and set region start
 | 
						|
  // (NONE) ----- U --> (NONE)
 | 
						|
  // (NONE) ----- M --> (MIXED)       ; and set region start
 | 
						|
  // (ALL_SET) -- F --> (NONE)        ; and report an ALL_SET region
 | 
						|
  // (ALL_SET) -- S --> (ALL_SET)
 | 
						|
  // (ALL_SET) -- U --> (NONE)        ; and report an ALL_SET region
 | 
						|
  // (ALL_SET) -- M --> (MIXED)       ; and report an ALL_SET region
 | 
						|
  // (MIXED) ---- F --> (NONE)        ; and report a MIXED region
 | 
						|
  // (MIXED) ---- S --> (ALL_SET)     ; and report a MIXED region
 | 
						|
  // (MIXED) ---- U --> (NONE)        ; and report a MIXED region
 | 
						|
  // (MIXED) ---- M --> (MIXED)
 | 
						|
 | 
						|
  bitAttr_t RA = ATTR_NONE;
 | 
						|
  unsigned StartBit = 0;
 | 
						|
 | 
						|
  for (BitIndex = 0; BitIndex < BIT_WIDTH; BitIndex++) {
 | 
						|
    bitAttr_t bitAttr = bitAttrs[BitIndex];
 | 
						|
 | 
						|
    assert(bitAttr != ATTR_NONE && "Bit without attributes");
 | 
						|
 | 
						|
    switch (RA) {
 | 
						|
    case ATTR_NONE:
 | 
						|
      switch (bitAttr) {
 | 
						|
      case ATTR_FILTERED:
 | 
						|
        break;
 | 
						|
      case ATTR_ALL_SET:
 | 
						|
        StartBit = BitIndex;
 | 
						|
        RA = ATTR_ALL_SET;
 | 
						|
        break;
 | 
						|
      case ATTR_ALL_UNSET:
 | 
						|
        break;
 | 
						|
      case ATTR_MIXED:
 | 
						|
        StartBit = BitIndex;
 | 
						|
        RA = ATTR_MIXED;
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        assert(0 && "Unexpected bitAttr!");
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case ATTR_ALL_SET:
 | 
						|
      switch (bitAttr) {
 | 
						|
      case ATTR_FILTERED:
 | 
						|
        reportRegion(RA, StartBit, BitIndex, AllowMixed);
 | 
						|
        RA = ATTR_NONE;
 | 
						|
        break;
 | 
						|
      case ATTR_ALL_SET:
 | 
						|
        break;
 | 
						|
      case ATTR_ALL_UNSET:
 | 
						|
        reportRegion(RA, StartBit, BitIndex, AllowMixed);
 | 
						|
        RA = ATTR_NONE;
 | 
						|
        break;
 | 
						|
      case ATTR_MIXED:
 | 
						|
        reportRegion(RA, StartBit, BitIndex, AllowMixed);
 | 
						|
        StartBit = BitIndex;
 | 
						|
        RA = ATTR_MIXED;
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        assert(0 && "Unexpected bitAttr!");
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case ATTR_MIXED:
 | 
						|
      switch (bitAttr) {
 | 
						|
      case ATTR_FILTERED:
 | 
						|
        reportRegion(RA, StartBit, BitIndex, AllowMixed);
 | 
						|
        StartBit = BitIndex;
 | 
						|
        RA = ATTR_NONE;
 | 
						|
        break;
 | 
						|
      case ATTR_ALL_SET:
 | 
						|
        reportRegion(RA, StartBit, BitIndex, AllowMixed);
 | 
						|
        StartBit = BitIndex;
 | 
						|
        RA = ATTR_ALL_SET;
 | 
						|
        break;
 | 
						|
      case ATTR_ALL_UNSET:
 | 
						|
        reportRegion(RA, StartBit, BitIndex, AllowMixed);
 | 
						|
        RA = ATTR_NONE;
 | 
						|
        break;
 | 
						|
      case ATTR_MIXED:
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        assert(0 && "Unexpected bitAttr!");
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case ATTR_ALL_UNSET:
 | 
						|
      assert(0 && "regionAttr state machine has no ATTR_UNSET state");
 | 
						|
    case ATTR_FILTERED:
 | 
						|
      assert(0 && "regionAttr state machine has no ATTR_FILTERED state");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // At the end, if we're still in ALL_SET or MIXED states, report a region
 | 
						|
  switch (RA) {
 | 
						|
  case ATTR_NONE:
 | 
						|
    break;
 | 
						|
  case ATTR_FILTERED:
 | 
						|
    break;
 | 
						|
  case ATTR_ALL_SET:
 | 
						|
    reportRegion(RA, StartBit, BitIndex, AllowMixed);
 | 
						|
    break;
 | 
						|
  case ATTR_ALL_UNSET:
 | 
						|
    break;
 | 
						|
  case ATTR_MIXED:
 | 
						|
    reportRegion(RA, StartBit, BitIndex, AllowMixed);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // We have finished with the filter processings.  Now it's time to choose
 | 
						|
  // the best performing filter.
 | 
						|
  BestIndex = 0;
 | 
						|
  bool AllUseless = true;
 | 
						|
  unsigned BestScore = 0;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
 | 
						|
    unsigned Usefulness = Filters[i].usefulness();
 | 
						|
 | 
						|
    if (Usefulness)
 | 
						|
      AllUseless = false;
 | 
						|
 | 
						|
    if (Usefulness > BestScore) {
 | 
						|
      BestIndex = i;
 | 
						|
      BestScore = Usefulness;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!AllUseless)
 | 
						|
    bestFilter().recurse();
 | 
						|
 | 
						|
  return !AllUseless;
 | 
						|
} // end of FilterChooser::filterProcessor(bool)
 | 
						|
 | 
						|
// Decides on the best configuration of filter(s) to use in order to decode
 | 
						|
// the instructions.  A conflict of instructions may occur, in which case we
 | 
						|
// dump the conflict set to the standard error.
 | 
						|
void FilterChooser::doFilter() {
 | 
						|
  unsigned Num = Opcodes.size();
 | 
						|
  assert(Num && "FilterChooser created with no instructions");
 | 
						|
 | 
						|
  // Try regions of consecutive known bit values first.
 | 
						|
  if (filterProcessor(false))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Then regions of mixed bits (both known and unitialized bit values allowed).
 | 
						|
  if (filterProcessor(true))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
 | 
						|
  // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
 | 
						|
  // well-known encoding pattern.  In such case, we backtrack and scan for the
 | 
						|
  // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
 | 
						|
  if (Num == 3 && filterProcessor(true, false))
 | 
						|
    return;
 | 
						|
 | 
						|
  // If we come to here, the instruction decoding has failed.
 | 
						|
  // Set the BestIndex to -1 to indicate so.
 | 
						|
  BestIndex = -1;
 | 
						|
}
 | 
						|
 | 
						|
// Emits code to decode our share of instructions.  Returns true if the
 | 
						|
// emitted code causes a return, which occurs if we know how to decode
 | 
						|
// the instruction at this level or the instruction is not decodeable.
 | 
						|
bool FilterChooser::emit(raw_ostream &o, unsigned &Indentation) {
 | 
						|
  if (Opcodes.size() == 1)
 | 
						|
    // There is only one instruction in the set, which is great!
 | 
						|
    // Call emitSingletonDecoder() to see whether there are any remaining
 | 
						|
    // encodings bits.
 | 
						|
    return emitSingletonDecoder(o, Indentation, Opcodes[0]);
 | 
						|
 | 
						|
  // Choose the best filter to do the decodings!
 | 
						|
  if (BestIndex != -1) {
 | 
						|
    Filter &Best = bestFilter();
 | 
						|
    if (Best.getNumFiltered() == 1)
 | 
						|
      emitSingletonDecoder(o, Indentation, Best);
 | 
						|
    else
 | 
						|
      bestFilter().emit(o, Indentation);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // We don't know how to decode these instructions!  Return 0 and dump the
 | 
						|
  // conflict set!
 | 
						|
  o.indent(Indentation) << "return 0;" << " // Conflict set: ";
 | 
						|
  for (int i = 0, N = Opcodes.size(); i < N; ++i) {
 | 
						|
    o << nameWithID(Opcodes[i]);
 | 
						|
    if (i < (N - 1))
 | 
						|
      o << ", ";
 | 
						|
    else
 | 
						|
      o << '\n';
 | 
						|
  }
 | 
						|
 | 
						|
  // Print out useful conflict information for postmortem analysis.
 | 
						|
  errs() << "Decoding Conflict:\n";
 | 
						|
 | 
						|
  dumpStack(errs(), "\t\t");
 | 
						|
 | 
						|
  for (unsigned i = 0; i < Opcodes.size(); i++) {
 | 
						|
    const std::string &Name = nameWithID(Opcodes[i]);
 | 
						|
 | 
						|
    errs() << '\t' << Name << " ";
 | 
						|
    dumpBits(errs(),
 | 
						|
             getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
 | 
						|
    errs() << '\n';
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool FixedLenDecoderEmitter::populateInstruction(const CodeGenInstruction &CGI,
 | 
						|
                                                 unsigned Opc){
 | 
						|
  const Record &Def = *CGI.TheDef;
 | 
						|
  // If all the bit positions are not specified; do not decode this instruction.
 | 
						|
  // We are bound to fail!  For proper disassembly, the well-known encoding bits
 | 
						|
  // of the instruction must be fully specified.
 | 
						|
  //
 | 
						|
  // This also removes pseudo instructions from considerations of disassembly,
 | 
						|
  // which is a better design and less fragile than the name matchings.
 | 
						|
  BitsInit &Bits = getBitsField(Def, "Inst");
 | 
						|
  if (Bits.allInComplete()) return false;
 | 
						|
 | 
						|
  // Ignore "asm parser only" instructions.
 | 
						|
  if (Def.getValueAsBit("isAsmParserOnly") ||
 | 
						|
      Def.getValueAsBit("isCodeGenOnly"))
 | 
						|
    return false;
 | 
						|
 | 
						|
  std::vector<OperandInfo> InsnOperands;
 | 
						|
 | 
						|
  // If the instruction has specified a custom decoding hook, use that instead
 | 
						|
  // of trying to auto-generate the decoder.
 | 
						|
  std::string InstDecoder = Def.getValueAsString("DecoderMethod");
 | 
						|
  if (InstDecoder != "") {
 | 
						|
    InsnOperands.push_back(OperandInfo(~0U, ~0U, InstDecoder));
 | 
						|
    Operands[Opc] = InsnOperands;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Generate a description of the operand of the instruction that we know
 | 
						|
  // how to decode automatically.
 | 
						|
  // FIXME: We'll need to have a way to manually override this as needed.
 | 
						|
 | 
						|
  // Gather the outputs/inputs of the instruction, so we can find their
 | 
						|
  // positions in the encoding.  This assumes for now that they appear in the
 | 
						|
  // MCInst in the order that they're listed.
 | 
						|
  std::vector<std::pair<Init*, std::string> > InOutOperands;
 | 
						|
  DagInit *Out  = Def.getValueAsDag("OutOperandList");
 | 
						|
  DagInit *In  = Def.getValueAsDag("InOperandList");
 | 
						|
  for (unsigned i = 0; i < Out->getNumArgs(); ++i)
 | 
						|
    InOutOperands.push_back(std::make_pair(Out->getArg(i), Out->getArgName(i)));
 | 
						|
  for (unsigned i = 0; i < In->getNumArgs(); ++i)
 | 
						|
    InOutOperands.push_back(std::make_pair(In->getArg(i), In->getArgName(i)));
 | 
						|
 | 
						|
  // For each operand, see if we can figure out where it is encoded.
 | 
						|
  for (std::vector<std::pair<Init*, std::string> >::iterator
 | 
						|
       NI = InOutOperands.begin(), NE = InOutOperands.end(); NI != NE; ++NI) {
 | 
						|
    unsigned PrevBit = ~0;
 | 
						|
    unsigned Base = ~0;
 | 
						|
    unsigned PrevPos = ~0;
 | 
						|
    std::string Decoder = "";
 | 
						|
 | 
						|
    for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) {
 | 
						|
      VarBitInit *BI = dynamic_cast<VarBitInit*>(Bits.getBit(bi));
 | 
						|
      if (!BI) continue;
 | 
						|
 | 
						|
      VarInit *Var = dynamic_cast<VarInit*>(BI->getVariable());
 | 
						|
      assert(Var);
 | 
						|
      unsigned CurrBit = BI->getBitNum();
 | 
						|
      if (Var->getName() != NI->second) continue;
 | 
						|
 | 
						|
      // Figure out the lowest bit of the value, and the width of the field.
 | 
						|
      // Deliberately don't try to handle cases where the field is scattered,
 | 
						|
      // or where not all bits of the the field are explicit.
 | 
						|
      if (Base == ~0U && PrevBit == ~0U && PrevPos == ~0U) {
 | 
						|
        if (CurrBit == 0)
 | 
						|
          Base = bi;
 | 
						|
        else
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if ((PrevPos != ~0U && bi-1 != PrevPos) ||
 | 
						|
          (CurrBit != ~0U && CurrBit-1 != PrevBit)) {
 | 
						|
        PrevBit = ~0;
 | 
						|
        Base = ~0;
 | 
						|
        PrevPos = ~0;
 | 
						|
      }
 | 
						|
 | 
						|
      PrevPos = bi;
 | 
						|
      PrevBit = CurrBit;
 | 
						|
 | 
						|
      // At this point, we can locate the field, but we need to know how to
 | 
						|
      // interpret it.  As a first step, require the target to provide callbacks
 | 
						|
      // for decoding register classes.
 | 
						|
      // FIXME: This need to be extended to handle instructions with custom
 | 
						|
      // decoder methods, and operands with (simple) MIOperandInfo's.
 | 
						|
      TypedInit *TI = dynamic_cast<TypedInit*>(NI->first);
 | 
						|
      RecordRecTy *Type = dynamic_cast<RecordRecTy*>(TI->getType());
 | 
						|
      Record *TypeRecord = Type->getRecord();
 | 
						|
      bool isReg = false;
 | 
						|
      if (TypeRecord->isSubClassOf("RegisterClass")) {
 | 
						|
        Decoder = "Decode" + Type->getRecord()->getName() + "RegisterClass";
 | 
						|
        isReg = true;
 | 
						|
      }
 | 
						|
 | 
						|
      RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
 | 
						|
      StringInit *String = DecoderString ?
 | 
						|
        dynamic_cast<StringInit*>(DecoderString->getValue()) :
 | 
						|
        0;
 | 
						|
      if (!isReg && String && String->getValue() != "")
 | 
						|
        Decoder = String->getValue();
 | 
						|
    }
 | 
						|
 | 
						|
    if (Base != ~0U) {
 | 
						|
      InsnOperands.push_back(OperandInfo(Base, PrevBit+1, Decoder));
 | 
						|
      DEBUG(errs() << "ENCODED OPERAND: $" << NI->second << " @ ("
 | 
						|
                   << utostr(Base+PrevBit) << ", " << utostr(Base) << ")\n");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Operands[Opc] = InsnOperands;
 | 
						|
 | 
						|
 | 
						|
#if 0
 | 
						|
  DEBUG({
 | 
						|
      // Dumps the instruction encoding bits.
 | 
						|
      dumpBits(errs(), Bits);
 | 
						|
 | 
						|
      errs() << '\n';
 | 
						|
 | 
						|
      // Dumps the list of operand info.
 | 
						|
      for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
 | 
						|
        const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
 | 
						|
        const std::string &OperandName = Info.Name;
 | 
						|
        const Record &OperandDef = *Info.Rec;
 | 
						|
 | 
						|
        errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
 | 
						|
      }
 | 
						|
    });
 | 
						|
#endif
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void FixedLenDecoderEmitter::populateInstructions() {
 | 
						|
  for (unsigned i = 0, e = NumberedInstructions.size(); i < e; ++i) {
 | 
						|
    Record *R = NumberedInstructions[i]->TheDef;
 | 
						|
    if (R->getValueAsString("Namespace") == "TargetOpcode")
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (populateInstruction(*NumberedInstructions[i], i))
 | 
						|
      Opcodes.push_back(i);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Emits disassembler code for instruction decoding.
 | 
						|
void FixedLenDecoderEmitter::run(raw_ostream &o)
 | 
						|
{
 | 
						|
  o << "#include \"llvm/MC/MCInst.h\"\n";
 | 
						|
  o << "#include \"llvm/Support/DataTypes.h\"\n";
 | 
						|
  o << "#include <assert.h>\n";
 | 
						|
  o << '\n';
 | 
						|
  o << "namespace llvm {\n\n";
 | 
						|
 | 
						|
  NumberedInstructions = Target.getInstructionsByEnumValue();
 | 
						|
  populateInstructions();
 | 
						|
  FilterChooser FC(NumberedInstructions, Opcodes, Operands);
 | 
						|
  FC.emitTop(o, 0);
 | 
						|
 | 
						|
  o << "\n} // End llvm namespace \n";
 | 
						|
}
 |