llvm-6502/include/llvm/CodeGen/ScheduleDAG.h
Andrew Trick 66658dd9a1 MIsched: Added biasCriticalPath.
Allow schedulers to order DAG edges by critical path. This makes
DFS-based heuristics more stable and effective.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173317 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-24 02:09:55 +00:00

739 lines
28 KiB
C++

//===------- llvm/CodeGen/ScheduleDAG.h - Common Base Class------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the ScheduleDAG class, which is used as the common
// base class for instruction schedulers. This encapsulates the scheduling DAG,
// which is shared between SelectionDAG and MachineInstr scheduling.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_SCHEDULEDAG_H
#define LLVM_CODEGEN_SCHEDULEDAG_H
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/Target/TargetLowering.h"
namespace llvm {
class AliasAnalysis;
class SUnit;
class MachineConstantPool;
class MachineFunction;
class MachineRegisterInfo;
class MachineInstr;
struct MCSchedClassDesc;
class TargetRegisterInfo;
class ScheduleDAG;
class SDNode;
class TargetInstrInfo;
class MCInstrDesc;
class TargetMachine;
class TargetRegisterClass;
template<class Graph> class GraphWriter;
/// SDep - Scheduling dependency. This represents one direction of an
/// edge in the scheduling DAG.
class SDep {
public:
/// Kind - These are the different kinds of scheduling dependencies.
enum Kind {
Data, ///< Regular data dependence (aka true-dependence).
Anti, ///< A register anti-dependedence (aka WAR).
Output, ///< A register output-dependence (aka WAW).
Order ///< Any other ordering dependency.
};
enum OrderKind {
Barrier, ///< An unknown scheduling barrier.
MayAliasMem, ///< Nonvolatile load/Store instructions that may alias.
MustAliasMem, ///< Nonvolatile load/Store instructions that must alias.
Artificial, ///< Arbitrary weak DAG edge (no actual dependence).
Cluster ///< Weak DAG edge linking a chain of clustered instrs.
};
private:
/// Dep - A pointer to the depending/depended-on SUnit, and an enum
/// indicating the kind of the dependency.
PointerIntPair<SUnit *, 2, Kind> Dep;
/// Contents - A union discriminated by the dependence kind.
union {
/// Reg - For Data, Anti, and Output dependencies, the associated
/// register. For Data dependencies that don't currently have a register
/// assigned, this is set to zero.
unsigned Reg;
/// Order - Additional information about Order dependencies.
unsigned OrdKind; // enum OrderKind
} Contents;
/// Latency - The time associated with this edge. Often this is just
/// the value of the Latency field of the predecessor, however advanced
/// models may provide additional information about specific edges.
unsigned Latency;
/// Record MinLatency seperately from "expected" Latency.
///
/// FIXME: this field is not packed on LP64. Convert to 16-bit DAG edge
/// latency after introducing saturating truncation.
unsigned MinLatency;
public:
/// SDep - Construct a null SDep. This is only for use by container
/// classes which require default constructors. SUnits may not
/// have null SDep edges.
SDep() : Dep(0, Data) {}
/// SDep - Construct an SDep with the specified values.
SDep(SUnit *S, Kind kind, unsigned Reg)
: Dep(S, kind), Contents() {
switch (kind) {
default:
llvm_unreachable("Reg given for non-register dependence!");
case Anti:
case Output:
assert(Reg != 0 &&
"SDep::Anti and SDep::Output must use a non-zero Reg!");
Contents.Reg = Reg;
Latency = 0;
break;
case Data:
Contents.Reg = Reg;
Latency = 1;
break;
}
MinLatency = Latency;
}
SDep(SUnit *S, OrderKind kind)
: Dep(S, Order), Contents(), Latency(0), MinLatency(0) {
Contents.OrdKind = kind;
}
/// Return true if the specified SDep is equivalent except for latency.
bool overlaps(const SDep &Other) const {
if (Dep != Other.Dep) return false;
switch (Dep.getInt()) {
case Data:
case Anti:
case Output:
return Contents.Reg == Other.Contents.Reg;
case Order:
return Contents.OrdKind == Other.Contents.OrdKind;
}
llvm_unreachable("Invalid dependency kind!");
}
bool operator==(const SDep &Other) const {
return overlaps(Other)
&& Latency == Other.Latency && MinLatency == Other.MinLatency;
}
bool operator!=(const SDep &Other) const {
return !operator==(Other);
}
/// getLatency - Return the latency value for this edge, which roughly
/// means the minimum number of cycles that must elapse between the
/// predecessor and the successor, given that they have this edge
/// between them.
unsigned getLatency() const {
return Latency;
}
/// setLatency - Set the latency for this edge.
void setLatency(unsigned Lat) {
Latency = Lat;
}
/// getMinLatency - Return the minimum latency for this edge. Minimum
/// latency is used for scheduling groups, while normal (expected) latency
/// is for instruction cost and critical path.
unsigned getMinLatency() const {
return MinLatency;
}
/// setMinLatency - Set the minimum latency for this edge.
void setMinLatency(unsigned Lat) {
MinLatency = Lat;
}
//// getSUnit - Return the SUnit to which this edge points.
SUnit *getSUnit() const {
return Dep.getPointer();
}
//// setSUnit - Assign the SUnit to which this edge points.
void setSUnit(SUnit *SU) {
Dep.setPointer(SU);
}
/// getKind - Return an enum value representing the kind of the dependence.
Kind getKind() const {
return Dep.getInt();
}
/// isCtrl - Shorthand for getKind() != SDep::Data.
bool isCtrl() const {
return getKind() != Data;
}
/// isNormalMemory - Test if this is an Order dependence between two
/// memory accesses where both sides of the dependence access memory
/// in non-volatile and fully modeled ways.
bool isNormalMemory() const {
return getKind() == Order && (Contents.OrdKind == MayAliasMem
|| Contents.OrdKind == MustAliasMem);
}
/// isMustAlias - Test if this is an Order dependence that is marked
/// as "must alias", meaning that the SUnits at either end of the edge
/// have a memory dependence on a known memory location.
bool isMustAlias() const {
return getKind() == Order && Contents.OrdKind == MustAliasMem;
}
/// isWeak - Test if this a weak dependence. Weak dependencies are
/// considered DAG edges for height computation and other heuristics, but do
/// not force ordering. Breaking a weak edge may require the scheduler to
/// compensate, for example by inserting a copy.
bool isWeak() const {
return getKind() == Order && Contents.OrdKind == Cluster;
}
/// isArtificial - Test if this is an Order dependence that is marked
/// as "artificial", meaning it isn't necessary for correctness.
bool isArtificial() const {
return getKind() == Order && Contents.OrdKind == Artificial;
}
/// isCluster - Test if this is an Order dependence that is marked
/// as "cluster", meaning it is artificial and wants to be adjacent.
bool isCluster() const {
return getKind() == Order && Contents.OrdKind == Cluster;
}
/// isAssignedRegDep - Test if this is a Data dependence that is
/// associated with a register.
bool isAssignedRegDep() const {
return getKind() == Data && Contents.Reg != 0;
}
/// getReg - Return the register associated with this edge. This is
/// only valid on Data, Anti, and Output edges. On Data edges, this
/// value may be zero, meaning there is no associated register.
unsigned getReg() const {
assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
"getReg called on non-register dependence edge!");
return Contents.Reg;
}
/// setReg - Assign the associated register for this edge. This is
/// only valid on Data, Anti, and Output edges. On Anti and Output
/// edges, this value must not be zero. On Data edges, the value may
/// be zero, which would mean that no specific register is associated
/// with this edge.
void setReg(unsigned Reg) {
assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
"setReg called on non-register dependence edge!");
assert((getKind() != Anti || Reg != 0) &&
"SDep::Anti edge cannot use the zero register!");
assert((getKind() != Output || Reg != 0) &&
"SDep::Output edge cannot use the zero register!");
Contents.Reg = Reg;
}
};
template <>
struct isPodLike<SDep> { static const bool value = true; };
/// SUnit - Scheduling unit. This is a node in the scheduling DAG.
class SUnit {
private:
SDNode *Node; // Representative node.
MachineInstr *Instr; // Alternatively, a MachineInstr.
public:
SUnit *OrigNode; // If not this, the node from which
// this node was cloned.
// (SD scheduling only)
const MCSchedClassDesc *SchedClass; // NULL or resolved SchedClass.
// Preds/Succs - The SUnits before/after us in the graph.
SmallVector<SDep, 4> Preds; // All sunit predecessors.
SmallVector<SDep, 4> Succs; // All sunit successors.
typedef SmallVector<SDep, 4>::iterator pred_iterator;
typedef SmallVector<SDep, 4>::iterator succ_iterator;
typedef SmallVector<SDep, 4>::const_iterator const_pred_iterator;
typedef SmallVector<SDep, 4>::const_iterator const_succ_iterator;
unsigned NodeNum; // Entry # of node in the node vector.
unsigned NodeQueueId; // Queue id of node.
unsigned NumPreds; // # of SDep::Data preds.
unsigned NumSuccs; // # of SDep::Data sucss.
unsigned NumPredsLeft; // # of preds not scheduled.
unsigned NumSuccsLeft; // # of succs not scheduled.
unsigned WeakPredsLeft; // # of weak preds not scheduled.
unsigned WeakSuccsLeft; // # of weak succs not scheduled.
unsigned short NumRegDefsLeft; // # of reg defs with no scheduled use.
unsigned short Latency; // Node latency.
bool isVRegCycle : 1; // May use and def the same vreg.
bool isCall : 1; // Is a function call.
bool isCallOp : 1; // Is a function call operand.
bool isTwoAddress : 1; // Is a two-address instruction.
bool isCommutable : 1; // Is a commutable instruction.
bool hasPhysRegDefs : 1; // Has physreg defs that are being used.
bool hasPhysRegClobbers : 1; // Has any physreg defs, used or not.
bool isPending : 1; // True once pending.
bool isAvailable : 1; // True once available.
bool isScheduled : 1; // True once scheduled.
bool isScheduleHigh : 1; // True if preferable to schedule high.
bool isScheduleLow : 1; // True if preferable to schedule low.
bool isCloned : 1; // True if this node has been cloned.
Sched::Preference SchedulingPref; // Scheduling preference.
private:
bool isDepthCurrent : 1; // True if Depth is current.
bool isHeightCurrent : 1; // True if Height is current.
unsigned Depth; // Node depth.
unsigned Height; // Node height.
public:
unsigned TopReadyCycle; // Cycle relative to start when node is ready.
unsigned BotReadyCycle; // Cycle relative to end when node is ready.
const TargetRegisterClass *CopyDstRC; // Is a special copy node if not null.
const TargetRegisterClass *CopySrcRC;
/// SUnit - Construct an SUnit for pre-regalloc scheduling to represent
/// an SDNode and any nodes flagged to it.
SUnit(SDNode *node, unsigned nodenum)
: Node(node), Instr(0), OrigNode(0), SchedClass(0), NodeNum(nodenum),
NodeQueueId(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0),
NumSuccsLeft(0), WeakPredsLeft(0), WeakSuccsLeft(0), NumRegDefsLeft(0),
Latency(0), isVRegCycle(false), isCall(false), isCallOp(false),
isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false),
hasPhysRegClobbers(false), isPending(false), isAvailable(false),
isScheduled(false), isScheduleHigh(false), isScheduleLow(false),
isCloned(false), SchedulingPref(Sched::None),
isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
TopReadyCycle(0), BotReadyCycle(0), CopyDstRC(NULL), CopySrcRC(NULL) {}
/// SUnit - Construct an SUnit for post-regalloc scheduling to represent
/// a MachineInstr.
SUnit(MachineInstr *instr, unsigned nodenum)
: Node(0), Instr(instr), OrigNode(0), SchedClass(0), NodeNum(nodenum),
NodeQueueId(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0),
NumSuccsLeft(0), WeakPredsLeft(0), WeakSuccsLeft(0), NumRegDefsLeft(0),
Latency(0), isVRegCycle(false), isCall(false), isCallOp(false),
isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false),
hasPhysRegClobbers(false), isPending(false), isAvailable(false),
isScheduled(false), isScheduleHigh(false), isScheduleLow(false),
isCloned(false), SchedulingPref(Sched::None),
isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
TopReadyCycle(0), BotReadyCycle(0), CopyDstRC(NULL), CopySrcRC(NULL) {}
/// SUnit - Construct a placeholder SUnit.
SUnit()
: Node(0), Instr(0), OrigNode(0), SchedClass(0), NodeNum(~0u),
NodeQueueId(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0),
NumSuccsLeft(0), WeakPredsLeft(0), WeakSuccsLeft(0), NumRegDefsLeft(0),
Latency(0), isVRegCycle(false), isCall(false), isCallOp(false),
isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false),
hasPhysRegClobbers(false), isPending(false), isAvailable(false),
isScheduled(false), isScheduleHigh(false), isScheduleLow(false),
isCloned(false), SchedulingPref(Sched::None),
isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
TopReadyCycle(0), BotReadyCycle(0), CopyDstRC(NULL), CopySrcRC(NULL) {}
/// setNode - Assign the representative SDNode for this SUnit.
/// This may be used during pre-regalloc scheduling.
void setNode(SDNode *N) {
assert(!Instr && "Setting SDNode of SUnit with MachineInstr!");
Node = N;
}
/// getNode - Return the representative SDNode for this SUnit.
/// This may be used during pre-regalloc scheduling.
SDNode *getNode() const {
assert(!Instr && "Reading SDNode of SUnit with MachineInstr!");
return Node;
}
/// isInstr - Return true if this SUnit refers to a machine instruction as
/// opposed to an SDNode.
bool isInstr() const { return Instr; }
/// setInstr - Assign the instruction for the SUnit.
/// This may be used during post-regalloc scheduling.
void setInstr(MachineInstr *MI) {
assert(!Node && "Setting MachineInstr of SUnit with SDNode!");
Instr = MI;
}
/// getInstr - Return the representative MachineInstr for this SUnit.
/// This may be used during post-regalloc scheduling.
MachineInstr *getInstr() const {
assert(!Node && "Reading MachineInstr of SUnit with SDNode!");
return Instr;
}
/// addPred - This adds the specified edge as a pred of the current node if
/// not already. It also adds the current node as a successor of the
/// specified node.
bool addPred(const SDep &D, bool Required = true);
/// removePred - This removes the specified edge as a pred of the current
/// node if it exists. It also removes the current node as a successor of
/// the specified node.
void removePred(const SDep &D);
/// getDepth - Return the depth of this node, which is the length of the
/// maximum path up to any node which has no predecessors.
unsigned getDepth() const {
if (!isDepthCurrent)
const_cast<SUnit *>(this)->ComputeDepth();
return Depth;
}
/// getHeight - Return the height of this node, which is the length of the
/// maximum path down to any node which has no successors.
unsigned getHeight() const {
if (!isHeightCurrent)
const_cast<SUnit *>(this)->ComputeHeight();
return Height;
}
/// setDepthToAtLeast - If NewDepth is greater than this node's
/// depth value, set it to be the new depth value. This also
/// recursively marks successor nodes dirty.
void setDepthToAtLeast(unsigned NewDepth);
/// setDepthToAtLeast - If NewDepth is greater than this node's
/// depth value, set it to be the new height value. This also
/// recursively marks predecessor nodes dirty.
void setHeightToAtLeast(unsigned NewHeight);
/// setDepthDirty - Set a flag in this node to indicate that its
/// stored Depth value will require recomputation the next time
/// getDepth() is called.
void setDepthDirty();
/// setHeightDirty - Set a flag in this node to indicate that its
/// stored Height value will require recomputation the next time
/// getHeight() is called.
void setHeightDirty();
/// isPred - Test if node N is a predecessor of this node.
bool isPred(SUnit *N) {
for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i)
if (Preds[i].getSUnit() == N)
return true;
return false;
}
/// isSucc - Test if node N is a successor of this node.
bool isSucc(SUnit *N) {
for (unsigned i = 0, e = (unsigned)Succs.size(); i != e; ++i)
if (Succs[i].getSUnit() == N)
return true;
return false;
}
bool isTopReady() const {
return NumPredsLeft == 0;
}
bool isBottomReady() const {
return NumSuccsLeft == 0;
}
/// \brief Order this node's predecessor edges such that the critical path
/// edge occurs first.
void biasCriticalPath();
void dump(const ScheduleDAG *G) const;
void dumpAll(const ScheduleDAG *G) const;
void print(raw_ostream &O, const ScheduleDAG *G) const;
private:
void ComputeDepth();
void ComputeHeight();
};
//===--------------------------------------------------------------------===//
/// SchedulingPriorityQueue - This interface is used to plug different
/// priorities computation algorithms into the list scheduler. It implements
/// the interface of a standard priority queue, where nodes are inserted in
/// arbitrary order and returned in priority order. The computation of the
/// priority and the representation of the queue are totally up to the
/// implementation to decide.
///
class SchedulingPriorityQueue {
virtual void anchor();
unsigned CurCycle;
bool HasReadyFilter;
public:
SchedulingPriorityQueue(bool rf = false):
CurCycle(0), HasReadyFilter(rf) {}
virtual ~SchedulingPriorityQueue() {}
virtual bool isBottomUp() const = 0;
virtual void initNodes(std::vector<SUnit> &SUnits) = 0;
virtual void addNode(const SUnit *SU) = 0;
virtual void updateNode(const SUnit *SU) = 0;
virtual void releaseState() = 0;
virtual bool empty() const = 0;
bool hasReadyFilter() const { return HasReadyFilter; }
virtual bool tracksRegPressure() const { return false; }
virtual bool isReady(SUnit *) const {
assert(!HasReadyFilter && "The ready filter must override isReady()");
return true;
}
virtual void push(SUnit *U) = 0;
void push_all(const std::vector<SUnit *> &Nodes) {
for (std::vector<SUnit *>::const_iterator I = Nodes.begin(),
E = Nodes.end(); I != E; ++I)
push(*I);
}
virtual SUnit *pop() = 0;
virtual void remove(SUnit *SU) = 0;
virtual void dump(ScheduleDAG *) const {}
/// scheduledNode - As each node is scheduled, this method is invoked. This
/// allows the priority function to adjust the priority of related
/// unscheduled nodes, for example.
///
virtual void scheduledNode(SUnit *) {}
virtual void unscheduledNode(SUnit *) {}
void setCurCycle(unsigned Cycle) {
CurCycle = Cycle;
}
unsigned getCurCycle() const {
return CurCycle;
}
};
class ScheduleDAG {
public:
const TargetMachine &TM; // Target processor
const TargetInstrInfo *TII; // Target instruction information
const TargetRegisterInfo *TRI; // Target processor register info
MachineFunction &MF; // Machine function
MachineRegisterInfo &MRI; // Virtual/real register map
std::vector<SUnit> SUnits; // The scheduling units.
SUnit EntrySU; // Special node for the region entry.
SUnit ExitSU; // Special node for the region exit.
#ifdef NDEBUG
static const bool StressSched = false;
#else
bool StressSched;
#endif
explicit ScheduleDAG(MachineFunction &mf);
virtual ~ScheduleDAG();
/// clearDAG - clear the DAG state (between regions).
void clearDAG();
/// getInstrDesc - Return the MCInstrDesc of this SUnit.
/// Return NULL for SDNodes without a machine opcode.
const MCInstrDesc *getInstrDesc(const SUnit *SU) const {
if (SU->isInstr()) return &SU->getInstr()->getDesc();
return getNodeDesc(SU->getNode());
}
/// viewGraph - Pop up a GraphViz/gv window with the ScheduleDAG rendered
/// using 'dot'.
///
void viewGraph(const Twine &Name, const Twine &Title);
void viewGraph();
virtual void dumpNode(const SUnit *SU) const = 0;
/// getGraphNodeLabel - Return a label for an SUnit node in a visualization
/// of the ScheduleDAG.
virtual std::string getGraphNodeLabel(const SUnit *SU) const = 0;
/// getDAGLabel - Return a label for the region of code covered by the DAG.
virtual std::string getDAGName() const = 0;
/// addCustomGraphFeatures - Add custom features for a visualization of
/// the ScheduleDAG.
virtual void addCustomGraphFeatures(GraphWriter<ScheduleDAG*> &) const {}
#ifndef NDEBUG
/// VerifyScheduledDAG - Verify that all SUnits were scheduled and that
/// their state is consistent. Return the number of scheduled SUnits.
unsigned VerifyScheduledDAG(bool isBottomUp);
#endif
private:
// Return the MCInstrDesc of this SDNode or NULL.
const MCInstrDesc *getNodeDesc(const SDNode *Node) const;
};
class SUnitIterator : public std::iterator<std::forward_iterator_tag,
SUnit, ptrdiff_t> {
SUnit *Node;
unsigned Operand;
SUnitIterator(SUnit *N, unsigned Op) : Node(N), Operand(Op) {}
public:
bool operator==(const SUnitIterator& x) const {
return Operand == x.Operand;
}
bool operator!=(const SUnitIterator& x) const { return !operator==(x); }
const SUnitIterator &operator=(const SUnitIterator &I) {
assert(I.Node==Node && "Cannot assign iterators to two different nodes!");
Operand = I.Operand;
return *this;
}
pointer operator*() const {
return Node->Preds[Operand].getSUnit();
}
pointer operator->() const { return operator*(); }
SUnitIterator& operator++() { // Preincrement
++Operand;
return *this;
}
SUnitIterator operator++(int) { // Postincrement
SUnitIterator tmp = *this; ++*this; return tmp;
}
static SUnitIterator begin(SUnit *N) { return SUnitIterator(N, 0); }
static SUnitIterator end (SUnit *N) {
return SUnitIterator(N, (unsigned)N->Preds.size());
}
unsigned getOperand() const { return Operand; }
const SUnit *getNode() const { return Node; }
/// isCtrlDep - Test if this is not an SDep::Data dependence.
bool isCtrlDep() const {
return getSDep().isCtrl();
}
bool isArtificialDep() const {
return getSDep().isArtificial();
}
const SDep &getSDep() const {
return Node->Preds[Operand];
}
};
template <> struct GraphTraits<SUnit*> {
typedef SUnit NodeType;
typedef SUnitIterator ChildIteratorType;
static inline NodeType *getEntryNode(SUnit *N) { return N; }
static inline ChildIteratorType child_begin(NodeType *N) {
return SUnitIterator::begin(N);
}
static inline ChildIteratorType child_end(NodeType *N) {
return SUnitIterator::end(N);
}
};
template <> struct GraphTraits<ScheduleDAG*> : public GraphTraits<SUnit*> {
typedef std::vector<SUnit>::iterator nodes_iterator;
static nodes_iterator nodes_begin(ScheduleDAG *G) {
return G->SUnits.begin();
}
static nodes_iterator nodes_end(ScheduleDAG *G) {
return G->SUnits.end();
}
};
/// ScheduleDAGTopologicalSort is a class that computes a topological
/// ordering for SUnits and provides methods for dynamically updating
/// the ordering as new edges are added.
///
/// This allows a very fast implementation of IsReachable, for example.
///
class ScheduleDAGTopologicalSort {
/// SUnits - A reference to the ScheduleDAG's SUnits.
std::vector<SUnit> &SUnits;
SUnit *ExitSU;
/// Index2Node - Maps topological index to the node number.
std::vector<int> Index2Node;
/// Node2Index - Maps the node number to its topological index.
std::vector<int> Node2Index;
/// Visited - a set of nodes visited during a DFS traversal.
BitVector Visited;
/// DFS - make a DFS traversal and mark all nodes affected by the
/// edge insertion. These nodes will later get new topological indexes
/// by means of the Shift method.
void DFS(const SUnit *SU, int UpperBound, bool& HasLoop);
/// Shift - reassign topological indexes for the nodes in the DAG
/// to preserve the topological ordering.
void Shift(BitVector& Visited, int LowerBound, int UpperBound);
/// Allocate - assign the topological index to the node n.
void Allocate(int n, int index);
public:
ScheduleDAGTopologicalSort(std::vector<SUnit> &SUnits, SUnit *ExitSU);
/// InitDAGTopologicalSorting - create the initial topological
/// ordering from the DAG to be scheduled.
void InitDAGTopologicalSorting();
/// IsReachable - Checks if SU is reachable from TargetSU.
bool IsReachable(const SUnit *SU, const SUnit *TargetSU);
/// WillCreateCycle - Returns true if adding an edge from SU to TargetSU
/// will create a cycle.
bool WillCreateCycle(SUnit *SU, SUnit *TargetSU);
/// AddPred - Updates the topological ordering to accommodate an edge
/// to be added from SUnit X to SUnit Y.
void AddPred(SUnit *Y, SUnit *X);
/// RemovePred - Updates the topological ordering to accommodate an
/// an edge to be removed from the specified node N from the predecessors
/// of the current node M.
void RemovePred(SUnit *M, SUnit *N);
typedef std::vector<int>::iterator iterator;
typedef std::vector<int>::const_iterator const_iterator;
iterator begin() { return Index2Node.begin(); }
const_iterator begin() const { return Index2Node.begin(); }
iterator end() { return Index2Node.end(); }
const_iterator end() const { return Index2Node.end(); }
typedef std::vector<int>::reverse_iterator reverse_iterator;
typedef std::vector<int>::const_reverse_iterator const_reverse_iterator;
reverse_iterator rbegin() { return Index2Node.rbegin(); }
const_reverse_iterator rbegin() const { return Index2Node.rbegin(); }
reverse_iterator rend() { return Index2Node.rend(); }
const_reverse_iterator rend() const { return Index2Node.rend(); }
};
}
#endif