mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 00:16:48 +00:00 
			
		
		
		
	Various places in LLVM assume that container size and count are unsigned and do not use the container size_type. Therefore they break compilation (or possibly executation) for LP64 systems where size_t is 64 bit while unsigned is still 32 bit. If we'll ever that many items in the container size_type could be made size_t for a specific containers after reviweing its other uses. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211353 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			519 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			519 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===--- llvm/ADT/SparseMultiSet.h - Sparse multiset ------------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the SparseMultiSet class, which adds multiset behavior to
 | |
| // the SparseSet.
 | |
| //
 | |
| // A sparse multiset holds a small number of objects identified by integer keys
 | |
| // from a moderately sized universe. The sparse multiset uses more memory than
 | |
| // other containers in order to provide faster operations. Any key can map to
 | |
| // multiple values. A SparseMultiSetNode class is provided, which serves as a
 | |
| // convenient base class for the contents of a SparseMultiSet.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_ADT_SPARSEMULTISET_H
 | |
| #define LLVM_ADT_SPARSEMULTISET_H
 | |
| 
 | |
| #include "llvm/ADT/SparseSet.h"
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| /// Fast multiset implementation for objects that can be identified by small
 | |
| /// unsigned keys.
 | |
| ///
 | |
| /// SparseMultiSet allocates memory proportional to the size of the key
 | |
| /// universe, so it is not recommended for building composite data structures.
 | |
| /// It is useful for algorithms that require a single set with fast operations.
 | |
| ///
 | |
| /// Compared to DenseSet and DenseMap, SparseMultiSet provides constant-time
 | |
| /// fast clear() as fast as a vector.  The find(), insert(), and erase()
 | |
| /// operations are all constant time, and typically faster than a hash table.
 | |
| /// The iteration order doesn't depend on numerical key values, it only depends
 | |
| /// on the order of insert() and erase() operations.  Iteration order is the
 | |
| /// insertion order. Iteration is only provided over elements of equivalent
 | |
| /// keys, but iterators are bidirectional.
 | |
| ///
 | |
| /// Compared to BitVector, SparseMultiSet<unsigned> uses 8x-40x more memory, but
 | |
| /// offers constant-time clear() and size() operations as well as fast iteration
 | |
| /// independent on the size of the universe.
 | |
| ///
 | |
| /// SparseMultiSet contains a dense vector holding all the objects and a sparse
 | |
| /// array holding indexes into the dense vector.  Most of the memory is used by
 | |
| /// the sparse array which is the size of the key universe. The SparseT template
 | |
| /// parameter provides a space/speed tradeoff for sets holding many elements.
 | |
| ///
 | |
| /// When SparseT is uint32_t, find() only touches up to 3 cache lines, but the
 | |
| /// sparse array uses 4 x Universe bytes.
 | |
| ///
 | |
| /// When SparseT is uint8_t (the default), find() touches up to 3+[N/256] cache
 | |
| /// lines, but the sparse array is 4x smaller.  N is the number of elements in
 | |
| /// the set.
 | |
| ///
 | |
| /// For sets that may grow to thousands of elements, SparseT should be set to
 | |
| /// uint16_t or uint32_t.
 | |
| ///
 | |
| /// Multiset behavior is provided by providing doubly linked lists for values
 | |
| /// that are inlined in the dense vector. SparseMultiSet is a good choice when
 | |
| /// one desires a growable number of entries per key, as it will retain the
 | |
| /// SparseSet algorithmic properties despite being growable. Thus, it is often a
 | |
| /// better choice than a SparseSet of growable containers or a vector of
 | |
| /// vectors. SparseMultiSet also keeps iterators valid after erasure (provided
 | |
| /// the iterators don't point to the element erased), allowing for more
 | |
| /// intuitive and fast removal.
 | |
| ///
 | |
| /// @tparam ValueT      The type of objects in the set.
 | |
| /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
 | |
| /// @tparam SparseT     An unsigned integer type. See above.
 | |
| ///
 | |
| template<typename ValueT,
 | |
|          typename KeyFunctorT = llvm::identity<unsigned>,
 | |
|          typename SparseT = uint8_t>
 | |
| class SparseMultiSet {
 | |
|   static_assert(std::numeric_limits<SparseT>::is_integer &&
 | |
|                 !std::numeric_limits<SparseT>::is_signed,
 | |
|                 "SparseT must be an unsigned integer type");
 | |
| 
 | |
|   /// The actual data that's stored, as a doubly-linked list implemented via
 | |
|   /// indices into the DenseVector.  The doubly linked list is implemented
 | |
|   /// circular in Prev indices, and INVALID-terminated in Next indices. This
 | |
|   /// provides efficient access to list tails. These nodes can also be
 | |
|   /// tombstones, in which case they are actually nodes in a single-linked
 | |
|   /// freelist of recyclable slots.
 | |
|   struct SMSNode {
 | |
|     static const unsigned INVALID = ~0U;
 | |
| 
 | |
|     ValueT Data;
 | |
|     unsigned Prev;
 | |
|     unsigned Next;
 | |
| 
 | |
|     SMSNode(ValueT D, unsigned P, unsigned N) : Data(D), Prev(P), Next(N) { }
 | |
| 
 | |
|     /// List tails have invalid Nexts.
 | |
|     bool isTail() const {
 | |
|       return Next == INVALID;
 | |
|     }
 | |
| 
 | |
|     /// Whether this node is a tombstone node, and thus is in our freelist.
 | |
|     bool isTombstone() const {
 | |
|       return Prev == INVALID;
 | |
|     }
 | |
| 
 | |
|     /// Since the list is circular in Prev, all non-tombstone nodes have a valid
 | |
|     /// Prev.
 | |
|     bool isValid() const { return Prev != INVALID; }
 | |
|   };
 | |
| 
 | |
|   typedef typename KeyFunctorT::argument_type KeyT;
 | |
|   typedef SmallVector<SMSNode, 8> DenseT;
 | |
|   DenseT Dense;
 | |
|   SparseT *Sparse;
 | |
|   unsigned Universe;
 | |
|   KeyFunctorT KeyIndexOf;
 | |
|   SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf;
 | |
| 
 | |
|   /// We have a built-in recycler for reusing tombstone slots. This recycler
 | |
|   /// puts a singly-linked free list into tombstone slots, allowing us quick
 | |
|   /// erasure, iterator preservation, and dense size.
 | |
|   unsigned FreelistIdx;
 | |
|   unsigned NumFree;
 | |
| 
 | |
|   unsigned sparseIndex(const ValueT &Val) const {
 | |
|     assert(ValIndexOf(Val) < Universe &&
 | |
|            "Invalid key in set. Did object mutate?");
 | |
|     return ValIndexOf(Val);
 | |
|   }
 | |
|   unsigned sparseIndex(const SMSNode &N) const { return sparseIndex(N.Data); }
 | |
| 
 | |
|   // Disable copy construction and assignment.
 | |
|   // This data structure is not meant to be used that way.
 | |
|   SparseMultiSet(const SparseMultiSet&) LLVM_DELETED_FUNCTION;
 | |
|   SparseMultiSet &operator=(const SparseMultiSet&) LLVM_DELETED_FUNCTION;
 | |
| 
 | |
|   /// Whether the given entry is the head of the list. List heads's previous
 | |
|   /// pointers are to the tail of the list, allowing for efficient access to the
 | |
|   /// list tail. D must be a valid entry node.
 | |
|   bool isHead(const SMSNode &D) const {
 | |
|     assert(D.isValid() && "Invalid node for head");
 | |
|     return Dense[D.Prev].isTail();
 | |
|   }
 | |
| 
 | |
|   /// Whether the given entry is a singleton entry, i.e. the only entry with
 | |
|   /// that key.
 | |
|   bool isSingleton(const SMSNode &N) const {
 | |
|     assert(N.isValid() && "Invalid node for singleton");
 | |
|     // Is N its own predecessor?
 | |
|     return &Dense[N.Prev] == &N;
 | |
|   }
 | |
| 
 | |
|   /// Add in the given SMSNode. Uses a free entry in our freelist if
 | |
|   /// available. Returns the index of the added node.
 | |
|   unsigned addValue(const ValueT& V, unsigned Prev, unsigned Next) {
 | |
|     if (NumFree == 0) {
 | |
|       Dense.push_back(SMSNode(V, Prev, Next));
 | |
|       return Dense.size() - 1;
 | |
|     }
 | |
| 
 | |
|     // Peel off a free slot
 | |
|     unsigned Idx = FreelistIdx;
 | |
|     unsigned NextFree = Dense[Idx].Next;
 | |
|     assert(Dense[Idx].isTombstone() && "Non-tombstone free?");
 | |
| 
 | |
|     Dense[Idx] = SMSNode(V, Prev, Next);
 | |
|     FreelistIdx = NextFree;
 | |
|     --NumFree;
 | |
|     return Idx;
 | |
|   }
 | |
| 
 | |
|   /// Make the current index a new tombstone. Pushes it onto the freelist.
 | |
|   void makeTombstone(unsigned Idx) {
 | |
|     Dense[Idx].Prev = SMSNode::INVALID;
 | |
|     Dense[Idx].Next = FreelistIdx;
 | |
|     FreelistIdx = Idx;
 | |
|     ++NumFree;
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   typedef ValueT value_type;
 | |
|   typedef ValueT &reference;
 | |
|   typedef const ValueT &const_reference;
 | |
|   typedef ValueT *pointer;
 | |
|   typedef const ValueT *const_pointer;
 | |
|   typedef unsigned size_type;
 | |
| 
 | |
|   SparseMultiSet()
 | |
|     : Sparse(nullptr), Universe(0), FreelistIdx(SMSNode::INVALID), NumFree(0) {}
 | |
| 
 | |
|   ~SparseMultiSet() { free(Sparse); }
 | |
| 
 | |
|   /// Set the universe size which determines the largest key the set can hold.
 | |
|   /// The universe must be sized before any elements can be added.
 | |
|   ///
 | |
|   /// @param U Universe size. All object keys must be less than U.
 | |
|   ///
 | |
|   void setUniverse(unsigned U) {
 | |
|     // It's not hard to resize the universe on a non-empty set, but it doesn't
 | |
|     // seem like a likely use case, so we can add that code when we need it.
 | |
|     assert(empty() && "Can only resize universe on an empty map");
 | |
|     // Hysteresis prevents needless reallocations.
 | |
|     if (U >= Universe/4 && U <= Universe)
 | |
|       return;
 | |
|     free(Sparse);
 | |
|     // The Sparse array doesn't actually need to be initialized, so malloc
 | |
|     // would be enough here, but that will cause tools like valgrind to
 | |
|     // complain about branching on uninitialized data.
 | |
|     Sparse = reinterpret_cast<SparseT*>(calloc(U, sizeof(SparseT)));
 | |
|     Universe = U;
 | |
|   }
 | |
| 
 | |
|   /// Our iterators are iterators over the collection of objects that share a
 | |
|   /// key.
 | |
|   template<typename SMSPtrTy>
 | |
|   class iterator_base : public std::iterator<std::bidirectional_iterator_tag,
 | |
|                                              ValueT> {
 | |
|     friend class SparseMultiSet;
 | |
|     SMSPtrTy SMS;
 | |
|     unsigned Idx;
 | |
|     unsigned SparseIdx;
 | |
| 
 | |
|     iterator_base(SMSPtrTy P, unsigned I, unsigned SI)
 | |
|       : SMS(P), Idx(I), SparseIdx(SI) { }
 | |
| 
 | |
|     /// Whether our iterator has fallen outside our dense vector.
 | |
|     bool isEnd() const {
 | |
|       if (Idx == SMSNode::INVALID)
 | |
|         return true;
 | |
| 
 | |
|       assert(Idx < SMS->Dense.size() && "Out of range, non-INVALID Idx?");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     /// Whether our iterator is properly keyed, i.e. the SparseIdx is valid
 | |
|     bool isKeyed() const { return SparseIdx < SMS->Universe; }
 | |
| 
 | |
|     unsigned Prev() const { return SMS->Dense[Idx].Prev; }
 | |
|     unsigned Next() const { return SMS->Dense[Idx].Next; }
 | |
| 
 | |
|     void setPrev(unsigned P) { SMS->Dense[Idx].Prev = P; }
 | |
|     void setNext(unsigned N) { SMS->Dense[Idx].Next = N; }
 | |
| 
 | |
|   public:
 | |
|     typedef std::iterator<std::bidirectional_iterator_tag, ValueT> super;
 | |
|     typedef typename super::value_type value_type;
 | |
|     typedef typename super::difference_type difference_type;
 | |
|     typedef typename super::pointer pointer;
 | |
|     typedef typename super::reference reference;
 | |
| 
 | |
|     reference operator*() const {
 | |
|       assert(isKeyed() && SMS->sparseIndex(SMS->Dense[Idx].Data) == SparseIdx &&
 | |
|              "Dereferencing iterator of invalid key or index");
 | |
| 
 | |
|       return SMS->Dense[Idx].Data;
 | |
|     }
 | |
|     pointer operator->() const { return &operator*(); }
 | |
| 
 | |
|     /// Comparison operators
 | |
|     bool operator==(const iterator_base &RHS) const {
 | |
|       // end compares equal
 | |
|       if (SMS == RHS.SMS && Idx == RHS.Idx) {
 | |
|         assert((isEnd() || SparseIdx == RHS.SparseIdx) &&
 | |
|                "Same dense entry, but different keys?");
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     bool operator!=(const iterator_base &RHS) const {
 | |
|       return !operator==(RHS);
 | |
|     }
 | |
| 
 | |
|     /// Increment and decrement operators
 | |
|     iterator_base &operator--() { // predecrement - Back up
 | |
|       assert(isKeyed() && "Decrementing an invalid iterator");
 | |
|       assert((isEnd() || !SMS->isHead(SMS->Dense[Idx])) &&
 | |
|              "Decrementing head of list");
 | |
| 
 | |
|       // If we're at the end, then issue a new find()
 | |
|       if (isEnd())
 | |
|         Idx = SMS->findIndex(SparseIdx).Prev();
 | |
|       else
 | |
|         Idx = Prev();
 | |
| 
 | |
|       return *this;
 | |
|     }
 | |
|     iterator_base &operator++() { // preincrement - Advance
 | |
|       assert(!isEnd() && isKeyed() && "Incrementing an invalid/end iterator");
 | |
|       Idx = Next();
 | |
|       return *this;
 | |
|     }
 | |
|     iterator_base operator--(int) { // postdecrement
 | |
|       iterator_base I(*this);
 | |
|       --*this;
 | |
|       return I;
 | |
|     }
 | |
|     iterator_base operator++(int) { // postincrement
 | |
|       iterator_base I(*this);
 | |
|       ++*this;
 | |
|       return I;
 | |
|     }
 | |
|   };
 | |
|   typedef iterator_base<SparseMultiSet *> iterator;
 | |
|   typedef iterator_base<const SparseMultiSet *> const_iterator;
 | |
| 
 | |
|   // Convenience types
 | |
|   typedef std::pair<iterator, iterator> RangePair;
 | |
| 
 | |
|   /// Returns an iterator past this container. Note that such an iterator cannot
 | |
|   /// be decremented, but will compare equal to other end iterators.
 | |
|   iterator end() { return iterator(this, SMSNode::INVALID, SMSNode::INVALID); }
 | |
|   const_iterator end() const {
 | |
|     return const_iterator(this, SMSNode::INVALID, SMSNode::INVALID);
 | |
|   }
 | |
| 
 | |
|   /// Returns true if the set is empty.
 | |
|   ///
 | |
|   /// This is not the same as BitVector::empty().
 | |
|   ///
 | |
|   bool empty() const { return size() == 0; }
 | |
| 
 | |
|   /// Returns the number of elements in the set.
 | |
|   ///
 | |
|   /// This is not the same as BitVector::size() which returns the size of the
 | |
|   /// universe.
 | |
|   ///
 | |
|   size_type size() const {
 | |
|     assert(NumFree <= Dense.size() && "Out-of-bounds free entries");
 | |
|     return Dense.size() - NumFree;
 | |
|   }
 | |
| 
 | |
|   /// Clears the set.  This is a very fast constant time operation.
 | |
|   ///
 | |
|   void clear() {
 | |
|     // Sparse does not need to be cleared, see find().
 | |
|     Dense.clear();
 | |
|     NumFree = 0;
 | |
|     FreelistIdx = SMSNode::INVALID;
 | |
|   }
 | |
| 
 | |
|   /// Find an element by its index.
 | |
|   ///
 | |
|   /// @param   Idx A valid index to find.
 | |
|   /// @returns An iterator to the element identified by key, or end().
 | |
|   ///
 | |
|   iterator findIndex(unsigned Idx) {
 | |
|     assert(Idx < Universe && "Key out of range");
 | |
|     const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
 | |
|     for (unsigned i = Sparse[Idx], e = Dense.size(); i < e; i += Stride) {
 | |
|       const unsigned FoundIdx = sparseIndex(Dense[i]);
 | |
|       // Check that we're pointing at the correct entry and that it is the head
 | |
|       // of a valid list.
 | |
|       if (Idx == FoundIdx && Dense[i].isValid() && isHead(Dense[i]))
 | |
|         return iterator(this, i, Idx);
 | |
|       // Stride is 0 when SparseT >= unsigned.  We don't need to loop.
 | |
|       if (!Stride)
 | |
|         break;
 | |
|     }
 | |
|     return end();
 | |
|   }
 | |
| 
 | |
|   /// Find an element by its key.
 | |
|   ///
 | |
|   /// @param   Key A valid key to find.
 | |
|   /// @returns An iterator to the element identified by key, or end().
 | |
|   ///
 | |
|   iterator find(const KeyT &Key) {
 | |
|     return findIndex(KeyIndexOf(Key));
 | |
|   }
 | |
| 
 | |
|   const_iterator find(const KeyT &Key) const {
 | |
|     iterator I = const_cast<SparseMultiSet*>(this)->findIndex(KeyIndexOf(Key));
 | |
|     return const_iterator(I.SMS, I.Idx, KeyIndexOf(Key));
 | |
|   }
 | |
| 
 | |
|   /// Returns the number of elements identified by Key. This will be linear in
 | |
|   /// the number of elements of that key.
 | |
|   size_type count(const KeyT &Key) const {
 | |
|     unsigned Ret = 0;
 | |
|     for (const_iterator It = find(Key); It != end(); ++It)
 | |
|       ++Ret;
 | |
| 
 | |
|     return Ret;
 | |
|   }
 | |
| 
 | |
|   /// Returns true if this set contains an element identified by Key.
 | |
|   bool contains(const KeyT &Key) const {
 | |
|     return find(Key) != end();
 | |
|   }
 | |
| 
 | |
|   /// Return the head and tail of the subset's list, otherwise returns end().
 | |
|   iterator getHead(const KeyT &Key) { return find(Key); }
 | |
|   iterator getTail(const KeyT &Key) {
 | |
|     iterator I = find(Key);
 | |
|     if (I != end())
 | |
|       I = iterator(this, I.Prev(), KeyIndexOf(Key));
 | |
|     return I;
 | |
|   }
 | |
| 
 | |
|   /// The bounds of the range of items sharing Key K. First member is the head
 | |
|   /// of the list, and the second member is a decrementable end iterator for
 | |
|   /// that key.
 | |
|   RangePair equal_range(const KeyT &K) {
 | |
|     iterator B = find(K);
 | |
|     iterator E = iterator(this, SMSNode::INVALID, B.SparseIdx);
 | |
|     return make_pair(B, E);
 | |
|   }
 | |
| 
 | |
|   /// Insert a new element at the tail of the subset list. Returns an iterator
 | |
|   /// to the newly added entry.
 | |
|   iterator insert(const ValueT &Val) {
 | |
|     unsigned Idx = sparseIndex(Val);
 | |
|     iterator I = findIndex(Idx);
 | |
| 
 | |
|     unsigned NodeIdx = addValue(Val, SMSNode::INVALID, SMSNode::INVALID);
 | |
| 
 | |
|     if (I == end()) {
 | |
|       // Make a singleton list
 | |
|       Sparse[Idx] = NodeIdx;
 | |
|       Dense[NodeIdx].Prev = NodeIdx;
 | |
|       return iterator(this, NodeIdx, Idx);
 | |
|     }
 | |
| 
 | |
|     // Stick it at the end.
 | |
|     unsigned HeadIdx = I.Idx;
 | |
|     unsigned TailIdx = I.Prev();
 | |
|     Dense[TailIdx].Next = NodeIdx;
 | |
|     Dense[HeadIdx].Prev = NodeIdx;
 | |
|     Dense[NodeIdx].Prev = TailIdx;
 | |
| 
 | |
|     return iterator(this, NodeIdx, Idx);
 | |
|   }
 | |
| 
 | |
|   /// Erases an existing element identified by a valid iterator.
 | |
|   ///
 | |
|   /// This invalidates iterators pointing at the same entry, but erase() returns
 | |
|   /// an iterator pointing to the next element in the subset's list. This makes
 | |
|   /// it possible to erase selected elements while iterating over the subset:
 | |
|   ///
 | |
|   ///   tie(I, E) = Set.equal_range(Key);
 | |
|   ///   while (I != E)
 | |
|   ///     if (test(*I))
 | |
|   ///       I = Set.erase(I);
 | |
|   ///     else
 | |
|   ///       ++I;
 | |
|   ///
 | |
|   /// Note that if the last element in the subset list is erased, this will
 | |
|   /// return an end iterator which can be decremented to get the new tail (if it
 | |
|   /// exists):
 | |
|   ///
 | |
|   ///  tie(B, I) = Set.equal_range(Key);
 | |
|   ///  for (bool isBegin = B == I; !isBegin; /* empty */) {
 | |
|   ///    isBegin = (--I) == B;
 | |
|   ///    if (test(I))
 | |
|   ///      break;
 | |
|   ///    I = erase(I);
 | |
|   ///  }
 | |
|   iterator erase(iterator I) {
 | |
|     assert(I.isKeyed() && !I.isEnd() && !Dense[I.Idx].isTombstone() &&
 | |
|            "erasing invalid/end/tombstone iterator");
 | |
| 
 | |
|     // First, unlink the node from its list. Then swap the node out with the
 | |
|     // dense vector's last entry
 | |
|     iterator NextI = unlink(Dense[I.Idx]);
 | |
| 
 | |
|     // Put in a tombstone.
 | |
|     makeTombstone(I.Idx);
 | |
| 
 | |
|     return NextI;
 | |
|   }
 | |
| 
 | |
|   /// Erase all elements with the given key. This invalidates all
 | |
|   /// iterators of that key.
 | |
|   void eraseAll(const KeyT &K) {
 | |
|     for (iterator I = find(K); I != end(); /* empty */)
 | |
|       I = erase(I);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   /// Unlink the node from its list. Returns the next node in the list.
 | |
|   iterator unlink(const SMSNode &N) {
 | |
|     if (isSingleton(N)) {
 | |
|       // Singleton is already unlinked
 | |
|       assert(N.Next == SMSNode::INVALID && "Singleton has next?");
 | |
|       return iterator(this, SMSNode::INVALID, ValIndexOf(N.Data));
 | |
|     }
 | |
| 
 | |
|     if (isHead(N)) {
 | |
|       // If we're the head, then update the sparse array and our next.
 | |
|       Sparse[sparseIndex(N)] = N.Next;
 | |
|       Dense[N.Next].Prev = N.Prev;
 | |
|       return iterator(this, N.Next, ValIndexOf(N.Data));
 | |
|     }
 | |
| 
 | |
|     if (N.isTail()) {
 | |
|       // If we're the tail, then update our head and our previous.
 | |
|       findIndex(sparseIndex(N)).setPrev(N.Prev);
 | |
|       Dense[N.Prev].Next = N.Next;
 | |
| 
 | |
|       // Give back an end iterator that can be decremented
 | |
|       iterator I(this, N.Prev, ValIndexOf(N.Data));
 | |
|       return ++I;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, just drop us
 | |
|     Dense[N.Next].Prev = N.Prev;
 | |
|     Dense[N.Prev].Next = N.Next;
 | |
|     return iterator(this, N.Next, ValIndexOf(N.Data));
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end namespace llvm
 | |
| 
 | |
| #endif
 |