mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186098 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			960 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			960 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- LiveInterval.cpp - Live Interval Representation -------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the LiveRange and LiveInterval classes.  Given some
 | 
						|
// numbering of each the machine instructions an interval [i, j) is said to be a
 | 
						|
// live interval for register v if there is no instruction with number j' > j
 | 
						|
// such that v is live at j' and there is no instruction with number i' < i such
 | 
						|
// that v is live at i'. In this implementation intervals can have holes,
 | 
						|
// i.e. an interval might look like [1,20), [50,65), [1000,1001).  Each
 | 
						|
// individual range is represented as an instance of LiveRange, and the whole
 | 
						|
// interval is represented as an instance of LiveInterval.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/CodeGen/LiveInterval.h"
 | 
						|
#include "RegisterCoalescer.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
LiveInterval::iterator LiveInterval::find(SlotIndex Pos) {
 | 
						|
  // This algorithm is basically std::upper_bound.
 | 
						|
  // Unfortunately, std::upper_bound cannot be used with mixed types until we
 | 
						|
  // adopt C++0x. Many libraries can do it, but not all.
 | 
						|
  if (empty() || Pos >= endIndex())
 | 
						|
    return end();
 | 
						|
  iterator I = begin();
 | 
						|
  size_t Len = ranges.size();
 | 
						|
  do {
 | 
						|
    size_t Mid = Len >> 1;
 | 
						|
    if (Pos < I[Mid].end)
 | 
						|
      Len = Mid;
 | 
						|
    else
 | 
						|
      I += Mid + 1, Len -= Mid + 1;
 | 
						|
  } while (Len);
 | 
						|
  return I;
 | 
						|
}
 | 
						|
 | 
						|
VNInfo *LiveInterval::createDeadDef(SlotIndex Def,
 | 
						|
                                    VNInfo::Allocator &VNInfoAllocator) {
 | 
						|
  assert(!Def.isDead() && "Cannot define a value at the dead slot");
 | 
						|
  iterator I = find(Def);
 | 
						|
  if (I == end()) {
 | 
						|
    VNInfo *VNI = getNextValue(Def, VNInfoAllocator);
 | 
						|
    ranges.push_back(LiveRange(Def, Def.getDeadSlot(), VNI));
 | 
						|
    return VNI;
 | 
						|
  }
 | 
						|
  if (SlotIndex::isSameInstr(Def, I->start)) {
 | 
						|
    assert(I->valno->def == I->start && "Inconsistent existing value def");
 | 
						|
 | 
						|
    // It is possible to have both normal and early-clobber defs of the same
 | 
						|
    // register on an instruction. It doesn't make a lot of sense, but it is
 | 
						|
    // possible to specify in inline assembly.
 | 
						|
    //
 | 
						|
    // Just convert everything to early-clobber.
 | 
						|
    Def = std::min(Def, I->start);
 | 
						|
    if (Def != I->start)
 | 
						|
      I->start = I->valno->def = Def;
 | 
						|
    return I->valno;
 | 
						|
  }
 | 
						|
  assert(SlotIndex::isEarlierInstr(Def, I->start) && "Already live at def");
 | 
						|
  VNInfo *VNI = getNextValue(Def, VNInfoAllocator);
 | 
						|
  ranges.insert(I, LiveRange(Def, Def.getDeadSlot(), VNI));
 | 
						|
  return VNI;
 | 
						|
}
 | 
						|
 | 
						|
// overlaps - Return true if the intersection of the two live intervals is
 | 
						|
// not empty.
 | 
						|
//
 | 
						|
// An example for overlaps():
 | 
						|
//
 | 
						|
// 0: A = ...
 | 
						|
// 4: B = ...
 | 
						|
// 8: C = A + B ;; last use of A
 | 
						|
//
 | 
						|
// The live intervals should look like:
 | 
						|
//
 | 
						|
// A = [3, 11)
 | 
						|
// B = [7, x)
 | 
						|
// C = [11, y)
 | 
						|
//
 | 
						|
// A->overlaps(C) should return false since we want to be able to join
 | 
						|
// A and C.
 | 
						|
//
 | 
						|
bool LiveInterval::overlapsFrom(const LiveInterval& other,
 | 
						|
                                const_iterator StartPos) const {
 | 
						|
  assert(!empty() && "empty interval");
 | 
						|
  const_iterator i = begin();
 | 
						|
  const_iterator ie = end();
 | 
						|
  const_iterator j = StartPos;
 | 
						|
  const_iterator je = other.end();
 | 
						|
 | 
						|
  assert((StartPos->start <= i->start || StartPos == other.begin()) &&
 | 
						|
         StartPos != other.end() && "Bogus start position hint!");
 | 
						|
 | 
						|
  if (i->start < j->start) {
 | 
						|
    i = std::upper_bound(i, ie, j->start);
 | 
						|
    if (i != ranges.begin()) --i;
 | 
						|
  } else if (j->start < i->start) {
 | 
						|
    ++StartPos;
 | 
						|
    if (StartPos != other.end() && StartPos->start <= i->start) {
 | 
						|
      assert(StartPos < other.end() && i < end());
 | 
						|
      j = std::upper_bound(j, je, i->start);
 | 
						|
      if (j != other.ranges.begin()) --j;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (j == je) return false;
 | 
						|
 | 
						|
  while (i != ie) {
 | 
						|
    if (i->start > j->start) {
 | 
						|
      std::swap(i, j);
 | 
						|
      std::swap(ie, je);
 | 
						|
    }
 | 
						|
 | 
						|
    if (i->end > j->start)
 | 
						|
      return true;
 | 
						|
    ++i;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool LiveInterval::overlaps(const LiveInterval &Other,
 | 
						|
                            const CoalescerPair &CP,
 | 
						|
                            const SlotIndexes &Indexes) const {
 | 
						|
  assert(!empty() && "empty interval");
 | 
						|
  if (Other.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Use binary searches to find initial positions.
 | 
						|
  const_iterator I = find(Other.beginIndex());
 | 
						|
  const_iterator IE = end();
 | 
						|
  if (I == IE)
 | 
						|
    return false;
 | 
						|
  const_iterator J = Other.find(I->start);
 | 
						|
  const_iterator JE = Other.end();
 | 
						|
  if (J == JE)
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (;;) {
 | 
						|
    // J has just been advanced to satisfy:
 | 
						|
    assert(J->end >= I->start);
 | 
						|
    // Check for an overlap.
 | 
						|
    if (J->start < I->end) {
 | 
						|
      // I and J are overlapping. Find the later start.
 | 
						|
      SlotIndex Def = std::max(I->start, J->start);
 | 
						|
      // Allow the overlap if Def is a coalescable copy.
 | 
						|
      if (Def.isBlock() ||
 | 
						|
          !CP.isCoalescable(Indexes.getInstructionFromIndex(Def)))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    // Advance the iterator that ends first to check for more overlaps.
 | 
						|
    if (J->end > I->end) {
 | 
						|
      std::swap(I, J);
 | 
						|
      std::swap(IE, JE);
 | 
						|
    }
 | 
						|
    // Advance J until J->end >= I->start.
 | 
						|
    do
 | 
						|
      if (++J == JE)
 | 
						|
        return false;
 | 
						|
    while (J->end < I->start);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// overlaps - Return true if the live interval overlaps a range specified
 | 
						|
/// by [Start, End).
 | 
						|
bool LiveInterval::overlaps(SlotIndex Start, SlotIndex End) const {
 | 
						|
  assert(Start < End && "Invalid range");
 | 
						|
  const_iterator I = std::lower_bound(begin(), end(), End);
 | 
						|
  return I != begin() && (--I)->end > Start;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// ValNo is dead, remove it.  If it is the largest value number, just nuke it
 | 
						|
/// (and any other deleted values neighboring it), otherwise mark it as ~1U so
 | 
						|
/// it can be nuked later.
 | 
						|
void LiveInterval::markValNoForDeletion(VNInfo *ValNo) {
 | 
						|
  if (ValNo->id == getNumValNums()-1) {
 | 
						|
    do {
 | 
						|
      valnos.pop_back();
 | 
						|
    } while (!valnos.empty() && valnos.back()->isUnused());
 | 
						|
  } else {
 | 
						|
    ValNo->markUnused();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// RenumberValues - Renumber all values in order of appearance and delete the
 | 
						|
/// remaining unused values.
 | 
						|
void LiveInterval::RenumberValues(LiveIntervals &lis) {
 | 
						|
  SmallPtrSet<VNInfo*, 8> Seen;
 | 
						|
  valnos.clear();
 | 
						|
  for (const_iterator I = begin(), E = end(); I != E; ++I) {
 | 
						|
    VNInfo *VNI = I->valno;
 | 
						|
    if (!Seen.insert(VNI))
 | 
						|
      continue;
 | 
						|
    assert(!VNI->isUnused() && "Unused valno used by live range");
 | 
						|
    VNI->id = (unsigned)valnos.size();
 | 
						|
    valnos.push_back(VNI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// extendIntervalEndTo - This method is used when we want to extend the range
 | 
						|
/// specified by I to end at the specified endpoint.  To do this, we should
 | 
						|
/// merge and eliminate all ranges that this will overlap with.  The iterator is
 | 
						|
/// not invalidated.
 | 
						|
void LiveInterval::extendIntervalEndTo(Ranges::iterator I, SlotIndex NewEnd) {
 | 
						|
  assert(I != ranges.end() && "Not a valid interval!");
 | 
						|
  VNInfo *ValNo = I->valno;
 | 
						|
 | 
						|
  // Search for the first interval that we can't merge with.
 | 
						|
  Ranges::iterator MergeTo = llvm::next(I);
 | 
						|
  for (; MergeTo != ranges.end() && NewEnd >= MergeTo->end; ++MergeTo) {
 | 
						|
    assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
 | 
						|
  }
 | 
						|
 | 
						|
  // If NewEnd was in the middle of an interval, make sure to get its endpoint.
 | 
						|
  I->end = std::max(NewEnd, prior(MergeTo)->end);
 | 
						|
 | 
						|
  // If the newly formed range now touches the range after it and if they have
 | 
						|
  // the same value number, merge the two ranges into one range.
 | 
						|
  if (MergeTo != ranges.end() && MergeTo->start <= I->end &&
 | 
						|
      MergeTo->valno == ValNo) {
 | 
						|
    I->end = MergeTo->end;
 | 
						|
    ++MergeTo;
 | 
						|
  }
 | 
						|
 | 
						|
  // Erase any dead ranges.
 | 
						|
  ranges.erase(llvm::next(I), MergeTo);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// extendIntervalStartTo - This method is used when we want to extend the range
 | 
						|
/// specified by I to start at the specified endpoint.  To do this, we should
 | 
						|
/// merge and eliminate all ranges that this will overlap with.
 | 
						|
LiveInterval::Ranges::iterator
 | 
						|
LiveInterval::extendIntervalStartTo(Ranges::iterator I, SlotIndex NewStart) {
 | 
						|
  assert(I != ranges.end() && "Not a valid interval!");
 | 
						|
  VNInfo *ValNo = I->valno;
 | 
						|
 | 
						|
  // Search for the first interval that we can't merge with.
 | 
						|
  Ranges::iterator MergeTo = I;
 | 
						|
  do {
 | 
						|
    if (MergeTo == ranges.begin()) {
 | 
						|
      I->start = NewStart;
 | 
						|
      ranges.erase(MergeTo, I);
 | 
						|
      return I;
 | 
						|
    }
 | 
						|
    assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
 | 
						|
    --MergeTo;
 | 
						|
  } while (NewStart <= MergeTo->start);
 | 
						|
 | 
						|
  // If we start in the middle of another interval, just delete a range and
 | 
						|
  // extend that interval.
 | 
						|
  if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
 | 
						|
    MergeTo->end = I->end;
 | 
						|
  } else {
 | 
						|
    // Otherwise, extend the interval right after.
 | 
						|
    ++MergeTo;
 | 
						|
    MergeTo->start = NewStart;
 | 
						|
    MergeTo->end = I->end;
 | 
						|
  }
 | 
						|
 | 
						|
  ranges.erase(llvm::next(MergeTo), llvm::next(I));
 | 
						|
  return MergeTo;
 | 
						|
}
 | 
						|
 | 
						|
LiveInterval::iterator
 | 
						|
LiveInterval::addRangeFrom(LiveRange LR, iterator From) {
 | 
						|
  SlotIndex Start = LR.start, End = LR.end;
 | 
						|
  iterator it = std::upper_bound(From, ranges.end(), Start);
 | 
						|
 | 
						|
  // If the inserted interval starts in the middle or right at the end of
 | 
						|
  // another interval, just extend that interval to contain the range of LR.
 | 
						|
  if (it != ranges.begin()) {
 | 
						|
    iterator B = prior(it);
 | 
						|
    if (LR.valno == B->valno) {
 | 
						|
      if (B->start <= Start && B->end >= Start) {
 | 
						|
        extendIntervalEndTo(B, End);
 | 
						|
        return B;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Check to make sure that we are not overlapping two live ranges with
 | 
						|
      // different valno's.
 | 
						|
      assert(B->end <= Start &&
 | 
						|
             "Cannot overlap two LiveRanges with differing ValID's"
 | 
						|
             " (did you def the same reg twice in a MachineInstr?)");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, if this range ends in the middle of, or right next to, another
 | 
						|
  // interval, merge it into that interval.
 | 
						|
  if (it != ranges.end()) {
 | 
						|
    if (LR.valno == it->valno) {
 | 
						|
      if (it->start <= End) {
 | 
						|
        it = extendIntervalStartTo(it, Start);
 | 
						|
 | 
						|
        // If LR is a complete superset of an interval, we may need to grow its
 | 
						|
        // endpoint as well.
 | 
						|
        if (End > it->end)
 | 
						|
          extendIntervalEndTo(it, End);
 | 
						|
        return it;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Check to make sure that we are not overlapping two live ranges with
 | 
						|
      // different valno's.
 | 
						|
      assert(it->start >= End &&
 | 
						|
             "Cannot overlap two LiveRanges with differing ValID's");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, this is just a new range that doesn't interact with anything.
 | 
						|
  // Insert it.
 | 
						|
  return ranges.insert(it, LR);
 | 
						|
}
 | 
						|
 | 
						|
/// extendInBlock - If this interval is live before Kill in the basic
 | 
						|
/// block that starts at StartIdx, extend it to be live up to Kill and return
 | 
						|
/// the value. If there is no live range before Kill, return NULL.
 | 
						|
VNInfo *LiveInterval::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
 | 
						|
  if (empty())
 | 
						|
    return 0;
 | 
						|
  iterator I = std::upper_bound(begin(), end(), Kill.getPrevSlot());
 | 
						|
  if (I == begin())
 | 
						|
    return 0;
 | 
						|
  --I;
 | 
						|
  if (I->end <= StartIdx)
 | 
						|
    return 0;
 | 
						|
  if (I->end < Kill)
 | 
						|
    extendIntervalEndTo(I, Kill);
 | 
						|
  return I->valno;
 | 
						|
}
 | 
						|
 | 
						|
/// removeRange - Remove the specified range from this interval.  Note that
 | 
						|
/// the range must be in a single LiveRange in its entirety.
 | 
						|
void LiveInterval::removeRange(SlotIndex Start, SlotIndex End,
 | 
						|
                               bool RemoveDeadValNo) {
 | 
						|
  // Find the LiveRange containing this span.
 | 
						|
  Ranges::iterator I = find(Start);
 | 
						|
  assert(I != ranges.end() && "Range is not in interval!");
 | 
						|
  assert(I->containsRange(Start, End) && "Range is not entirely in interval!");
 | 
						|
 | 
						|
  // If the span we are removing is at the start of the LiveRange, adjust it.
 | 
						|
  VNInfo *ValNo = I->valno;
 | 
						|
  if (I->start == Start) {
 | 
						|
    if (I->end == End) {
 | 
						|
      if (RemoveDeadValNo) {
 | 
						|
        // Check if val# is dead.
 | 
						|
        bool isDead = true;
 | 
						|
        for (const_iterator II = begin(), EE = end(); II != EE; ++II)
 | 
						|
          if (II != I && II->valno == ValNo) {
 | 
						|
            isDead = false;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        if (isDead) {
 | 
						|
          // Now that ValNo is dead, remove it.
 | 
						|
          markValNoForDeletion(ValNo);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      ranges.erase(I);  // Removed the whole LiveRange.
 | 
						|
    } else
 | 
						|
      I->start = End;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise if the span we are removing is at the end of the LiveRange,
 | 
						|
  // adjust the other way.
 | 
						|
  if (I->end == End) {
 | 
						|
    I->end = Start;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we are splitting the LiveRange into two pieces.
 | 
						|
  SlotIndex OldEnd = I->end;
 | 
						|
  I->end = Start;   // Trim the old interval.
 | 
						|
 | 
						|
  // Insert the new one.
 | 
						|
  ranges.insert(llvm::next(I), LiveRange(End, OldEnd, ValNo));
 | 
						|
}
 | 
						|
 | 
						|
/// removeValNo - Remove all the ranges defined by the specified value#.
 | 
						|
/// Also remove the value# from value# list.
 | 
						|
void LiveInterval::removeValNo(VNInfo *ValNo) {
 | 
						|
  if (empty()) return;
 | 
						|
  Ranges::iterator I = ranges.end();
 | 
						|
  Ranges::iterator E = ranges.begin();
 | 
						|
  do {
 | 
						|
    --I;
 | 
						|
    if (I->valno == ValNo)
 | 
						|
      ranges.erase(I);
 | 
						|
  } while (I != E);
 | 
						|
  // Now that ValNo is dead, remove it.
 | 
						|
  markValNoForDeletion(ValNo);
 | 
						|
}
 | 
						|
 | 
						|
/// join - Join two live intervals (this, and other) together.  This applies
 | 
						|
/// mappings to the value numbers in the LHS/RHS intervals as specified.  If
 | 
						|
/// the intervals are not joinable, this aborts.
 | 
						|
void LiveInterval::join(LiveInterval &Other,
 | 
						|
                        const int *LHSValNoAssignments,
 | 
						|
                        const int *RHSValNoAssignments,
 | 
						|
                        SmallVectorImpl<VNInfo *> &NewVNInfo,
 | 
						|
                        MachineRegisterInfo *MRI) {
 | 
						|
  verify();
 | 
						|
 | 
						|
  // Determine if any of our live range values are mapped.  This is uncommon, so
 | 
						|
  // we want to avoid the interval scan if not.
 | 
						|
  bool MustMapCurValNos = false;
 | 
						|
  unsigned NumVals = getNumValNums();
 | 
						|
  unsigned NumNewVals = NewVNInfo.size();
 | 
						|
  for (unsigned i = 0; i != NumVals; ++i) {
 | 
						|
    unsigned LHSValID = LHSValNoAssignments[i];
 | 
						|
    if (i != LHSValID ||
 | 
						|
        (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
 | 
						|
      MustMapCurValNos = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have to apply a mapping to our base interval assignment, rewrite it
 | 
						|
  // now.
 | 
						|
  if (MustMapCurValNos && !empty()) {
 | 
						|
    // Map the first live range.
 | 
						|
 | 
						|
    iterator OutIt = begin();
 | 
						|
    OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
 | 
						|
    for (iterator I = llvm::next(OutIt), E = end(); I != E; ++I) {
 | 
						|
      VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
 | 
						|
      assert(nextValNo != 0 && "Huh?");
 | 
						|
 | 
						|
      // If this live range has the same value # as its immediate predecessor,
 | 
						|
      // and if they are neighbors, remove one LiveRange.  This happens when we
 | 
						|
      // have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
 | 
						|
      if (OutIt->valno == nextValNo && OutIt->end == I->start) {
 | 
						|
        OutIt->end = I->end;
 | 
						|
      } else {
 | 
						|
        // Didn't merge. Move OutIt to the next interval,
 | 
						|
        ++OutIt;
 | 
						|
        OutIt->valno = nextValNo;
 | 
						|
        if (OutIt != I) {
 | 
						|
          OutIt->start = I->start;
 | 
						|
          OutIt->end = I->end;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // If we merge some live ranges, chop off the end.
 | 
						|
    ++OutIt;
 | 
						|
    ranges.erase(OutIt, end());
 | 
						|
  }
 | 
						|
 | 
						|
  // Rewrite Other values before changing the VNInfo ids.
 | 
						|
  // This can leave Other in an invalid state because we're not coalescing
 | 
						|
  // touching segments that now have identical values. That's OK since Other is
 | 
						|
  // not supposed to be valid after calling join();
 | 
						|
  for (iterator I = Other.begin(), E = Other.end(); I != E; ++I)
 | 
						|
    I->valno = NewVNInfo[RHSValNoAssignments[I->valno->id]];
 | 
						|
 | 
						|
  // Update val# info. Renumber them and make sure they all belong to this
 | 
						|
  // LiveInterval now. Also remove dead val#'s.
 | 
						|
  unsigned NumValNos = 0;
 | 
						|
  for (unsigned i = 0; i < NumNewVals; ++i) {
 | 
						|
    VNInfo *VNI = NewVNInfo[i];
 | 
						|
    if (VNI) {
 | 
						|
      if (NumValNos >= NumVals)
 | 
						|
        valnos.push_back(VNI);
 | 
						|
      else
 | 
						|
        valnos[NumValNos] = VNI;
 | 
						|
      VNI->id = NumValNos++;  // Renumber val#.
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (NumNewVals < NumVals)
 | 
						|
    valnos.resize(NumNewVals);  // shrinkify
 | 
						|
 | 
						|
  // Okay, now insert the RHS live ranges into the LHS.
 | 
						|
  LiveRangeUpdater Updater(this);
 | 
						|
  for (iterator I = Other.begin(), E = Other.end(); I != E; ++I)
 | 
						|
    Updater.add(*I);
 | 
						|
}
 | 
						|
 | 
						|
/// MergeRangesInAsValue - Merge all of the intervals in RHS into this live
 | 
						|
/// interval as the specified value number.  The LiveRanges in RHS are
 | 
						|
/// allowed to overlap with LiveRanges in the current interval, but only if
 | 
						|
/// the overlapping LiveRanges have the specified value number.
 | 
						|
void LiveInterval::MergeRangesInAsValue(const LiveInterval &RHS,
 | 
						|
                                        VNInfo *LHSValNo) {
 | 
						|
  LiveRangeUpdater Updater(this);
 | 
						|
  for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
 | 
						|
    Updater.add(I->start, I->end, LHSValNo);
 | 
						|
}
 | 
						|
 | 
						|
/// MergeValueInAsValue - Merge all of the live ranges of a specific val#
 | 
						|
/// in RHS into this live interval as the specified value number.
 | 
						|
/// The LiveRanges in RHS are allowed to overlap with LiveRanges in the
 | 
						|
/// current interval, it will replace the value numbers of the overlaped
 | 
						|
/// live ranges with the specified value number.
 | 
						|
void LiveInterval::MergeValueInAsValue(const LiveInterval &RHS,
 | 
						|
                                       const VNInfo *RHSValNo,
 | 
						|
                                       VNInfo *LHSValNo) {
 | 
						|
  LiveRangeUpdater Updater(this);
 | 
						|
  for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
 | 
						|
    if (I->valno == RHSValNo)
 | 
						|
      Updater.add(I->start, I->end, LHSValNo);
 | 
						|
}
 | 
						|
 | 
						|
/// MergeValueNumberInto - This method is called when two value nubmers
 | 
						|
/// are found to be equivalent.  This eliminates V1, replacing all
 | 
						|
/// LiveRanges with the V1 value number with the V2 value number.  This can
 | 
						|
/// cause merging of V1/V2 values numbers and compaction of the value space.
 | 
						|
VNInfo* LiveInterval::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
 | 
						|
  assert(V1 != V2 && "Identical value#'s are always equivalent!");
 | 
						|
 | 
						|
  // This code actually merges the (numerically) larger value number into the
 | 
						|
  // smaller value number, which is likely to allow us to compactify the value
 | 
						|
  // space.  The only thing we have to be careful of is to preserve the
 | 
						|
  // instruction that defines the result value.
 | 
						|
 | 
						|
  // Make sure V2 is smaller than V1.
 | 
						|
  if (V1->id < V2->id) {
 | 
						|
    V1->copyFrom(*V2);
 | 
						|
    std::swap(V1, V2);
 | 
						|
  }
 | 
						|
 | 
						|
  // Merge V1 live ranges into V2.
 | 
						|
  for (iterator I = begin(); I != end(); ) {
 | 
						|
    iterator LR = I++;
 | 
						|
    if (LR->valno != V1) continue;  // Not a V1 LiveRange.
 | 
						|
 | 
						|
    // Okay, we found a V1 live range.  If it had a previous, touching, V2 live
 | 
						|
    // range, extend it.
 | 
						|
    if (LR != begin()) {
 | 
						|
      iterator Prev = LR-1;
 | 
						|
      if (Prev->valno == V2 && Prev->end == LR->start) {
 | 
						|
        Prev->end = LR->end;
 | 
						|
 | 
						|
        // Erase this live-range.
 | 
						|
        ranges.erase(LR);
 | 
						|
        I = Prev+1;
 | 
						|
        LR = Prev;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Okay, now we have a V1 or V2 live range that is maximally merged forward.
 | 
						|
    // Ensure that it is a V2 live-range.
 | 
						|
    LR->valno = V2;
 | 
						|
 | 
						|
    // If we can merge it into later V2 live ranges, do so now.  We ignore any
 | 
						|
    // following V1 live ranges, as they will be merged in subsequent iterations
 | 
						|
    // of the loop.
 | 
						|
    if (I != end()) {
 | 
						|
      if (I->start == LR->end && I->valno == V2) {
 | 
						|
        LR->end = I->end;
 | 
						|
        ranges.erase(I);
 | 
						|
        I = LR+1;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that V1 is dead, remove it.
 | 
						|
  markValNoForDeletion(V1);
 | 
						|
 | 
						|
  return V2;
 | 
						|
}
 | 
						|
 | 
						|
unsigned LiveInterval::getSize() const {
 | 
						|
  unsigned Sum = 0;
 | 
						|
  for (const_iterator I = begin(), E = end(); I != E; ++I)
 | 
						|
    Sum += I->start.distance(I->end);
 | 
						|
  return Sum;
 | 
						|
}
 | 
						|
 | 
						|
raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange &LR) {
 | 
						|
  return os << '[' << LR.start << ',' << LR.end << ':' << LR.valno->id << ")";
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
void LiveRange::dump() const {
 | 
						|
  dbgs() << *this << "\n";
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void LiveInterval::print(raw_ostream &OS) const {
 | 
						|
  if (empty())
 | 
						|
    OS << "EMPTY";
 | 
						|
  else {
 | 
						|
    for (LiveInterval::Ranges::const_iterator I = ranges.begin(),
 | 
						|
           E = ranges.end(); I != E; ++I) {
 | 
						|
      OS << *I;
 | 
						|
      assert(I->valno == getValNumInfo(I->valno->id) && "Bad VNInfo");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Print value number info.
 | 
						|
  if (getNumValNums()) {
 | 
						|
    OS << "  ";
 | 
						|
    unsigned vnum = 0;
 | 
						|
    for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
 | 
						|
         ++i, ++vnum) {
 | 
						|
      const VNInfo *vni = *i;
 | 
						|
      if (vnum) OS << " ";
 | 
						|
      OS << vnum << "@";
 | 
						|
      if (vni->isUnused()) {
 | 
						|
        OS << "x";
 | 
						|
      } else {
 | 
						|
        OS << vni->def;
 | 
						|
        if (vni->isPHIDef())
 | 
						|
          OS << "-phi";
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
void LiveInterval::dump() const {
 | 
						|
  dbgs() << *this << "\n";
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
void LiveInterval::verify() const {
 | 
						|
  for (const_iterator I = begin(), E = end(); I != E; ++I) {
 | 
						|
    assert(I->start.isValid());
 | 
						|
    assert(I->end.isValid());
 | 
						|
    assert(I->start < I->end);
 | 
						|
    assert(I->valno != 0);
 | 
						|
    assert(I->valno == valnos[I->valno->id]);
 | 
						|
    if (llvm::next(I) != E) {
 | 
						|
      assert(I->end <= llvm::next(I)->start);
 | 
						|
      if (I->end == llvm::next(I)->start)
 | 
						|
        assert(I->valno != llvm::next(I)->valno);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
void LiveRange::print(raw_ostream &os) const {
 | 
						|
  os << *this;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                           LiveRangeUpdater class
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// The LiveRangeUpdater class always maintains these invariants:
 | 
						|
//
 | 
						|
// - When LastStart is invalid, Spills is empty and the iterators are invalid.
 | 
						|
//   This is the initial state, and the state created by flush().
 | 
						|
//   In this state, isDirty() returns false.
 | 
						|
//
 | 
						|
// Otherwise, segments are kept in three separate areas:
 | 
						|
//
 | 
						|
// 1. [begin; WriteI) at the front of LI.
 | 
						|
// 2. [ReadI; end) at the back of LI.
 | 
						|
// 3. Spills.
 | 
						|
//
 | 
						|
// - LI.begin() <= WriteI <= ReadI <= LI.end().
 | 
						|
// - Segments in all three areas are fully ordered and coalesced.
 | 
						|
// - Segments in area 1 precede and can't coalesce with segments in area 2.
 | 
						|
// - Segments in Spills precede and can't coalesce with segments in area 2.
 | 
						|
// - No coalescing is possible between segments in Spills and segments in area
 | 
						|
//   1, and there are no overlapping segments.
 | 
						|
//
 | 
						|
// The segments in Spills are not ordered with respect to the segments in area
 | 
						|
// 1. They need to be merged.
 | 
						|
//
 | 
						|
// When they exist, Spills.back().start <= LastStart,
 | 
						|
//                 and WriteI[-1].start <= LastStart.
 | 
						|
 | 
						|
void LiveRangeUpdater::print(raw_ostream &OS) const {
 | 
						|
  if (!isDirty()) {
 | 
						|
    if (LI)
 | 
						|
      OS << "Clean " << PrintReg(LI->reg) << " updater: " << *LI << '\n';
 | 
						|
    else
 | 
						|
      OS << "Null updater.\n";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  assert(LI && "Can't have null LI in dirty updater.");
 | 
						|
  OS << PrintReg(LI->reg) << " updater with gap = " << (ReadI - WriteI)
 | 
						|
     << ", last start = " << LastStart
 | 
						|
     << ":\n  Area 1:";
 | 
						|
  for (LiveInterval::const_iterator I = LI->begin(); I != WriteI; ++I)
 | 
						|
    OS << ' ' << *I;
 | 
						|
  OS << "\n  Spills:";
 | 
						|
  for (unsigned I = 0, E = Spills.size(); I != E; ++I)
 | 
						|
    OS << ' ' << Spills[I];
 | 
						|
  OS << "\n  Area 2:";
 | 
						|
  for (LiveInterval::const_iterator I = ReadI, E = LI->end(); I != E; ++I)
 | 
						|
    OS << ' ' << *I;
 | 
						|
  OS << '\n';
 | 
						|
}
 | 
						|
 | 
						|
void LiveRangeUpdater::dump() const
 | 
						|
{
 | 
						|
  print(errs());
 | 
						|
}
 | 
						|
 | 
						|
// Determine if A and B should be coalesced.
 | 
						|
static inline bool coalescable(const LiveRange &A, const LiveRange &B) {
 | 
						|
  assert(A.start <= B.start && "Unordered live ranges.");
 | 
						|
  if (A.end == B.start)
 | 
						|
    return A.valno == B.valno;
 | 
						|
  if (A.end < B.start)
 | 
						|
    return false;
 | 
						|
  assert(A.valno == B.valno && "Cannot overlap different values");
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void LiveRangeUpdater::add(LiveRange Seg) {
 | 
						|
  assert(LI && "Cannot add to a null destination");
 | 
						|
 | 
						|
  // Flush the state if Start moves backwards.
 | 
						|
  if (!LastStart.isValid() || LastStart > Seg.start) {
 | 
						|
    if (isDirty())
 | 
						|
      flush();
 | 
						|
    // This brings us to an uninitialized state. Reinitialize.
 | 
						|
    assert(Spills.empty() && "Leftover spilled segments");
 | 
						|
    WriteI = ReadI = LI->begin();
 | 
						|
  }
 | 
						|
 | 
						|
  // Remember start for next time.
 | 
						|
  LastStart = Seg.start;
 | 
						|
 | 
						|
  // Advance ReadI until it ends after Seg.start.
 | 
						|
  LiveInterval::iterator E = LI->end();
 | 
						|
  if (ReadI != E && ReadI->end <= Seg.start) {
 | 
						|
    // First try to close the gap between WriteI and ReadI with spills.
 | 
						|
    if (ReadI != WriteI)
 | 
						|
      mergeSpills();
 | 
						|
    // Then advance ReadI.
 | 
						|
    if (ReadI == WriteI)
 | 
						|
      ReadI = WriteI = LI->find(Seg.start);
 | 
						|
    else
 | 
						|
      while (ReadI != E && ReadI->end <= Seg.start)
 | 
						|
        *WriteI++ = *ReadI++;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(ReadI == E || ReadI->end > Seg.start);
 | 
						|
 | 
						|
  // Check if the ReadI segment begins early.
 | 
						|
  if (ReadI != E && ReadI->start <= Seg.start) {
 | 
						|
    assert(ReadI->valno == Seg.valno && "Cannot overlap different values");
 | 
						|
    // Bail if Seg is completely contained in ReadI.
 | 
						|
    if (ReadI->end >= Seg.end)
 | 
						|
      return;
 | 
						|
    // Coalesce into Seg.
 | 
						|
    Seg.start = ReadI->start;
 | 
						|
    ++ReadI;
 | 
						|
  }
 | 
						|
 | 
						|
  // Coalesce as much as possible from ReadI into Seg.
 | 
						|
  while (ReadI != E && coalescable(Seg, *ReadI)) {
 | 
						|
    Seg.end = std::max(Seg.end, ReadI->end);
 | 
						|
    ++ReadI;
 | 
						|
  }
 | 
						|
 | 
						|
  // Try coalescing Spills.back() into Seg.
 | 
						|
  if (!Spills.empty() && coalescable(Spills.back(), Seg)) {
 | 
						|
    Seg.start = Spills.back().start;
 | 
						|
    Seg.end = std::max(Spills.back().end, Seg.end);
 | 
						|
    Spills.pop_back();
 | 
						|
  }
 | 
						|
 | 
						|
  // Try coalescing Seg into WriteI[-1].
 | 
						|
  if (WriteI != LI->begin() && coalescable(WriteI[-1], Seg)) {
 | 
						|
    WriteI[-1].end = std::max(WriteI[-1].end, Seg.end);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Seg doesn't coalesce with anything, and needs to be inserted somewhere.
 | 
						|
  if (WriteI != ReadI) {
 | 
						|
    *WriteI++ = Seg;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Finally, append to LI or Spills.
 | 
						|
  if (WriteI == E) {
 | 
						|
    LI->ranges.push_back(Seg);
 | 
						|
    WriteI = ReadI = LI->ranges.end();
 | 
						|
  } else
 | 
						|
    Spills.push_back(Seg);
 | 
						|
}
 | 
						|
 | 
						|
// Merge as many spilled segments as possible into the gap between WriteI
 | 
						|
// and ReadI. Advance WriteI to reflect the inserted instructions.
 | 
						|
void LiveRangeUpdater::mergeSpills() {
 | 
						|
  // Perform a backwards merge of Spills and [SpillI;WriteI).
 | 
						|
  size_t GapSize = ReadI - WriteI;
 | 
						|
  size_t NumMoved = std::min(Spills.size(), GapSize);
 | 
						|
  LiveInterval::iterator Src = WriteI;
 | 
						|
  LiveInterval::iterator Dst = Src + NumMoved;
 | 
						|
  LiveInterval::iterator SpillSrc = Spills.end();
 | 
						|
  LiveInterval::iterator B = LI->begin();
 | 
						|
 | 
						|
  // This is the new WriteI position after merging spills.
 | 
						|
  WriteI = Dst;
 | 
						|
 | 
						|
  // Now merge Src and Spills backwards.
 | 
						|
  while (Src != Dst) {
 | 
						|
    if (Src != B && Src[-1].start > SpillSrc[-1].start)
 | 
						|
      *--Dst = *--Src;
 | 
						|
    else
 | 
						|
      *--Dst = *--SpillSrc;
 | 
						|
  }
 | 
						|
  assert(NumMoved == size_t(Spills.end() - SpillSrc));
 | 
						|
  Spills.erase(SpillSrc, Spills.end());
 | 
						|
}
 | 
						|
 | 
						|
void LiveRangeUpdater::flush() {
 | 
						|
  if (!isDirty())
 | 
						|
    return;
 | 
						|
  // Clear the dirty state.
 | 
						|
  LastStart = SlotIndex();
 | 
						|
 | 
						|
  assert(LI && "Cannot add to a null destination");
 | 
						|
 | 
						|
  // Nothing to merge?
 | 
						|
  if (Spills.empty()) {
 | 
						|
    LI->ranges.erase(WriteI, ReadI);
 | 
						|
    LI->verify();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Resize the WriteI - ReadI gap to match Spills.
 | 
						|
  size_t GapSize = ReadI - WriteI;
 | 
						|
  if (GapSize < Spills.size()) {
 | 
						|
    // The gap is too small. Make some room.
 | 
						|
    size_t WritePos = WriteI - LI->begin();
 | 
						|
    LI->ranges.insert(ReadI, Spills.size() - GapSize, LiveRange());
 | 
						|
    // This also invalidated ReadI, but it is recomputed below.
 | 
						|
    WriteI = LI->ranges.begin() + WritePos;
 | 
						|
  } else {
 | 
						|
    // Shrink the gap if necessary.
 | 
						|
    LI->ranges.erase(WriteI + Spills.size(), ReadI);
 | 
						|
  }
 | 
						|
  ReadI = WriteI + Spills.size();
 | 
						|
  mergeSpills();
 | 
						|
  LI->verify();
 | 
						|
}
 | 
						|
 | 
						|
unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) {
 | 
						|
  // Create initial equivalence classes.
 | 
						|
  EqClass.clear();
 | 
						|
  EqClass.grow(LI->getNumValNums());
 | 
						|
 | 
						|
  const VNInfo *used = 0, *unused = 0;
 | 
						|
 | 
						|
  // Determine connections.
 | 
						|
  for (LiveInterval::const_vni_iterator I = LI->vni_begin(), E = LI->vni_end();
 | 
						|
       I != E; ++I) {
 | 
						|
    const VNInfo *VNI = *I;
 | 
						|
    // Group all unused values into one class.
 | 
						|
    if (VNI->isUnused()) {
 | 
						|
      if (unused)
 | 
						|
        EqClass.join(unused->id, VNI->id);
 | 
						|
      unused = VNI;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    used = VNI;
 | 
						|
    if (VNI->isPHIDef()) {
 | 
						|
      const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
 | 
						|
      assert(MBB && "Phi-def has no defining MBB");
 | 
						|
      // Connect to values live out of predecessors.
 | 
						|
      for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
 | 
						|
           PE = MBB->pred_end(); PI != PE; ++PI)
 | 
						|
        if (const VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI)))
 | 
						|
          EqClass.join(VNI->id, PVNI->id);
 | 
						|
    } else {
 | 
						|
      // Normal value defined by an instruction. Check for two-addr redef.
 | 
						|
      // FIXME: This could be coincidental. Should we really check for a tied
 | 
						|
      // operand constraint?
 | 
						|
      // Note that VNI->def may be a use slot for an early clobber def.
 | 
						|
      if (const VNInfo *UVNI = LI->getVNInfoBefore(VNI->def))
 | 
						|
        EqClass.join(VNI->id, UVNI->id);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Lump all the unused values in with the last used value.
 | 
						|
  if (used && unused)
 | 
						|
    EqClass.join(used->id, unused->id);
 | 
						|
 | 
						|
  EqClass.compress();
 | 
						|
  return EqClass.getNumClasses();
 | 
						|
}
 | 
						|
 | 
						|
void ConnectedVNInfoEqClasses::Distribute(LiveInterval *LIV[],
 | 
						|
                                          MachineRegisterInfo &MRI) {
 | 
						|
  assert(LIV[0] && "LIV[0] must be set");
 | 
						|
  LiveInterval &LI = *LIV[0];
 | 
						|
 | 
						|
  // Rewrite instructions.
 | 
						|
  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg),
 | 
						|
       RE = MRI.reg_end(); RI != RE;) {
 | 
						|
    MachineOperand &MO = RI.getOperand();
 | 
						|
    MachineInstr *MI = MO.getParent();
 | 
						|
    ++RI;
 | 
						|
    // DBG_VALUE instructions don't have slot indexes, so get the index of the
 | 
						|
    // instruction before them.
 | 
						|
    // Normally, DBG_VALUE instructions are removed before this function is
 | 
						|
    // called, but it is not a requirement.
 | 
						|
    SlotIndex Idx;
 | 
						|
    if (MI->isDebugValue())
 | 
						|
      Idx = LIS.getSlotIndexes()->getIndexBefore(MI);
 | 
						|
    else
 | 
						|
      Idx = LIS.getInstructionIndex(MI);
 | 
						|
    LiveRangeQuery LRQ(LI, Idx);
 | 
						|
    const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined();
 | 
						|
    // In the case of an <undef> use that isn't tied to any def, VNI will be
 | 
						|
    // NULL. If the use is tied to a def, VNI will be the defined value.
 | 
						|
    if (!VNI)
 | 
						|
      continue;
 | 
						|
    MO.setReg(LIV[getEqClass(VNI)]->reg);
 | 
						|
  }
 | 
						|
 | 
						|
  // Move runs to new intervals.
 | 
						|
  LiveInterval::iterator J = LI.begin(), E = LI.end();
 | 
						|
  while (J != E && EqClass[J->valno->id] == 0)
 | 
						|
    ++J;
 | 
						|
  for (LiveInterval::iterator I = J; I != E; ++I) {
 | 
						|
    if (unsigned eq = EqClass[I->valno->id]) {
 | 
						|
      assert((LIV[eq]->empty() || LIV[eq]->expiredAt(I->start)) &&
 | 
						|
             "New intervals should be empty");
 | 
						|
      LIV[eq]->ranges.push_back(*I);
 | 
						|
    } else
 | 
						|
      *J++ = *I;
 | 
						|
  }
 | 
						|
  LI.ranges.erase(J, E);
 | 
						|
 | 
						|
  // Transfer VNInfos to their new owners and renumber them.
 | 
						|
  unsigned j = 0, e = LI.getNumValNums();
 | 
						|
  while (j != e && EqClass[j] == 0)
 | 
						|
    ++j;
 | 
						|
  for (unsigned i = j; i != e; ++i) {
 | 
						|
    VNInfo *VNI = LI.getValNumInfo(i);
 | 
						|
    if (unsigned eq = EqClass[i]) {
 | 
						|
      VNI->id = LIV[eq]->getNumValNums();
 | 
						|
      LIV[eq]->valnos.push_back(VNI);
 | 
						|
    } else {
 | 
						|
      VNI->id = j;
 | 
						|
      LI.valnos[j++] = VNI;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  LI.valnos.resize(j);
 | 
						|
}
 |