llvm-6502/lib/CodeGen/InstrSched/SchedGraph.cpp
Vikram S. Adve 200a435966 Eliminate most uses of the machine instruction vector for each LLVM instr,
since some m. instr. may be generated by LLVM instrs. in other blocks.
Handle non-SSA (anti and output) edges and true edges uniformly by
working with machine instructions alone.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@1269 91177308-0d34-0410-b5e6-96231b3b80d8
2001-11-12 18:53:43 +00:00

1057 lines
35 KiB
C++

// $Id$
//***************************************************************************
// File:
// SchedGraph.cpp
//
// Purpose:
// Scheduling graph based on SSA graph plus extra dependence edges
// capturing dependences due to machine resources (machine registers,
// CC registers, and any others).
//
// History:
// 7/20/01 - Vikram Adve - Created
//**************************************************************************/
#include "SchedGraph.h"
#include "llvm/InstrTypes.h"
#include "llvm/Instruction.h"
#include "llvm/BasicBlock.h"
#include "llvm/Method.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/InstrSelection.h"
#include "llvm/Target/MachineInstrInfo.h"
#include "llvm/Target/MachineRegInfo.h"
#include "llvm/Support/StringExtras.h"
#include "llvm/iOther.h"
#include <algorithm>
#include <hash_map>
#include <vector>
//*********************** Internal Data Structures *************************/
// The following two types need to be classes, not typedefs, so we can use
// opaque declarations in SchedGraph.h
//
struct RefVec: public vector< pair<SchedGraphNode*, int> > {
typedef vector< pair<SchedGraphNode*, int> >:: iterator iterator;
typedef vector< pair<SchedGraphNode*, int> >::const_iterator const_iterator;
};
struct RegToRefVecMap: public hash_map<int, RefVec> {
typedef hash_map<int, RefVec>:: iterator iterator;
typedef hash_map<int, RefVec>::const_iterator const_iterator;
};
struct ValueToDefVecMap: public hash_map<const Instruction*, RefVec> {
typedef hash_map<const Instruction*, RefVec>:: iterator iterator;
typedef hash_map<const Instruction*, RefVec>::const_iterator const_iterator;
};
//
// class SchedGraphEdge
//
/*ctor*/
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphNode* _sink,
SchedGraphEdgeDepType _depType,
unsigned int _depOrderType,
int _minDelay)
: src(_src),
sink(_sink),
depType(_depType),
depOrderType(_depOrderType),
minDelay((_minDelay >= 0)? _minDelay : _src->getLatency()),
val(NULL)
{
assert(src != sink && "Self-loop in scheduling graph!");
src->addOutEdge(this);
sink->addInEdge(this);
}
/*ctor*/
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphNode* _sink,
const Value* _val,
unsigned int _depOrderType,
int _minDelay)
: src(_src),
sink(_sink),
depType(ValueDep),
depOrderType(_depOrderType),
minDelay((_minDelay >= 0)? _minDelay : _src->getLatency()),
val(_val)
{
assert(src != sink && "Self-loop in scheduling graph!");
src->addOutEdge(this);
sink->addInEdge(this);
}
/*ctor*/
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphNode* _sink,
unsigned int _regNum,
unsigned int _depOrderType,
int _minDelay)
: src(_src),
sink(_sink),
depType(MachineRegister),
depOrderType(_depOrderType),
minDelay((_minDelay >= 0)? _minDelay : _src->getLatency()),
machineRegNum(_regNum)
{
assert(src != sink && "Self-loop in scheduling graph!");
src->addOutEdge(this);
sink->addInEdge(this);
}
/*ctor*/
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphNode* _sink,
ResourceId _resourceId,
int _minDelay)
: src(_src),
sink(_sink),
depType(MachineResource),
depOrderType(NonDataDep),
minDelay((_minDelay >= 0)? _minDelay : _src->getLatency()),
resourceId(_resourceId)
{
assert(src != sink && "Self-loop in scheduling graph!");
src->addOutEdge(this);
sink->addInEdge(this);
}
/*dtor*/
SchedGraphEdge::~SchedGraphEdge()
{
}
void SchedGraphEdge::dump(int indent=0) const {
printIndent(indent); cout << *this;
}
//
// class SchedGraphNode
//
/*ctor*/
SchedGraphNode::SchedGraphNode(unsigned int _nodeId,
const BasicBlock* _bb,
const MachineInstr* _minstr,
int indexInBB,
const TargetMachine& target)
: nodeId(_nodeId),
bb(_bb),
minstr(_minstr),
origIndexInBB(indexInBB),
latency(0)
{
if (minstr)
{
MachineOpCode mopCode = minstr->getOpCode();
latency = target.getInstrInfo().hasResultInterlock(mopCode)
? target.getInstrInfo().minLatency(mopCode)
: target.getInstrInfo().maxLatency(mopCode);
}
}
/*dtor*/
SchedGraphNode::~SchedGraphNode()
{
}
void SchedGraphNode::dump(int indent=0) const {
printIndent(indent); cout << *this;
}
inline void
SchedGraphNode::addInEdge(SchedGraphEdge* edge)
{
inEdges.push_back(edge);
}
inline void
SchedGraphNode::addOutEdge(SchedGraphEdge* edge)
{
outEdges.push_back(edge);
}
inline void
SchedGraphNode::removeInEdge(const SchedGraphEdge* edge)
{
assert(edge->getSink() == this);
for (iterator I = beginInEdges(); I != endInEdges(); ++I)
if ((*I) == edge)
{
inEdges.erase(I);
break;
}
}
inline void
SchedGraphNode::removeOutEdge(const SchedGraphEdge* edge)
{
assert(edge->getSrc() == this);
for (iterator I = beginOutEdges(); I != endOutEdges(); ++I)
if ((*I) == edge)
{
outEdges.erase(I);
break;
}
}
//
// class SchedGraph
//
/*ctor*/
SchedGraph::SchedGraph(const BasicBlock* bb,
const TargetMachine& target)
{
bbVec.push_back(bb);
this->buildGraph(target);
}
/*dtor*/
SchedGraph::~SchedGraph()
{
for (iterator I=begin(); I != end(); ++I)
{
SchedGraphNode* node = (*I).second;
// for each node, delete its out-edges
for (SchedGraphNode::iterator I = node->beginOutEdges();
I != node->endOutEdges(); ++I)
delete *I;
// then delete the node itself.
delete node;
}
}
void
SchedGraph::dump() const
{
cout << " Sched Graph for Basic Blocks: ";
for (unsigned i=0, N=bbVec.size(); i < N; i++)
{
cout << (bbVec[i]->hasName()? bbVec[i]->getName() : "block")
<< " (" << bbVec[i] << ")"
<< ((i == N-1)? "" : ", ");
}
cout << endl << endl << " Actual Root nodes : ";
for (unsigned i=0, N=graphRoot->outEdges.size(); i < N; i++)
cout << graphRoot->outEdges[i]->getSink()->getNodeId()
<< ((i == N-1)? "" : ", ");
cout << endl << " Graph Nodes:" << endl;
for (const_iterator I=begin(); I != end(); ++I)
cout << endl << * (*I).second;
cout << endl;
}
void
SchedGraph::eraseIncomingEdges(SchedGraphNode* node, bool addDummyEdges)
{
// Delete and disconnect all in-edges for the node
for (SchedGraphNode::iterator I = node->beginInEdges();
I != node->endInEdges(); ++I)
{
SchedGraphNode* srcNode = (*I)->getSrc();
srcNode->removeOutEdge(*I);
delete *I;
if (addDummyEdges &&
srcNode != getRoot() &&
srcNode->beginOutEdges() == srcNode->endOutEdges())
{ // srcNode has no more out edges, so add an edge to dummy EXIT node
assert(node != getLeaf() && "Adding edge that was just removed?");
(void) new SchedGraphEdge(srcNode, getLeaf(),
SchedGraphEdge::CtrlDep, SchedGraphEdge::NonDataDep, 0);
}
}
node->inEdges.clear();
}
void
SchedGraph::eraseOutgoingEdges(SchedGraphNode* node, bool addDummyEdges)
{
// Delete and disconnect all out-edges for the node
for (SchedGraphNode::iterator I = node->beginOutEdges();
I != node->endOutEdges(); ++I)
{
SchedGraphNode* sinkNode = (*I)->getSink();
sinkNode->removeInEdge(*I);
delete *I;
if (addDummyEdges &&
sinkNode != getLeaf() &&
sinkNode->beginInEdges() == sinkNode->endInEdges())
{ //sinkNode has no more in edges, so add an edge from dummy ENTRY node
assert(node != getRoot() && "Adding edge that was just removed?");
(void) new SchedGraphEdge(getRoot(), sinkNode,
SchedGraphEdge::CtrlDep, SchedGraphEdge::NonDataDep, 0);
}
}
node->outEdges.clear();
}
void
SchedGraph::eraseIncidentEdges(SchedGraphNode* node, bool addDummyEdges)
{
this->eraseIncomingEdges(node, addDummyEdges);
this->eraseOutgoingEdges(node, addDummyEdges);
}
void
SchedGraph::addDummyEdges()
{
assert(graphRoot->outEdges.size() == 0);
for (const_iterator I=begin(); I != end(); ++I)
{
SchedGraphNode* node = (*I).second;
assert(node != graphRoot && node != graphLeaf);
if (node->beginInEdges() == node->endInEdges())
(void) new SchedGraphEdge(graphRoot, node, SchedGraphEdge::CtrlDep,
SchedGraphEdge::NonDataDep, 0);
if (node->beginOutEdges() == node->endOutEdges())
(void) new SchedGraphEdge(node, graphLeaf, SchedGraphEdge::CtrlDep,
SchedGraphEdge::NonDataDep, 0);
}
}
void
SchedGraph::addCDEdges(const TerminatorInst* term,
const TargetMachine& target)
{
const MachineInstrInfo& mii = target.getInstrInfo();
MachineCodeForVMInstr& termMvec = term->getMachineInstrVec();
// Find the first branch instr in the sequence of machine instrs for term
//
unsigned first = 0;
while (! mii.isBranch(termMvec[first]->getOpCode()))
++first;
assert(first < termMvec.size() &&
"No branch instructions for BR? Ok, but weird! Delete assertion.");
if (first == termMvec.size())
return;
SchedGraphNode* firstBrNode = this->getGraphNodeForInstr(termMvec[first]);
// Add CD edges from each instruction in the sequence to the
// *last preceding* branch instr. in the sequence
// Use a latency of 0 because we only need to prevent out-of-order issue.
//
for (int i = (int) termMvec.size()-1; i > (int) first; i--)
{
SchedGraphNode* toNode = this->getGraphNodeForInstr(termMvec[i]);
assert(toNode && "No node for instr generated for branch?");
for (int j = i-1; j >= 0; j--)
if (mii.isBranch(termMvec[j]->getOpCode()))
{
SchedGraphNode* brNode = this->getGraphNodeForInstr(termMvec[j]);
assert(brNode && "No node for instr generated for branch?");
(void) new SchedGraphEdge(brNode, toNode, SchedGraphEdge::CtrlDep,
SchedGraphEdge::NonDataDep, 0);
break; // only one incoming edge is enough
}
}
// Add CD edges from each instruction preceding the first branch
// to the first branch. Use a latency of 0 as above.
//
for (int i = first-1; i >= 0; i--)
{
SchedGraphNode* fromNode = this->getGraphNodeForInstr(termMvec[i]);
assert(fromNode && "No node for instr generated for branch?");
(void) new SchedGraphEdge(fromNode, firstBrNode, SchedGraphEdge::CtrlDep,
SchedGraphEdge::NonDataDep, 0);
}
// Now add CD edges to the first branch instruction in the sequence from
// all preceding instructions in the basic block. Use 0 latency again.
//
const BasicBlock* bb = firstBrNode->getBB();
const MachineCodeForBasicBlock& mvec = bb->getMachineInstrVec();
for (unsigned i=0, N=mvec.size(); i < N; i++)
{
if (mvec[i] == termMvec[first]) // reached the first branch
break;
SchedGraphNode* fromNode = this->getGraphNodeForInstr(mvec[i]);
if (fromNode == NULL)
continue; // dummy instruction, e.g., PHI
(void) new SchedGraphEdge(fromNode, firstBrNode,
SchedGraphEdge::CtrlDep,
SchedGraphEdge::NonDataDep, 0);
// If we find any other machine instructions (other than due to
// the terminator) that also have delay slots, add an outgoing edge
// from the instruction to the instructions in the delay slots.
//
unsigned d = mii.getNumDelaySlots(mvec[i]->getOpCode());
assert(i+d < N && "Insufficient delay slots for instruction?");
for (unsigned j=1; j <= d; j++)
{
SchedGraphNode* toNode = this->getGraphNodeForInstr(mvec[i+j]);
assert(toNode && "No node for machine instr in delay slot?");
(void) new SchedGraphEdge(fromNode, toNode,
SchedGraphEdge::CtrlDep,
SchedGraphEdge::NonDataDep, 0);
}
}
}
static const int SG_LOAD_REF = 0;
static const int SG_STORE_REF = 1;
static const int SG_CALL_REF = 2;
static const unsigned int SG_DepOrderArray[][3] = {
{ SchedGraphEdge::NonDataDep,
SchedGraphEdge::AntiDep,
SchedGraphEdge::AntiDep },
{ SchedGraphEdge::TrueDep,
SchedGraphEdge::OutputDep,
SchedGraphEdge::TrueDep | SchedGraphEdge::OutputDep },
{ SchedGraphEdge::TrueDep,
SchedGraphEdge::AntiDep | SchedGraphEdge::OutputDep,
SchedGraphEdge::TrueDep | SchedGraphEdge::AntiDep
| SchedGraphEdge::OutputDep }
};
// Add a dependence edge between every pair of machine load/store/call
// instructions, where at least one is a store or a call.
// Use latency 1 just to ensure that memory operations are ordered;
// latency does not otherwise matter (true dependences enforce that).
//
void
SchedGraph::addMemEdges(const vector<SchedGraphNode*>& memNodeVec,
const TargetMachine& target)
{
const MachineInstrInfo& mii = target.getInstrInfo();
// Instructions in memNodeVec are in execution order within the basic block,
// so simply look at all pairs <memNodeVec[i], memNodeVec[j: j > i]>.
//
for (unsigned im=0, NM=memNodeVec.size(); im < NM; im++)
{
MachineOpCode fromOpCode = memNodeVec[im]->getOpCode();
int fromType = mii.isCall(fromOpCode)? SG_CALL_REF
: mii.isLoad(fromOpCode)? SG_LOAD_REF
: SG_STORE_REF;
for (unsigned jm=im+1; jm < NM; jm++)
{
MachineOpCode toOpCode = memNodeVec[jm]->getOpCode();
int toType = mii.isCall(toOpCode)? SG_CALL_REF
: mii.isLoad(toOpCode)? SG_LOAD_REF
: SG_STORE_REF;
if (fromType != SG_LOAD_REF || toType != SG_LOAD_REF)
(void) new SchedGraphEdge(memNodeVec[im], memNodeVec[jm],
SchedGraphEdge::MemoryDep,
SG_DepOrderArray[fromType][toType], 1);
}
}
}
// Add edges from/to CC reg instrs to/from call instrs.
// Essentially this prevents anything that sets or uses a CC reg from being
// reordered w.r.t. a call.
// Use a latency of 0 because we only need to prevent out-of-order issue,
// like with control dependences.
//
void
SchedGraph::addCallCCEdges(const vector<SchedGraphNode*>& memNodeVec,
MachineCodeForBasicBlock& bbMvec,
const TargetMachine& target)
{
const MachineInstrInfo& mii = target.getInstrInfo();
vector<SchedGraphNode*> callNodeVec;
// Find the call instruction nodes and put them in a vector.
for (unsigned im=0, NM=memNodeVec.size(); im < NM; im++)
if (mii.isCall(memNodeVec[im]->getOpCode()))
callNodeVec.push_back(memNodeVec[im]);
// Now walk the entire basic block, looking for CC instructions *and*
// call instructions, and keep track of the order of the instructions.
// Use the call node vec to quickly find earlier and later call nodes
// relative to the current CC instruction.
//
int lastCallNodeIdx = -1;
for (unsigned i=0, N=bbMvec.size(); i < N; i++)
if (mii.isCall(bbMvec[i]->getOpCode()))
{
++lastCallNodeIdx;
for ( ; lastCallNodeIdx < (int)callNodeVec.size(); ++lastCallNodeIdx)
if (callNodeVec[lastCallNodeIdx]->getMachineInstr() == bbMvec[i])
break;
assert(lastCallNodeIdx < (int)callNodeVec.size() && "Missed Call?");
}
else if (mii.isCCInstr(bbMvec[i]->getOpCode()))
{ // Add incoming/outgoing edges from/to preceding/later calls
SchedGraphNode* ccNode = this->getGraphNodeForInstr(bbMvec[i]);
int j=0;
for ( ; j <= lastCallNodeIdx; j++)
(void) new SchedGraphEdge(callNodeVec[j], ccNode,
MachineCCRegsRID, 0);
for ( ; j < (int) callNodeVec.size(); j++)
(void) new SchedGraphEdge(ccNode, callNodeVec[j],
MachineCCRegsRID, 0);
}
}
void
SchedGraph::addMachineRegEdges(RegToRefVecMap& regToRefVecMap,
const TargetMachine& target)
{
assert(bbVec.size() == 1 && "Only handling a single basic block here");
// This assumes that such hardwired registers are never allocated
// to any LLVM value (since register allocation happens later), i.e.,
// any uses or defs of this register have been made explicit!
// Also assumes that two registers with different numbers are
// not aliased!
//
for (RegToRefVecMap::iterator I = regToRefVecMap.begin();
I != regToRefVecMap.end(); ++I)
{
int regNum = (*I).first;
RefVec& regRefVec = (*I).second;
// regRefVec is ordered by control flow order in the basic block
for (unsigned i=0; i < regRefVec.size(); ++i)
{
SchedGraphNode* node = regRefVec[i].first;
unsigned int opNum = regRefVec[i].second;
bool isDef = node->getMachineInstr()->operandIsDefined(opNum);
for (unsigned p=0; p < i; ++p)
{
SchedGraphNode* prevNode = regRefVec[p].first;
if (prevNode != node)
{
unsigned int prevOpNum = regRefVec[p].second;
bool prevIsDef =
prevNode->getMachineInstr()->operandIsDefined(prevOpNum);
if (isDef)
new SchedGraphEdge(prevNode, node, regNum,
(prevIsDef)? SchedGraphEdge::OutputDep
: SchedGraphEdge::AntiDep);
else if (prevIsDef)
new SchedGraphEdge(prevNode, node, regNum,
SchedGraphEdge::TrueDep);
}
}
}
}
}
void
SchedGraph::addEdgesForValue(SchedGraphNode* refNode,
const RefVec& defVec,
const Value* defValue,
bool refNodeIsDef,
const TargetMachine& target)
{
// Add true or output dep edges from all def nodes before refNode in BB.
// Add anti or output dep edges to all def nodes after refNode.
for (RefVec::const_iterator I=defVec.begin(), E=defVec.end(); I != E; ++I)
{
if ((*I).first == refNode)
continue; // Dont add any self-loops
if ((*I).first->getOrigIndexInBB() < refNode->getOrigIndexInBB())
// (*).first is before refNode
(void) new SchedGraphEdge((*I).first, refNode, defValue,
(refNodeIsDef)? SchedGraphEdge::OutputDep
: SchedGraphEdge::TrueDep);
else
// (*).first is after refNode
(void) new SchedGraphEdge(refNode, (*I).first, defValue,
(refNodeIsDef)? SchedGraphEdge::OutputDep
: SchedGraphEdge::AntiDep);
}
}
void
SchedGraph::addEdgesForInstruction(const MachineInstr& minstr,
const ValueToDefVecMap& valueToDefVecMap,
const TargetMachine& target)
{
SchedGraphNode* node = this->getGraphNodeForInstr(&minstr);
if (node == NULL)
return;
// Add edges for all operands of the machine instruction.
//
for (unsigned i=0, numOps=minstr.getNumOperands(); i < numOps; i++)
{
const MachineOperand& mop = minstr.getOperand(i);
switch(mop.getOperandType())
{
case MachineOperand::MO_VirtualRegister:
case MachineOperand::MO_CCRegister:
if (const Instruction* srcI =
dyn_cast_or_null<Instruction>(mop.getVRegValue()))
{
ValueToDefVecMap::const_iterator I = valueToDefVecMap.find(srcI);
if (I != valueToDefVecMap.end())
addEdgesForValue(node, (*I).second, mop.getVRegValue(),
minstr.operandIsDefined(i), target);
}
break;
case MachineOperand::MO_MachineRegister:
break;
case MachineOperand::MO_SignExtendedImmed:
case MachineOperand::MO_UnextendedImmed:
case MachineOperand::MO_PCRelativeDisp:
break; // nothing to do for immediate fields
default:
assert(0 && "Unknown machine operand type in SchedGraph builder");
break;
}
}
// Add edges for values implicitly used by the machine instruction.
// Examples include function arguments to a Call instructions or the return
// value of a Ret instruction.
//
for (unsigned i=0, N=minstr.getNumImplicitRefs(); i < N; ++i)
if (! minstr.implicitRefIsDefined(i))
if (const Instruction* srcI =
dyn_cast_or_null<Instruction>(minstr.getImplicitRef(i)))
{
ValueToDefVecMap::const_iterator I = valueToDefVecMap.find(srcI);
if (I != valueToDefVecMap.end())
addEdgesForValue(node, (*I).second, minstr.getImplicitRef(i),
minstr.implicitRefIsDefined(i), target);
}
}
#undef NEED_SEPARATE_NONSSA_EDGES_CODE
#ifdef NEED_SEPARATE_NONSSA_EDGES_CODE
void
SchedGraph::addNonSSAEdgesForValue(const Instruction* instr,
const TargetMachine& target)
{
if (isa<PHINode>(instr))
return;
MachineCodeForVMInstr& mvec = instr->getMachineInstrVec();
const MachineInstrInfo& mii = target.getInstrInfo();
RefVec refVec;
for (unsigned i=0, N=mvec.size(); i < N; i++)
for (int o=0, N = mii.getNumOperands(mvec[i]->getOpCode()); o < N; o++)
{
const MachineOperand& mop = mvec[i]->getOperand(o);
if ((mop.getOperandType() == MachineOperand::MO_VirtualRegister ||
mop.getOperandType() == MachineOperand::MO_CCRegister)
&& mop.getVRegValue() == (Value*) instr)
{
// this operand is a definition or use of value `instr'
SchedGraphNode* node = this->getGraphNodeForInstr(mvec[i]);
assert(node && "No node for machine instruction in this BB?");
refVec.push_back(make_pair(node, o));
}
}
// refVec is ordered by control flow order of the machine instructions
for (unsigned i=0; i < refVec.size(); ++i)
{
SchedGraphNode* node = refVec[i].first;
unsigned int opNum = refVec[i].second;
bool isDef = node->getMachineInstr()->operandIsDefined(opNum);
if (isDef)
// add output and/or anti deps to this definition
for (unsigned p=0; p < i; ++p)
{
SchedGraphNode* prevNode = refVec[p].first;
if (prevNode != node)
{
bool prevIsDef = prevNode->getMachineInstr()->
operandIsDefined(refVec[p].second);
new SchedGraphEdge(prevNode, node, SchedGraphEdge::ValueDep,
(prevIsDef)? SchedGraphEdge::OutputDep
: SchedGraphEdge::AntiDep);
}
}
}
}
#endif NEED_SEPARATE_NONSSA_EDGES_CODE
void
SchedGraph::findDefUseInfoAtInstr(const TargetMachine& target,
SchedGraphNode* node,
vector<SchedGraphNode*>& memNodeVec,
RegToRefVecMap& regToRefVecMap,
ValueToDefVecMap& valueToDefVecMap)
{
const MachineInstrInfo& mii = target.getInstrInfo();
MachineOpCode opCode = node->getOpCode();
if (mii.isLoad(opCode) || mii.isStore(opCode) || mii.isCall(opCode))
memNodeVec.push_back(node);
// Collect the register references and value defs. for explicit operands
//
const MachineInstr& minstr = * node->getMachineInstr();
for (int i=0, numOps = (int) minstr.getNumOperands(); i < numOps; i++)
{
const MachineOperand& mop = minstr.getOperand(i);
// if this references a register other than the hardwired
// "zero" register, record the reference.
if (mop.getOperandType() == MachineOperand::MO_MachineRegister)
{
int regNum = mop.getMachineRegNum();
if (regNum != target.getRegInfo().getZeroRegNum())
regToRefVecMap[mop.getMachineRegNum()].push_back(make_pair(node,
i));
continue; // nothing more to do
}
// ignore all other non-def operands
if (! minstr.operandIsDefined(i))
continue;
// We must be defining a value.
assert((mop.getOperandType() == MachineOperand::MO_VirtualRegister ||
mop.getOperandType() == MachineOperand::MO_CCRegister)
&& "Do not expect any other kind of operand to be defined!");
const Instruction* defInstr = cast<Instruction>(mop.getVRegValue());
valueToDefVecMap[defInstr].push_back(make_pair(node, i));
}
//
// Collect value defs. for implicit operands. The interface to extract
// them assumes they must be virtual registers!
//
for (int i=0, N = (int) minstr.getNumImplicitRefs(); i < N; ++i)
if (minstr.implicitRefIsDefined(i))
if (const Instruction* defInstr =
dyn_cast_or_null<Instruction>(minstr.getImplicitRef(i)))
{
valueToDefVecMap[defInstr].push_back(make_pair(node, -i));
}
}
void
SchedGraph::buildNodesforBB(const TargetMachine& target,
const BasicBlock* bb,
vector<SchedGraphNode*>& memNodeVec,
RegToRefVecMap& regToRefVecMap,
ValueToDefVecMap& valueToDefVecMap)
{
const MachineInstrInfo& mii = target.getInstrInfo();
// Build graph nodes for each VM instruction and gather def/use info.
// Do both those together in a single pass over all machine instructions.
const MachineCodeForBasicBlock& mvec = bb->getMachineInstrVec();
for (unsigned i=0; i < mvec.size(); i++)
if (! mii.isDummyPhiInstr(mvec[i]->getOpCode()))
{
SchedGraphNode* node = new SchedGraphNode(getNumNodes(), bb,
mvec[i], i, target);
this->noteGraphNodeForInstr(mvec[i], node);
// Remember all register references and value defs
findDefUseInfoAtInstr(target, node,
memNodeVec, regToRefVecMap,valueToDefVecMap);
}
#undef REALLY_NEED_TO_SEARCH_SUCCESSOR_PHIS
#ifdef REALLY_NEED_TO_SEARCH_SUCCESSOR_PHIS
// This is a BIG UGLY HACK. IT NEEDS TO BE ELIMINATED.
// Look for copy instructions inserted in this BB due to Phi instructions
// in the successor BBs.
// There MUST be exactly one copy per Phi in successor nodes.
//
for (BasicBlock::succ_const_iterator SI=bb->succ_begin(), SE=bb->succ_end();
SI != SE; ++SI)
for (BasicBlock::const_iterator PI=(*SI)->begin(), PE=(*SI)->end();
PI != PE; ++PI)
{
if ((*PI)->getOpcode() != Instruction::PHINode)
break; // No more Phis in this successor
// Find the incoming value from block bb to block (*SI)
int bbIndex = cast<PHINode>(*PI)->getBasicBlockIndex(bb);
assert(bbIndex >= 0 && "But I know bb is a predecessor of (*SI)?");
Value* inVal = cast<PHINode>(*PI)->getIncomingValue(bbIndex);
assert(inVal != NULL && "There must be an in-value on every edge");
// Find the machine instruction that makes a copy of inval to (*PI).
// This must be in the current basic block (bb).
const MachineCodeForVMInstr& mvec = (*PI)->getMachineInstrVec();
const MachineInstr* theCopy = NULL;
for (unsigned i=0; i < mvec.size() && theCopy == NULL; i++)
if (! mii.isDummyPhiInstr(mvec[i]->getOpCode()))
// not a Phi: assume this is a copy and examine its operands
for (int o=0, N=(int) mvec[i]->getNumOperands(); o < N; o++)
{
const MachineOperand& mop = mvec[i]->getOperand(o);
if (mvec[i]->operandIsDefined(o))
assert(mop.getVRegValue() == (*PI) && "dest shd be my Phi");
else if (mop.getVRegValue() == inVal)
{ // found the copy!
theCopy = mvec[i];
break;
}
}
// Found the dang instruction. Now create a node and do the rest...
if (theCopy != NULL)
{
SchedGraphNode* node = new SchedGraphNode(getNumNodes(), bb,
theCopy, origIndexInBB++, target);
this->noteGraphNodeForInstr(theCopy, node);
findDefUseInfoAtInstr(target, node,
memNodeVec, regToRefVecMap,valueToDefVecMap);
}
}
#endif REALLY_NEED_TO_SEARCH_SUCCESSOR_PHIS
}
void
SchedGraph::buildGraph(const TargetMachine& target)
{
const MachineInstrInfo& mii = target.getInstrInfo();
const BasicBlock* bb = bbVec[0];
assert(bbVec.size() == 1 && "Only handling a single basic block here");
// Use this data structure to note all machine operands that compute
// ordinary LLVM values. These must be computed defs (i.e., instructions).
// Note that there may be multiple machine instructions that define
// each Value.
ValueToDefVecMap valueToDefVecMap;
// Use this data structure to note all memory instructions.
// We use this to add memory dependence edges without a second full walk.
//
// vector<const Instruction*> memVec;
vector<SchedGraphNode*> memNodeVec;
// Use this data structure to note any uses or definitions of
// machine registers so we can add edges for those later without
// extra passes over the nodes.
// The vector holds an ordered list of references to the machine reg,
// ordered according to control-flow order. This only works for a
// single basic block, hence the assertion. Each reference is identified
// by the pair: <node, operand-number>.
//
RegToRefVecMap regToRefVecMap;
// Make a dummy root node. We'll add edges to the real roots later.
graphRoot = new SchedGraphNode(0, NULL, NULL, -1, target);
graphLeaf = new SchedGraphNode(1, NULL, NULL, -1, target);
//----------------------------------------------------------------
// First add nodes for all the machine instructions in the basic block
// because this greatly simplifies identifying which edges to add.
// Do this one VM instruction at a time since the SchedGraphNode needs that.
// Also, remember the load/store instructions to add memory deps later.
//----------------------------------------------------------------
buildNodesforBB(target, bb, memNodeVec, regToRefVecMap, valueToDefVecMap);
//----------------------------------------------------------------
// Now add edges for the following (all are incoming edges except (4)):
// (1) operands of the machine instruction, including hidden operands
// (2) machine register dependences
// (3) memory load/store dependences
// (3) other resource dependences for the machine instruction, if any
// (4) output dependences when multiple machine instructions define the
// same value; all must have been generated from a single VM instrn
// (5) control dependences to branch instructions generated for the
// terminator instruction of the BB. Because of delay slots and
// 2-way conditional branches, multiple CD edges are needed
// (see addCDEdges for details).
// Also, note any uses or defs of machine registers.
//
//----------------------------------------------------------------
MachineCodeForBasicBlock& bbMvec = bb->getMachineInstrVec();
// First, add edges to the terminator instruction of the basic block.
this->addCDEdges(bb->getTerminator(), target);
// Then add memory dep edges: store->load, load->store, and store->store.
// Call instructions are treated as both load and store.
this->addMemEdges(memNodeVec, target);
// Then add edges between call instructions and CC set/use instructions
this->addCallCCEdges(memNodeVec, bbMvec, target);
// Then add incoming def-use (SSA) edges for each machine instruction.
for (unsigned i=0, N=bbMvec.size(); i < N; i++)
addEdgesForInstruction(*bbMvec[i], valueToDefVecMap, target);
#ifdef NEED_SEPARATE_NONSSA_EDGES_CODE
// Then add non-SSA edges for all VM instructions in the block.
// We assume that all machine instructions that define a value are
// generated from the VM instruction corresponding to that value.
// TODO: This could probably be done much more efficiently.
for (BasicBlock::const_iterator II = bb->begin(); II != bb->end(); ++II)
this->addNonSSAEdgesForValue(*II, target);
#endif NEED_SEPARATE_NONSSA_EDGES_CODE
// Then add edges for dependences on machine registers
this->addMachineRegEdges(regToRefVecMap, target);
// Finally, add edges from the dummy root and to dummy leaf
this->addDummyEdges();
}
//
// class SchedGraphSet
//
/*ctor*/
SchedGraphSet::SchedGraphSet(const Method* _method,
const TargetMachine& target) :
method(_method)
{
buildGraphsForMethod(method, target);
}
/*dtor*/
SchedGraphSet::~SchedGraphSet()
{
// delete all the graphs
for (iterator I=begin(); I != end(); ++I)
delete (*I).second;
}
void
SchedGraphSet::dump() const
{
cout << "======== Sched graphs for method `"
<< (method->hasName()? method->getName() : "???")
<< "' ========" << endl << endl;
for (const_iterator I=begin(); I != end(); ++I)
(*I).second->dump();
cout << endl << "====== End graphs for method `"
<< (method->hasName()? method->getName() : "")
<< "' ========" << endl << endl;
}
void
SchedGraphSet::buildGraphsForMethod(const Method *method,
const TargetMachine& target)
{
for (Method::const_iterator BI = method->begin(); BI != method->end(); ++BI)
{
SchedGraph* graph = new SchedGraph(*BI, target);
this->noteGraphForBlock(*BI, graph);
}
}
ostream&
operator<<(ostream& os, const SchedGraphEdge& edge)
{
os << "edge [" << edge.src->getNodeId() << "] -> ["
<< edge.sink->getNodeId() << "] : ";
switch(edge.depType) {
case SchedGraphEdge::CtrlDep: os<< "Control Dep"; break;
case SchedGraphEdge::ValueDep: os<< "Reg Value " << edge.val; break;
case SchedGraphEdge::MemoryDep: os<< "Memory Dep"; break;
case SchedGraphEdge::MachineRegister: os<< "Reg " <<edge.machineRegNum;break;
case SchedGraphEdge::MachineResource: os<<"Resource "<<edge.resourceId;break;
default: assert(0); break;
}
os << " : delay = " << edge.minDelay << endl;
return os;
}
ostream&
operator<<(ostream& os, const SchedGraphNode& node)
{
printIndent(4, os);
os << "Node " << node.nodeId << " : "
<< "latency = " << node.latency << endl;
printIndent(6, os);
if (node.getMachineInstr() == NULL)
os << "(Dummy node)" << endl;
else
{
os << *node.getMachineInstr() << endl;
printIndent(6, os);
os << node.inEdges.size() << " Incoming Edges:" << endl;
for (unsigned i=0, N=node.inEdges.size(); i < N; i++)
{
printIndent(8, os);
os << * node.inEdges[i];
}
printIndent(6, os);
os << node.outEdges.size() << " Outgoing Edges:" << endl;
for (unsigned i=0, N=node.outEdges.size(); i < N; i++)
{
printIndent(8, os);
os << * node.outEdges[i];
}
}
return os;
}