mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	keeps finding more code motion opportunities now that the dominators are correct! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11142 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			662 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			662 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
 | |
| // 
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass performs several transformations to transform natural loops into a
 | |
| // simpler form, which makes subsequent analyses and transformations simpler and
 | |
| // more effective.
 | |
| //
 | |
| // Loop pre-header insertion guarantees that there is a single, non-critical
 | |
| // entry edge from outside of the loop to the loop header.  This simplifies a
 | |
| // number of analyses and transformations, such as LICM.
 | |
| //
 | |
| // Loop exit-block insertion guarantees that all exit blocks from the loop
 | |
| // (blocks which are outside of the loop that have predecessors inside of the
 | |
| // loop) only have predecessors from inside of the loop (and are thus dominated
 | |
| // by the loop header).  This simplifies transformations such as store-sinking
 | |
| // that are built into LICM.
 | |
| //
 | |
| // This pass also guarantees that loops will have exactly one backedge.
 | |
| //
 | |
| // Note that the simplifycfg pass will clean up blocks which are split out but
 | |
| // end up being unnecessary, so usage of this pass should not pessimize
 | |
| // generated code.
 | |
| //
 | |
| // This pass obviously modifies the CFG, but updates loop information and
 | |
| // dominator information.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/iTerminators.h"
 | |
| #include "llvm/iPHINode.h"
 | |
| #include "llvm/Constant.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "Support/SetOperations.h"
 | |
| #include "Support/Statistic.h"
 | |
| #include "Support/DepthFirstIterator.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   Statistic<>
 | |
|   NumInserted("loopsimplify", "Number of pre-header or exit blocks inserted");
 | |
| 
 | |
|   struct LoopSimplify : public FunctionPass {
 | |
|     virtual bool runOnFunction(Function &F);
 | |
|     
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       // We need loop information to identify the loops...
 | |
|       AU.addRequired<LoopInfo>();
 | |
|       AU.addRequired<DominatorSet>();
 | |
| 
 | |
|       AU.addPreserved<LoopInfo>();
 | |
|       AU.addPreserved<DominatorSet>();
 | |
|       AU.addPreserved<ImmediateDominators>();
 | |
|       AU.addPreserved<DominatorTree>();
 | |
|       AU.addPreserved<DominanceFrontier>();
 | |
|       AU.addPreservedID(BreakCriticalEdgesID);  // No crit edges added....
 | |
|     }
 | |
|   private:
 | |
|     bool ProcessLoop(Loop *L);
 | |
|     BasicBlock *SplitBlockPredecessors(BasicBlock *BB, const char *Suffix,
 | |
|                                        const std::vector<BasicBlock*> &Preds);
 | |
|     void RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
 | |
|     void InsertPreheaderForLoop(Loop *L);
 | |
|     void InsertUniqueBackedgeBlock(Loop *L);
 | |
| 
 | |
|     void UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
 | |
|                                          std::vector<BasicBlock*> &PredBlocks);
 | |
|   };
 | |
| 
 | |
|   RegisterOpt<LoopSimplify>
 | |
|   X("loopsimplify", "Canonicalize natural loops", true);
 | |
| }
 | |
| 
 | |
| // Publically exposed interface to pass...
 | |
| const PassInfo *llvm::LoopSimplifyID = X.getPassInfo();
 | |
| Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
 | |
| 
 | |
| /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
 | |
| /// it in any convenient order) inserting preheaders...
 | |
| ///
 | |
| bool LoopSimplify::runOnFunction(Function &F) {
 | |
|   bool Changed = false;
 | |
|   LoopInfo &LI = getAnalysis<LoopInfo>();
 | |
| 
 | |
|   for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
 | |
|     Changed |= ProcessLoop(*I);
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ProcessLoop - Walk the loop structure in depth first order, ensuring that
 | |
| /// all loops have preheaders.
 | |
| ///
 | |
| bool LoopSimplify::ProcessLoop(Loop *L) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // Does the loop already have a preheader?  If so, don't modify the loop...
 | |
|   if (L->getLoopPreheader() == 0) {
 | |
|     InsertPreheaderForLoop(L);
 | |
|     NumInserted++;
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   // Next, check to make sure that all exit nodes of the loop only have
 | |
|   // predecessors that are inside of the loop.  This check guarantees that the
 | |
|   // loop preheader/header will dominate the exit blocks.  If the exit block has
 | |
|   // predecessors from outside of the loop, split the edge now.
 | |
|   for (unsigned i = 0, e = L->getExitBlocks().size(); i != e; ++i) {
 | |
|     BasicBlock *ExitBlock = L->getExitBlocks()[i];
 | |
|     for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
 | |
|          PI != PE; ++PI)
 | |
|       if (!L->contains(*PI)) {
 | |
|         RewriteLoopExitBlock(L, ExitBlock);
 | |
|         NumInserted++;
 | |
|         Changed = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // The preheader may have more than two predecessors at this point (from the
 | |
|   // preheader and from the backedges).  To simplify the loop more, insert an
 | |
|   // extra back-edge block in the loop so that there is exactly one backedge.
 | |
|   if (L->getNumBackEdges() != 1) {
 | |
|     InsertUniqueBackedgeBlock(L);
 | |
|     NumInserted++;
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
 | |
|     Changed |= ProcessLoop(*I);
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// SplitBlockPredecessors - Split the specified block into two blocks.  We want
 | |
| /// to move the predecessors specified in the Preds list to point to the new
 | |
| /// block, leaving the remaining predecessors pointing to BB.  This method
 | |
| /// updates the SSA PHINode's, but no other analyses.
 | |
| ///
 | |
| BasicBlock *LoopSimplify::SplitBlockPredecessors(BasicBlock *BB,
 | |
|                                                  const char *Suffix,
 | |
|                                        const std::vector<BasicBlock*> &Preds) {
 | |
|   
 | |
|   // Create new basic block, insert right before the original block...
 | |
|   BasicBlock *NewBB = new BasicBlock(BB->getName()+Suffix, BB->getParent(), BB);
 | |
| 
 | |
|   // The preheader first gets an unconditional branch to the loop header...
 | |
|   BranchInst *BI = new BranchInst(BB, NewBB);
 | |
|   
 | |
|   // For every PHI node in the block, insert a PHI node into NewBB where the
 | |
|   // incoming values from the out of loop edges are moved to NewBB.  We have two
 | |
|   // possible cases here.  If the loop is dead, we just insert dummy entries
 | |
|   // into the PHI nodes for the new edge.  If the loop is not dead, we move the
 | |
|   // incoming edges in BB into new PHI nodes in NewBB.
 | |
|   //
 | |
|   if (!Preds.empty()) {  // Is the loop not obviously dead?
 | |
|     // Check to see if the values being merged into the new block need PHI
 | |
|     // nodes.  If so, insert them.
 | |
|     for (BasicBlock::iterator I = BB->begin();
 | |
|          PHINode *PN = dyn_cast<PHINode>(I); ++I) {
 | |
|       
 | |
|       // Check to see if all of the values coming in are the same.  If so, we
 | |
|       // don't need to create a new PHI node.
 | |
|       Value *InVal = PN->getIncomingValueForBlock(Preds[0]);
 | |
|       for (unsigned i = 1, e = Preds.size(); i != e; ++i)
 | |
|         if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
 | |
|           InVal = 0;
 | |
|           break;
 | |
|         }
 | |
|       
 | |
|       // If the values coming into the block are not the same, we need a PHI.
 | |
|       if (InVal == 0) {
 | |
|         // Create the new PHI node, insert it into NewBB at the end of the block
 | |
|         PHINode *NewPHI = new PHINode(PN->getType(), PN->getName()+".ph", BI);
 | |
|         
 | |
|         // Move all of the edges from blocks outside the loop to the new PHI
 | |
|         for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
 | |
|           Value *V = PN->removeIncomingValue(Preds[i]);
 | |
|           NewPHI->addIncoming(V, Preds[i]);
 | |
|         }
 | |
|         InVal = NewPHI;
 | |
|       } else {
 | |
|         // Remove all of the edges coming into the PHI nodes from outside of the
 | |
|         // block.
 | |
|         for (unsigned i = 0, e = Preds.size(); i != e; ++i)
 | |
|           PN->removeIncomingValue(Preds[i], false);
 | |
|       }
 | |
| 
 | |
|       // Add an incoming value to the PHI node in the loop for the preheader
 | |
|       // edge.
 | |
|       PN->addIncoming(InVal, NewBB);
 | |
|     }
 | |
|     
 | |
|     // Now that the PHI nodes are updated, actually move the edges from
 | |
|     // Preds to point to NewBB instead of BB.
 | |
|     //
 | |
|     for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
 | |
|       TerminatorInst *TI = Preds[i]->getTerminator();
 | |
|       for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s)
 | |
|         if (TI->getSuccessor(s) == BB)
 | |
|           TI->setSuccessor(s, NewBB);
 | |
|     }
 | |
|     
 | |
|   } else {                       // Otherwise the loop is dead...
 | |
|     for (BasicBlock::iterator I = BB->begin();
 | |
|          PHINode *PN = dyn_cast<PHINode>(I); ++I)
 | |
|       // Insert dummy values as the incoming value...
 | |
|       PN->addIncoming(Constant::getNullValue(PN->getType()), NewBB);
 | |
|   }  
 | |
|   return NewBB;
 | |
| }
 | |
| 
 | |
| // ChangeExitBlock - This recursive function is used to change any exit blocks
 | |
| // that use OldExit to use NewExit instead.  This is recursive because children
 | |
| // may need to be processed as well.
 | |
| //
 | |
| static void ChangeExitBlock(Loop *L, BasicBlock *OldExit, BasicBlock *NewExit) {
 | |
|   if (L->hasExitBlock(OldExit)) {
 | |
|     L->changeExitBlock(OldExit, NewExit);
 | |
|     for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
 | |
|       ChangeExitBlock(*I, OldExit, NewExit);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
 | |
| /// preheader, this method is called to insert one.  This method has two phases:
 | |
| /// preheader insertion and analysis updating.
 | |
| ///
 | |
| void LoopSimplify::InsertPreheaderForLoop(Loop *L) {
 | |
|   BasicBlock *Header = L->getHeader();
 | |
| 
 | |
|   // Compute the set of predecessors of the loop that are not in the loop.
 | |
|   std::vector<BasicBlock*> OutsideBlocks;
 | |
|   for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
 | |
|        PI != PE; ++PI)
 | |
|       if (!L->contains(*PI))           // Coming in from outside the loop?
 | |
|         OutsideBlocks.push_back(*PI);  // Keep track of it...
 | |
|   
 | |
|   // Split out the loop pre-header
 | |
|   BasicBlock *NewBB =
 | |
|     SplitBlockPredecessors(Header, ".preheader", OutsideBlocks);
 | |
|   
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   //  Update analysis results now that we have performed the transformation
 | |
|   //
 | |
|   
 | |
|   // We know that we have loop information to update... update it now.
 | |
|   if (Loop *Parent = L->getParentLoop())
 | |
|     Parent->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
 | |
| 
 | |
|   // If the header for the loop used to be an exit node for another loop, then
 | |
|   // we need to update this to know that the loop-preheader is now the exit
 | |
|   // node.  Note that the only loop that could have our header as an exit node
 | |
|   // is a sibling loop, ie, one with the same parent loop, or one if it's
 | |
|   // children.
 | |
|   //
 | |
|   LoopInfo::iterator ParentLoops, ParentLoopsE;
 | |
|   if (Loop *Parent = L->getParentLoop()) {
 | |
|     ParentLoops = Parent->begin();
 | |
|     ParentLoopsE = Parent->end();
 | |
|   } else {      // Must check top-level loops...
 | |
|     ParentLoops = getAnalysis<LoopInfo>().begin();
 | |
|     ParentLoopsE = getAnalysis<LoopInfo>().end();
 | |
|   }
 | |
| 
 | |
|   // Loop over all sibling loops, performing the substitution (recursively to
 | |
|   // include child loops)...
 | |
|   for (; ParentLoops != ParentLoopsE; ++ParentLoops)
 | |
|     ChangeExitBlock(*ParentLoops, Header, NewBB);
 | |
|   
 | |
|   DominatorSet &DS = getAnalysis<DominatorSet>();  // Update dominator info
 | |
|   {
 | |
|     // The blocks that dominate NewBB are the blocks that dominate Header,
 | |
|     // minus Header, plus NewBB.
 | |
|     DominatorSet::DomSetType DomSet = DS.getDominators(Header);
 | |
|     DomSet.insert(NewBB);  // We dominate ourself
 | |
|     DomSet.erase(Header);  // Header does not dominate us...
 | |
|     DS.addBasicBlock(NewBB, DomSet);
 | |
| 
 | |
|     // The newly created basic block dominates all nodes dominated by Header.
 | |
|     for (Function::iterator I = Header->getParent()->begin(),
 | |
|            E = Header->getParent()->end(); I != E; ++I)
 | |
|       if (DS.dominates(Header, I))
 | |
|         DS.addDominator(I, NewBB);
 | |
|   }
 | |
|   
 | |
|   // Update immediate dominator information if we have it...
 | |
|   if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
 | |
|     // Whatever i-dominated the header node now immediately dominates NewBB
 | |
|     ID->addNewBlock(NewBB, ID->get(Header));
 | |
|     
 | |
|     // The preheader now is the immediate dominator for the header node...
 | |
|     ID->setImmediateDominator(Header, NewBB);
 | |
|   }
 | |
|   
 | |
|   // Update DominatorTree information if it is active.
 | |
|   if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>()) {
 | |
|     // The immediate dominator of the preheader is the immediate dominator of
 | |
|     // the old header.
 | |
|     //
 | |
|     DominatorTree::Node *HeaderNode = DT->getNode(Header);
 | |
|     DominatorTree::Node *PHNode = DT->createNewNode(NewBB,
 | |
|                                                     HeaderNode->getIDom());
 | |
|     
 | |
|     // Change the header node so that PNHode is the new immediate dominator
 | |
|     DT->changeImmediateDominator(HeaderNode, PHNode);
 | |
|   }
 | |
| 
 | |
|   // Update dominance frontier information...
 | |
|   if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
 | |
|     // The DF(NewBB) is just (DF(Header)-Header), because NewBB dominates
 | |
|     // everything that Header does, and it strictly dominates Header in
 | |
|     // addition.
 | |
|     assert(DF->find(Header) != DF->end() && "Header node doesn't have DF set?");
 | |
|     DominanceFrontier::DomSetType NewDFSet = DF->find(Header)->second;
 | |
|     NewDFSet.erase(Header);
 | |
|     DF->addBasicBlock(NewBB, NewDFSet);
 | |
| 
 | |
|     // Now we must loop over all of the dominance frontiers in the function,
 | |
|     // replacing occurrences of Header with NewBB in some cases.  If a block
 | |
|     // dominates a (now) predecessor of NewBB, but did not strictly dominate
 | |
|     // Header, it will have Header in it's DF set, but should now have NewBB in
 | |
|     // its set.
 | |
|     for (unsigned i = 0, e = OutsideBlocks.size(); i != e; ++i) {
 | |
|       // Get all of the dominators of the predecessor...
 | |
|       const DominatorSet::DomSetType &PredDoms =
 | |
|         DS.getDominators(OutsideBlocks[i]);
 | |
|       for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
 | |
|              PDE = PredDoms.end(); PDI != PDE; ++PDI) {
 | |
|         BasicBlock *PredDom = *PDI;
 | |
|         // If the loop header is in DF(PredDom), then PredDom didn't dominate
 | |
|         // the header but did dominate a predecessor outside of the loop.  Now
 | |
|         // we change this entry to include the preheader in the DF instead of
 | |
|         // the header.
 | |
|         DominanceFrontier::iterator DFI = DF->find(PredDom);
 | |
|         assert(DFI != DF->end() && "No dominance frontier for node?");
 | |
|         if (DFI->second.count(Header)) {
 | |
|           DF->removeFromFrontier(DFI, Header);
 | |
|           DF->addToFrontier(DFI, NewBB);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
 | |
|   DominatorSet &DS = getAnalysis<DominatorSet>();
 | |
|   assert(std::find(L->getExitBlocks().begin(), L->getExitBlocks().end(), Exit)
 | |
|          != L->getExitBlocks().end() && "Not a current exit block!");
 | |
|   
 | |
|   std::vector<BasicBlock*> LoopBlocks;
 | |
|   for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I)
 | |
|     if (L->contains(*I))
 | |
|       LoopBlocks.push_back(*I);
 | |
| 
 | |
|   assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
 | |
|   BasicBlock *NewBB = SplitBlockPredecessors(Exit, ".loopexit", LoopBlocks);
 | |
| 
 | |
|   // Update Loop Information - we know that the new block will be in the parent
 | |
|   // loop of L.
 | |
|   if (Loop *Parent = L->getParentLoop())
 | |
|     Parent->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
 | |
| 
 | |
|   // Replace any instances of Exit with NewBB in this and any nested loops...
 | |
|   for (df_iterator<Loop*> I = df_begin(L), E = df_end(L); I != E; ++I)
 | |
|     if (I->hasExitBlock(Exit))
 | |
|       I->changeExitBlock(Exit, NewBB);   // Update exit block information
 | |
| 
 | |
|   // Update dominator information (set, immdom, domtree, and domfrontier)
 | |
|   UpdateDomInfoForRevectoredPreds(NewBB, LoopBlocks);
 | |
| }
 | |
| 
 | |
| /// InsertUniqueBackedgeBlock - This method is called when the specified loop
 | |
| /// has more than one backedge in it.  If this occurs, revector all of these
 | |
| /// backedges to target a new basic block and have that block branch to the loop
 | |
| /// header.  This ensures that loops have exactly one backedge.
 | |
| ///
 | |
| void LoopSimplify::InsertUniqueBackedgeBlock(Loop *L) {
 | |
|   assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
 | |
| 
 | |
|   // Get information about the loop
 | |
|   BasicBlock *Preheader = L->getLoopPreheader();
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   Function *F = Header->getParent();
 | |
| 
 | |
|   // Figure out which basic blocks contain back-edges to the loop header.
 | |
|   std::vector<BasicBlock*> BackedgeBlocks;
 | |
|   for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I)
 | |
|     if (*I != Preheader) BackedgeBlocks.push_back(*I);
 | |
| 
 | |
|   // Create and insert the new backedge block...
 | |
|   BasicBlock *BEBlock = new BasicBlock(Header->getName()+".backedge", F);
 | |
|   BranchInst *BETerminator = new BranchInst(Header, BEBlock);
 | |
| 
 | |
|   // Move the new backedge block to right after the last backedge block.
 | |
|   Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
 | |
|   F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
 | |
|   
 | |
|   // Now that the block has been inserted into the function, create PHI nodes in
 | |
|   // the backedge block which correspond to any PHI nodes in the header block.
 | |
|   for (BasicBlock::iterator I = Header->begin();
 | |
|        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
 | |
|     PHINode *NewPN = new PHINode(PN->getType(), PN->getName()+".be",
 | |
|                                  BETerminator);
 | |
|     NewPN->op_reserve(2*BackedgeBlocks.size());
 | |
| 
 | |
|     // Loop over the PHI node, moving all entries except the one for the
 | |
|     // preheader over to the new PHI node.
 | |
|     unsigned PreheaderIdx = ~0U;
 | |
|     bool HasUniqueIncomingValue = true;
 | |
|     Value *UniqueValue = 0;
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|       BasicBlock *IBB = PN->getIncomingBlock(i);
 | |
|       Value *IV = PN->getIncomingValue(i);
 | |
|       if (IBB == Preheader) {
 | |
|         PreheaderIdx = i;
 | |
|       } else {
 | |
|         NewPN->addIncoming(IV, IBB);
 | |
|         if (HasUniqueIncomingValue) {
 | |
|           if (UniqueValue == 0)
 | |
|             UniqueValue = IV;
 | |
|           else if (UniqueValue != IV)
 | |
|             HasUniqueIncomingValue = false;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|       
 | |
|     // Delete all of the incoming values from the old PN except the preheader's
 | |
|     assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
 | |
|     if (PreheaderIdx != 0) {
 | |
|       PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
 | |
|       PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
 | |
|     }
 | |
|     PN->op_erase(PN->op_begin()+2, PN->op_end());
 | |
| 
 | |
|     // Finally, add the newly constructed PHI node as the entry for the BEBlock.
 | |
|     PN->addIncoming(NewPN, BEBlock);
 | |
| 
 | |
|     // As an optimization, if all incoming values in the new PhiNode (which is a
 | |
|     // subset of the incoming values of the old PHI node) have the same value,
 | |
|     // eliminate the PHI Node.
 | |
|     if (HasUniqueIncomingValue) {
 | |
|       NewPN->replaceAllUsesWith(UniqueValue);
 | |
|       BEBlock->getInstList().erase(NewPN);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now that all of the PHI nodes have been inserted and adjusted, modify the
 | |
|   // backedge blocks to just to the BEBlock instead of the header.
 | |
|   for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
 | |
|     TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
 | |
|     for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
 | |
|       if (TI->getSuccessor(Op) == Header)
 | |
|         TI->setSuccessor(Op, BEBlock);
 | |
|   }
 | |
| 
 | |
|   //===--- Update all analyses which we must preserve now -----------------===//
 | |
| 
 | |
|   // Update Loop Information - we know that this block is now in the current
 | |
|   // loop and all parent loops.
 | |
|   L->addBasicBlockToLoop(BEBlock, getAnalysis<LoopInfo>());
 | |
| 
 | |
|   // Replace any instances of Exit with NewBB in this and any nested loops...
 | |
|   for (df_iterator<Loop*> I = df_begin(L), E = df_end(L); I != E; ++I)
 | |
|     if (I->hasExitBlock(Header))
 | |
|       I->changeExitBlock(Header, BEBlock);   // Update exit block information
 | |
| 
 | |
|   // Update dominator information (set, immdom, domtree, and domfrontier)
 | |
|   UpdateDomInfoForRevectoredPreds(BEBlock, BackedgeBlocks);
 | |
| }
 | |
| 
 | |
| /// UpdateDomInfoForRevectoredPreds - This method is used to update the four
 | |
| /// different kinds of dominator information (dominator sets, immediate
 | |
| /// dominators, dominator trees, and dominance frontiers) after a new block has
 | |
| /// been added to the CFG.
 | |
| ///
 | |
| /// This only supports the case when an existing block (known as "NewBBSucc"),
 | |
| /// had some of its predecessors factored into a new basic block.  This
 | |
| /// transformation inserts a new basic block ("NewBB"), with a single
 | |
| /// unconditional branch to NewBBSucc, and moves some predecessors of
 | |
| /// "NewBBSucc" to now branch to NewBB.  These predecessors are listed in
 | |
| /// PredBlocks, even though they are the same as
 | |
| /// pred_begin(NewBB)/pred_end(NewBB).
 | |
| ///
 | |
| void LoopSimplify::UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
 | |
|                                          std::vector<BasicBlock*> &PredBlocks) {
 | |
|   assert(!PredBlocks.empty() && "No predblocks??");
 | |
|   assert(succ_begin(NewBB) != succ_end(NewBB) &&
 | |
|          ++succ_begin(NewBB) == succ_end(NewBB) &&
 | |
|          "NewBB should have a single successor!");
 | |
|   BasicBlock *NewBBSucc = *succ_begin(NewBB);
 | |
|   DominatorSet &DS = getAnalysis<DominatorSet>();
 | |
| 
 | |
|   // The newly inserted basic block will dominate existing basic blocks iff the
 | |
|   // PredBlocks dominate all of the non-pred blocks.  If all predblocks dominate
 | |
|   // the non-pred blocks, then they all must be the same block!
 | |
|   bool NewBBDominatesNewBBSucc = true;
 | |
|   {
 | |
|     BasicBlock *OnePred = PredBlocks[0];
 | |
|     for (unsigned i = 1, e = PredBlocks.size(); i != e; ++i)
 | |
|       if (PredBlocks[i] != OnePred) {
 | |
|         NewBBDominatesNewBBSucc = false;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|     if (NewBBDominatesNewBBSucc)
 | |
|       for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc);
 | |
|            PI != E; ++PI)
 | |
|         if (*PI != NewBB && !DS.dominates(NewBBSucc, *PI)) {
 | |
|           NewBBDominatesNewBBSucc = false;
 | |
|           break;
 | |
|         }
 | |
|   }
 | |
| 
 | |
|   // Update dominator information...  The blocks that dominate NewBB are the
 | |
|   // intersection of the dominators of predecessors, plus the block itself.
 | |
|   // The newly created basic block does not dominate anything except itself.
 | |
|   //
 | |
|   DominatorSet::DomSetType NewBBDomSet = DS.getDominators(PredBlocks[0]);
 | |
|   for (unsigned i = 1, e = PredBlocks.size(); i != e; ++i)
 | |
|     set_intersect(NewBBDomSet, DS.getDominators(PredBlocks[i]));
 | |
|   NewBBDomSet.insert(NewBB);  // All blocks dominate themselves...
 | |
|   DS.addBasicBlock(NewBB, NewBBDomSet);
 | |
| 
 | |
|   // If NewBB dominates some blocks, then it will dominate all blocks that
 | |
|   // NewBBSucc does.
 | |
|   if (NewBBDominatesNewBBSucc) {
 | |
|     BasicBlock *PredBlock = PredBlocks[0];
 | |
|     Function *F = NewBB->getParent();
 | |
|     for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
 | |
|       if (DS.dominates(NewBBSucc, I))
 | |
|         DS.addDominator(I, NewBB);
 | |
|   }
 | |
| 
 | |
|   // Update immediate dominator information if we have it...
 | |
|   BasicBlock *NewBBIDom = 0;
 | |
|   if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
 | |
|     // To find the immediate dominator of the new exit node, we trace up the
 | |
|     // immediate dominators of a predecessor until we find a basic block that
 | |
|     // dominates the exit block.
 | |
|     //
 | |
|     BasicBlock *Dom = PredBlocks[0];  // Some random predecessor...
 | |
|     while (!NewBBDomSet.count(Dom)) {  // Loop until we find a dominator...
 | |
|       assert(Dom != 0 && "No shared dominator found???");
 | |
|       Dom = ID->get(Dom);
 | |
|     }
 | |
| 
 | |
|     // Set the immediate dominator now...
 | |
|     ID->addNewBlock(NewBB, Dom);
 | |
|     NewBBIDom = Dom;   // Reuse this if calculating DominatorTree info...
 | |
| 
 | |
|     // If NewBB strictly dominates other blocks, we need to update their idom's
 | |
|     // now.  The only block that need adjustment is the NewBBSucc block, whose
 | |
|     // idom should currently be set to PredBlocks[0].
 | |
|     if (NewBBDominatesNewBBSucc) {
 | |
|       assert(ID->get(NewBBSucc) == PredBlocks[0] &&
 | |
|              "Immediate dominator update code broken!");
 | |
|       ID->setImmediateDominator(NewBBSucc, NewBB);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update DominatorTree information if it is active.
 | |
|   if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>()) {
 | |
|     // If we don't have ImmediateDominator info around, calculate the idom as
 | |
|     // above.
 | |
|     DominatorTree::Node *NewBBIDomNode;
 | |
|     if (NewBBIDom) {
 | |
|       NewBBIDomNode = DT->getNode(NewBBIDom);
 | |
|     } else {
 | |
|       NewBBIDomNode = DT->getNode(PredBlocks[0]); // Random pred
 | |
|       while (!NewBBDomSet.count(NewBBIDomNode->getBlock())) {
 | |
|         NewBBIDomNode = NewBBIDomNode->getIDom();
 | |
|         assert(NewBBIDomNode && "No shared dominator found??");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Create the new dominator tree node... and set the idom of NewBB.
 | |
|     DominatorTree::Node *NewBBNode = DT->createNewNode(NewBB, NewBBIDomNode);
 | |
| 
 | |
|     // If NewBB strictly dominates other blocks, then it is now the immediate
 | |
|     // dominator of NewBBSucc.  Update the dominator tree as appropriate.
 | |
|     if (NewBBDominatesNewBBSucc) {
 | |
|       DominatorTree::Node *NewBBSuccNode = DT->getNode(NewBBSucc);
 | |
|       assert(NewBBSuccNode->getIDom()->getBlock() == PredBlocks[0] &&
 | |
|              "Immediate tree update code broken!");
 | |
|       DT->changeImmediateDominator(NewBBSuccNode, NewBBNode);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update dominance frontier information...
 | |
|   if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
 | |
|     // If NewBB dominates NewBBSucc, then the global dominance frontiers are not
 | |
|     // changed.  DF(NewBB) is now going to be the DF(PredBlocks[0]) without the
 | |
|     // stuff that the new block does not dominate a predecessor of.
 | |
|     if (NewBBDominatesNewBBSucc) {
 | |
|       DominanceFrontier::iterator DFI = DF->find(PredBlocks[0]);
 | |
|       if (DFI != DF->end()) {
 | |
|         DominanceFrontier::DomSetType Set = DFI->second;
 | |
|         // Filter out stuff in Set that we do not dominate a predecessor of.
 | |
|         for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
 | |
|                E = Set.end(); SetI != E;) {
 | |
|           bool DominatesPred = false;
 | |
|           for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI);
 | |
|                PI != E; ++PI)
 | |
|             if (DS.dominates(NewBB, *PI))
 | |
|               DominatesPred = true;
 | |
|           if (!DominatesPred)
 | |
|             Set.erase(SetI++);
 | |
|           else
 | |
|             ++SetI;
 | |
|         }
 | |
| 
 | |
|         DF->addBasicBlock(NewBB, Set);
 | |
|       }
 | |
| 
 | |
|     } else {
 | |
|       // DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate
 | |
|       // NewBBSucc, but it does dominate itself (and there is an edge (NewBB ->
 | |
|       // NewBBSucc)).  NewBBSucc is the single successor of NewBB.
 | |
|       DominanceFrontier::DomSetType NewDFSet;
 | |
|       NewDFSet.insert(NewBBSucc);
 | |
|       DF->addBasicBlock(NewBB, NewDFSet);
 | |
|       
 | |
|       // Now we must loop over all of the dominance frontiers in the function,
 | |
|       // replacing occurrences of NewBBSucc with NewBB in some cases.  All
 | |
|       // blocks that dominate a block in PredBlocks and contained NewBBSucc in
 | |
|       // their dominance frontier must be updated to contain NewBB instead.
 | |
|       //
 | |
|       for (unsigned i = 0, e = PredBlocks.size(); i != e; ++i) {
 | |
|         BasicBlock *Pred = PredBlocks[i];
 | |
|         // Get all of the dominators of the predecessor...
 | |
|         const DominatorSet::DomSetType &PredDoms = DS.getDominators(Pred);
 | |
|         for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
 | |
|                PDE = PredDoms.end(); PDI != PDE; ++PDI) {
 | |
|           BasicBlock *PredDom = *PDI;
 | |
| 
 | |
|           // If the NewBBSucc node is in DF(PredDom), then PredDom didn't
 | |
|           // dominate NewBBSucc but did dominate a predecessor of it.  Now we
 | |
|           // change this entry to include NewBB in the DF instead of NewBBSucc.
 | |
|           DominanceFrontier::iterator DFI = DF->find(PredDom);
 | |
|           assert(DFI != DF->end() && "No dominance frontier for node?");
 | |
|           if (DFI->second.count(NewBBSucc)) {
 | |
|             DF->removeFromFrontier(DFI, NewBBSucc);
 | |
|             DF->addToFrontier(DFI, NewBB);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 |