mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	and br->br code and generalizing it.  This allows us to compile code like this:
int test(Instruction *I) {
  if (isa<CastInst>(I))
    return foo(7);
  else if (isa<BranchInst>(I))
    return foo(123);
  else if (isa<UnwindInst>(I))
    return foo(1241);
  else if (isa<SetCondInst>(I))
    return foo(1);
  else if (isa<VAArgInst>(I))
    return foo(42);
  return foo(-1);
}
into:
int %_Z4testPN4llvm11InstructionE("struct.llvm::Instruction"* %I) {
entry:
        %tmp.1.i.i.i.i.i.i.i = getelementptr "struct.llvm::Instruction"* %I, long 0, ubyte 4            ; <uint*> [#uses=1]
        %tmp.2.i.i.i.i.i.i.i = load uint* %tmp.1.i.i.i.i.i.i.i          ; <uint> [#uses=2]
        %tmp.2.i.i.i.i.i.i = seteq uint %tmp.2.i.i.i.i.i.i.i, 27                ; <bool> [#uses=0]
        switch uint %tmp.2.i.i.i.i.i.i.i, label %endif.0 [
                 uint 27, label %then.0
                 uint 2, label %then.1
                 uint 5, label %then.2
                 uint 14, label %then.3
                 uint 15, label %then.3
                 uint 16, label %then.3
                 uint 17, label %then.3
                 uint 18, label %then.3
                 uint 19, label %then.3
                 uint 32, label %then.4
        ]
...
As well as handling the cases in 176.gcc and many other programs more effectively.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11964 91177308-0d34-0410-b5e6-96231b3b80d8
		
	
		
			
				
	
	
		
			932 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			932 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
 | |
| // 
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Peephole optimize the CFG.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include <algorithm>
 | |
| #include <functional>
 | |
| #include <set>
 | |
| using namespace llvm;
 | |
| 
 | |
| // PropagatePredecessorsForPHIs - This gets "Succ" ready to have the
 | |
| // predecessors from "BB".  This is a little tricky because "Succ" has PHI
 | |
| // nodes, which need to have extra slots added to them to hold the merge edges
 | |
| // from BB's predecessors, and BB itself might have had PHI nodes in it.  This
 | |
| // function returns true (failure) if the Succ BB already has a predecessor that
 | |
| // is a predecessor of BB and incoming PHI arguments would not be discernible.
 | |
| //
 | |
| // Assumption: Succ is the single successor for BB.
 | |
| //
 | |
| static bool PropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
 | |
|   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
 | |
| 
 | |
|   if (!isa<PHINode>(Succ->front()))
 | |
|     return false;  // We can make the transformation, no problem.
 | |
| 
 | |
|   // If there is more than one predecessor, and there are PHI nodes in
 | |
|   // the successor, then we need to add incoming edges for the PHI nodes
 | |
|   //
 | |
|   const std::vector<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB));
 | |
| 
 | |
|   // Check to see if one of the predecessors of BB is already a predecessor of
 | |
|   // Succ.  If so, we cannot do the transformation if there are any PHI nodes
 | |
|   // with incompatible values coming in from the two edges!
 | |
|   //
 | |
|   for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ); PI != PE; ++PI)
 | |
|     if (find(BBPreds.begin(), BBPreds.end(), *PI) != BBPreds.end()) {
 | |
|       // Loop over all of the PHI nodes checking to see if there are
 | |
|       // incompatible values coming in.
 | |
|       for (BasicBlock::iterator I = Succ->begin();
 | |
|            PHINode *PN = dyn_cast<PHINode>(I); ++I) {
 | |
|         // Loop up the entries in the PHI node for BB and for *PI if the values
 | |
|         // coming in are non-equal, we cannot merge these two blocks (instead we
 | |
|         // should insert a conditional move or something, then merge the
 | |
|         // blocks).
 | |
|         int Idx1 = PN->getBasicBlockIndex(BB);
 | |
|         int Idx2 = PN->getBasicBlockIndex(*PI);
 | |
|         assert(Idx1 != -1 && Idx2 != -1 &&
 | |
|                "Didn't have entries for my predecessors??");
 | |
|         if (PN->getIncomingValue(Idx1) != PN->getIncomingValue(Idx2))
 | |
|           return true;  // Values are not equal...
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // Loop over all of the PHI nodes in the successor BB
 | |
|   for (BasicBlock::iterator I = Succ->begin();
 | |
|        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
 | |
|     Value *OldVal = PN->removeIncomingValue(BB, false);
 | |
|     assert(OldVal && "No entry in PHI for Pred BB!");
 | |
| 
 | |
|     // If this incoming value is one of the PHI nodes in BB...
 | |
|     if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
 | |
|       PHINode *OldValPN = cast<PHINode>(OldVal);
 | |
|       for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(), 
 | |
|              End = BBPreds.end(); PredI != End; ++PredI) {
 | |
|         PN->addIncoming(OldValPN->getIncomingValueForBlock(*PredI), *PredI);
 | |
|       }
 | |
|     } else {
 | |
|       for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(), 
 | |
|              End = BBPreds.end(); PredI != End; ++PredI) {
 | |
|         // Add an incoming value for each of the new incoming values...
 | |
|         PN->addIncoming(OldVal, *PredI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// GetIfCondition - Given a basic block (BB) with two predecessors (and
 | |
| /// presumably PHI nodes in it), check to see if the merge at this block is due
 | |
| /// to an "if condition".  If so, return the boolean condition that determines
 | |
| /// which entry into BB will be taken.  Also, return by references the block
 | |
| /// that will be entered from if the condition is true, and the block that will
 | |
| /// be entered if the condition is false.
 | |
| /// 
 | |
| ///
 | |
| static Value *GetIfCondition(BasicBlock *BB,
 | |
|                              BasicBlock *&IfTrue, BasicBlock *&IfFalse) {
 | |
|   assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 &&
 | |
|          "Function can only handle blocks with 2 predecessors!");
 | |
|   BasicBlock *Pred1 = *pred_begin(BB);
 | |
|   BasicBlock *Pred2 = *++pred_begin(BB);
 | |
| 
 | |
|   // We can only handle branches.  Other control flow will be lowered to
 | |
|   // branches if possible anyway.
 | |
|   if (!isa<BranchInst>(Pred1->getTerminator()) ||
 | |
|       !isa<BranchInst>(Pred2->getTerminator()))
 | |
|     return 0;
 | |
|   BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator());
 | |
|   BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator());
 | |
| 
 | |
|   // Eliminate code duplication by ensuring that Pred1Br is conditional if
 | |
|   // either are.
 | |
|   if (Pred2Br->isConditional()) {
 | |
|     // If both branches are conditional, we don't have an "if statement".  In
 | |
|     // reality, we could transform this case, but since the condition will be
 | |
|     // required anyway, we stand no chance of eliminating it, so the xform is
 | |
|     // probably not profitable.
 | |
|     if (Pred1Br->isConditional())
 | |
|       return 0;
 | |
| 
 | |
|     std::swap(Pred1, Pred2);
 | |
|     std::swap(Pred1Br, Pred2Br);
 | |
|   }
 | |
| 
 | |
|   if (Pred1Br->isConditional()) {
 | |
|     // If we found a conditional branch predecessor, make sure that it branches
 | |
|     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
 | |
|     if (Pred1Br->getSuccessor(0) == BB &&
 | |
|         Pred1Br->getSuccessor(1) == Pred2) {
 | |
|       IfTrue = Pred1;
 | |
|       IfFalse = Pred2;
 | |
|     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
 | |
|                Pred1Br->getSuccessor(1) == BB) {
 | |
|       IfTrue = Pred2;
 | |
|       IfFalse = Pred1;
 | |
|     } else {
 | |
|       // We know that one arm of the conditional goes to BB, so the other must
 | |
|       // go somewhere unrelated, and this must not be an "if statement".
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     // The only thing we have to watch out for here is to make sure that Pred2
 | |
|     // doesn't have incoming edges from other blocks.  If it does, the condition
 | |
|     // doesn't dominate BB.
 | |
|     if (++pred_begin(Pred2) != pred_end(Pred2))
 | |
|       return 0;
 | |
| 
 | |
|     return Pred1Br->getCondition();
 | |
|   }
 | |
| 
 | |
|   // Ok, if we got here, both predecessors end with an unconditional branch to
 | |
|   // BB.  Don't panic!  If both blocks only have a single (identical)
 | |
|   // predecessor, and THAT is a conditional branch, then we're all ok!
 | |
|   if (pred_begin(Pred1) == pred_end(Pred1) ||
 | |
|       ++pred_begin(Pred1) != pred_end(Pred1) ||
 | |
|       pred_begin(Pred2) == pred_end(Pred2) ||
 | |
|       ++pred_begin(Pred2) != pred_end(Pred2) ||
 | |
|       *pred_begin(Pred1) != *pred_begin(Pred2))
 | |
|     return 0;
 | |
| 
 | |
|   // Otherwise, if this is a conditional branch, then we can use it!
 | |
|   BasicBlock *CommonPred = *pred_begin(Pred1);
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) {
 | |
|     assert(BI->isConditional() && "Two successors but not conditional?");
 | |
|     if (BI->getSuccessor(0) == Pred1) {
 | |
|       IfTrue = Pred1;
 | |
|       IfFalse = Pred2;
 | |
|     } else {
 | |
|       IfTrue = Pred2;
 | |
|       IfFalse = Pred1;
 | |
|     }
 | |
|     return BI->getCondition();
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| // If we have a merge point of an "if condition" as accepted above, return true
 | |
| // if the specified value dominates the block.  We don't handle the true
 | |
| // generality of domination here, just a special case which works well enough
 | |
| // for us.
 | |
| static bool DominatesMergePoint(Value *V, BasicBlock *BB) {
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|     BasicBlock *PBB = I->getParent();
 | |
|     // If this instruction is defined in a block that contains an unconditional
 | |
|     // branch to BB, then it must be in the 'conditional' part of the "if
 | |
|     // statement".
 | |
|     if (isa<BranchInst>(PBB->getTerminator()) && 
 | |
|         cast<BranchInst>(PBB->getTerminator())->isUnconditional() && 
 | |
|         cast<BranchInst>(PBB->getTerminator())->getSuccessor(0) == BB)
 | |
|       return false;
 | |
| 
 | |
|     // We also don't want to allow wierd loops that might have the "if
 | |
|     // condition" in the bottom of this block.
 | |
|     if (PBB == BB) return false;
 | |
|   }
 | |
| 
 | |
|   // Non-instructions all dominate instructions.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // GatherConstantSetEQs - Given a potentially 'or'd together collection of seteq
 | |
| // instructions that compare a value against a constant, return the value being
 | |
| // compared, and stick the constant into the Values vector.
 | |
| static Value *GatherConstantSetEQs(Value *V, std::vector<Constant*> &Values) {
 | |
|   if (Instruction *Inst = dyn_cast<Instruction>(V))
 | |
|     if (Inst->getOpcode() == Instruction::SetEQ) {
 | |
|       if (Constant *C = dyn_cast<Constant>(Inst->getOperand(1))) {
 | |
|         Values.push_back(C);
 | |
|         return Inst->getOperand(0);
 | |
|       } else if (Constant *C = dyn_cast<Constant>(Inst->getOperand(0))) {
 | |
|         Values.push_back(C);
 | |
|         return Inst->getOperand(1);
 | |
|       }
 | |
|     } else if (Inst->getOpcode() == Instruction::Or) {
 | |
|       if (Value *LHS = GatherConstantSetEQs(Inst->getOperand(0), Values))
 | |
|         if (Value *RHS = GatherConstantSetEQs(Inst->getOperand(1), Values))
 | |
|           if (LHS == RHS)
 | |
|             return LHS;
 | |
|     }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // GatherConstantSetNEs - Given a potentially 'and'd together collection of
 | |
| // setne instructions that compare a value against a constant, return the value
 | |
| // being compared, and stick the constant into the Values vector.
 | |
| static Value *GatherConstantSetNEs(Value *V, std::vector<Constant*> &Values) {
 | |
|   if (Instruction *Inst = dyn_cast<Instruction>(V))
 | |
|     if (Inst->getOpcode() == Instruction::SetNE) {
 | |
|       if (Constant *C = dyn_cast<Constant>(Inst->getOperand(1))) {
 | |
|         Values.push_back(C);
 | |
|         return Inst->getOperand(0);
 | |
|       } else if (Constant *C = dyn_cast<Constant>(Inst->getOperand(0))) {
 | |
|         Values.push_back(C);
 | |
|         return Inst->getOperand(1);
 | |
|       }
 | |
|     } else if (Inst->getOpcode() == Instruction::Cast) {
 | |
|       // Cast of X to bool is really a comparison against zero.
 | |
|       assert(Inst->getType() == Type::BoolTy && "Can only handle bool values!");
 | |
|       Values.push_back(Constant::getNullValue(Inst->getOperand(0)->getType()));
 | |
|       return Inst->getOperand(0);
 | |
|     } else if (Inst->getOpcode() == Instruction::And) {
 | |
|       if (Value *LHS = GatherConstantSetNEs(Inst->getOperand(0), Values))
 | |
|         if (Value *RHS = GatherConstantSetNEs(Inst->getOperand(1), Values))
 | |
|           if (LHS == RHS)
 | |
|             return LHS;
 | |
|     }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
 | |
| /// bunch of comparisons of one value against constants, return the value and
 | |
| /// the constants being compared.
 | |
| static bool GatherValueComparisons(Instruction *Cond, Value *&CompVal,
 | |
|                                    std::vector<Constant*> &Values) {
 | |
|   if (Cond->getOpcode() == Instruction::Or) {
 | |
|     CompVal = GatherConstantSetEQs(Cond, Values);
 | |
| 
 | |
|     // Return true to indicate that the condition is true if the CompVal is
 | |
|     // equal to one of the constants.
 | |
|     return true;
 | |
|   } else if (Cond->getOpcode() == Instruction::And) {
 | |
|     CompVal = GatherConstantSetNEs(Cond, Values);
 | |
|         
 | |
|     // Return false to indicate that the condition is false if the CompVal is
 | |
|     // equal to one of the constants.
 | |
|     return false;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ErasePossiblyDeadInstructionTree - If the specified instruction is dead and
 | |
| /// has no side effects, nuke it.  If it uses any instructions that become dead
 | |
| /// because the instruction is now gone, nuke them too.
 | |
| static void ErasePossiblyDeadInstructionTree(Instruction *I) {
 | |
|   if (isInstructionTriviallyDead(I)) {
 | |
|     std::vector<Value*> Operands(I->op_begin(), I->op_end());
 | |
|     I->getParent()->getInstList().erase(I);
 | |
|     for (unsigned i = 0, e = Operands.size(); i != e; ++i)
 | |
|       if (Instruction *OpI = dyn_cast<Instruction>(Operands[i]))
 | |
|         ErasePossiblyDeadInstructionTree(OpI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// SafeToMergeTerminators - Return true if it is safe to merge these two
 | |
| /// terminator instructions together.
 | |
| ///
 | |
| static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
 | |
|   if (SI1 == SI2) return false;  // Can't merge with self!
 | |
| 
 | |
|   // It is not safe to merge these two switch instructions if they have a common
 | |
|   // successor, and if that successor has a PHI node, and if that PHI node has
 | |
|   // conflicting incoming values from the two switch blocks.
 | |
|   BasicBlock *SI1BB = SI1->getParent();
 | |
|   BasicBlock *SI2BB = SI2->getParent();
 | |
|   std::set<BasicBlock*> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
 | |
| 
 | |
|   for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
 | |
|     if (SI1Succs.count(*I))
 | |
|       for (BasicBlock::iterator BBI = (*I)->begin();
 | |
|            PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI)
 | |
|         if (PN->getIncomingValueForBlock(SI1BB) !=
 | |
|             PN->getIncomingValueForBlock(SI2BB))
 | |
|           return false;
 | |
|         
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
 | |
| /// now be entries in it from the 'NewPred' block.  The values that will be
 | |
| /// flowing into the PHI nodes will be the same as those coming in from
 | |
| /// ExistPred, and existing predecessor of Succ.
 | |
| static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
 | |
|                                   BasicBlock *ExistPred) {
 | |
|   assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) !=
 | |
|          succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!");
 | |
|   if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
 | |
| 
 | |
|   for (BasicBlock::iterator I = Succ->begin();
 | |
|        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
 | |
|     Value *V = PN->getIncomingValueForBlock(ExistPred);
 | |
|     PN->addIncoming(V, NewPred);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // isValueEqualityComparison - Return true if the specified terminator checks to
 | |
| // see if a value is equal to constant integer value.
 | |
| static Value *isValueEqualityComparison(TerminatorInst *TI) {
 | |
|   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI))
 | |
|     return SI->getCondition();
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(TI))
 | |
|     if (BI->isConditional() && BI->getCondition()->hasOneUse())
 | |
|       if (SetCondInst *SCI = dyn_cast<SetCondInst>(BI->getCondition()))
 | |
|         if ((SCI->getOpcode() == Instruction::SetEQ ||
 | |
|              SCI->getOpcode() == Instruction::SetNE) && 
 | |
|             isa<ConstantInt>(SCI->getOperand(1)))
 | |
|           return SCI->getOperand(0);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // Given a value comparison instruction, decode all of the 'cases' that it
 | |
| // represents and return the 'default' block.
 | |
| static BasicBlock *
 | |
| GetValueEqualityComparisonCases(TerminatorInst *TI, 
 | |
|                                 std::vector<std::pair<ConstantInt*,
 | |
|                                                       BasicBlock*> > &Cases) {
 | |
|   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | |
|     Cases.reserve(SI->getNumCases());
 | |
|     for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
 | |
|       Cases.push_back(std::make_pair(cast<ConstantInt>(SI->getCaseValue(i)),
 | |
|                                      SI->getSuccessor(i)));
 | |
|     return SI->getDefaultDest();
 | |
|   }
 | |
| 
 | |
|   BranchInst *BI = cast<BranchInst>(TI);
 | |
|   SetCondInst *SCI = cast<SetCondInst>(BI->getCondition());
 | |
|   Cases.push_back(std::make_pair(cast<ConstantInt>(SCI->getOperand(1)),
 | |
|                                  BI->getSuccessor(SCI->getOpcode() ==
 | |
|                                                         Instruction::SetNE)));
 | |
|   return BI->getSuccessor(SCI->getOpcode() == Instruction::SetEQ);
 | |
| }
 | |
| 
 | |
| 
 | |
| // FoldValueComparisonIntoPredecessors - The specified terminator is a value
 | |
| // equality comparison instruction (either a switch or a branch on "X == c").
 | |
| // See if any of the predecessors of the terminator block are value comparisons
 | |
| // on the same value.  If so, and if safe to do so, fold them together.
 | |
| static bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
 | |
|   BasicBlock *BB = TI->getParent();
 | |
|   Value *CV = isValueEqualityComparison(TI);  // CondVal
 | |
|   assert(CV && "Not a comparison?");
 | |
|   bool Changed = false;
 | |
| 
 | |
|   std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
 | |
|   while (!Preds.empty()) {
 | |
|     BasicBlock *Pred = Preds.back();
 | |
|     Preds.pop_back();
 | |
|     
 | |
|     // See if the predecessor is a comparison with the same value.
 | |
|     TerminatorInst *PTI = Pred->getTerminator();
 | |
|     Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
 | |
| 
 | |
|     if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
 | |
|       // Figure out which 'cases' to copy from SI to PSI.
 | |
|       std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
 | |
|       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
 | |
| 
 | |
|       std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
 | |
|       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
 | |
| 
 | |
|       // Based on whether the default edge from PTI goes to BB or not, fill in
 | |
|       // PredCases and PredDefault with the new switch cases we would like to
 | |
|       // build.
 | |
|       std::vector<BasicBlock*> NewSuccessors;
 | |
| 
 | |
|       if (PredDefault == BB) {
 | |
|         // If this is the default destination from PTI, only the edges in TI
 | |
|         // that don't occur in PTI, or that branch to BB will be activated.
 | |
|         std::set<ConstantInt*> PTIHandled;
 | |
|         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
 | |
|           if (PredCases[i].second != BB)
 | |
|             PTIHandled.insert(PredCases[i].first);
 | |
|           else {
 | |
|             // The default destination is BB, we don't need explicit targets.
 | |
|             std::swap(PredCases[i], PredCases.back());
 | |
|             PredCases.pop_back();
 | |
|             --i; --e;
 | |
|           }
 | |
| 
 | |
|         // Reconstruct the new switch statement we will be building.
 | |
|         if (PredDefault != BBDefault) {
 | |
|           PredDefault->removePredecessor(Pred);
 | |
|           PredDefault = BBDefault;
 | |
|           NewSuccessors.push_back(BBDefault);
 | |
|         }
 | |
|         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
 | |
|           if (!PTIHandled.count(BBCases[i].first) &&
 | |
|               BBCases[i].second != BBDefault) {
 | |
|             PredCases.push_back(BBCases[i]);
 | |
|             NewSuccessors.push_back(BBCases[i].second);
 | |
|           }
 | |
| 
 | |
|       } else {
 | |
|         // If this is not the default destination from PSI, only the edges
 | |
|         // in SI that occur in PSI with a destination of BB will be
 | |
|         // activated.
 | |
|         std::set<ConstantInt*> PTIHandled;
 | |
|         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
 | |
|           if (PredCases[i].second == BB) {
 | |
|             PTIHandled.insert(PredCases[i].first);
 | |
|             std::swap(PredCases[i], PredCases.back());
 | |
|             PredCases.pop_back();
 | |
|             --i; --e;
 | |
|           }
 | |
| 
 | |
|         // Okay, now we know which constants were sent to BB from the
 | |
|         // predecessor.  Figure out where they will all go now.
 | |
|         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
 | |
|           if (PTIHandled.count(BBCases[i].first)) {
 | |
|             // If this is one we are capable of getting...
 | |
|             PredCases.push_back(BBCases[i]);
 | |
|             NewSuccessors.push_back(BBCases[i].second);
 | |
|             PTIHandled.erase(BBCases[i].first);// This constant is taken care of
 | |
|           }
 | |
| 
 | |
|         // If there are any constants vectored to BB that TI doesn't handle,
 | |
|         // they must go to the default destination of TI.
 | |
|         for (std::set<ConstantInt*>::iterator I = PTIHandled.begin(),
 | |
|                E = PTIHandled.end(); I != E; ++I) {
 | |
|           PredCases.push_back(std::make_pair(*I, BBDefault));
 | |
|           NewSuccessors.push_back(BBDefault);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Okay, at this point, we know which new successor Pred will get.  Make
 | |
|       // sure we update the number of entries in the PHI nodes for these
 | |
|       // successors.
 | |
|       for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
 | |
|         AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
 | |
| 
 | |
|       // Now that the successors are updated, create the new Switch instruction.
 | |
|       SwitchInst *NewSI = new SwitchInst(CV, PredDefault, PTI);
 | |
|       for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
 | |
|         NewSI->addCase(PredCases[i].first, PredCases[i].second);
 | |
|       Pred->getInstList().erase(PTI);
 | |
| 
 | |
|       // Okay, last check.  If BB is still a successor of PSI, then we must
 | |
|       // have an infinite loop case.  If so, add an infinitely looping block
 | |
|       // to handle the case to preserve the behavior of the code.
 | |
|       BasicBlock *InfLoopBlock = 0;
 | |
|       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
 | |
|         if (NewSI->getSuccessor(i) == BB) {
 | |
|           if (InfLoopBlock == 0) {
 | |
|             // Insert it at the end of the loop, because it's either code,
 | |
|             // or it won't matter if it's hot. :)
 | |
|             InfLoopBlock = new BasicBlock("infloop", BB->getParent());
 | |
|             new BranchInst(InfLoopBlock, InfLoopBlock);
 | |
|           }
 | |
|           NewSI->setSuccessor(i, InfLoopBlock);
 | |
|         }
 | |
|           
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| 
 | |
| // SimplifyCFG - This function is used to do simplification of a CFG.  For
 | |
| // example, it adjusts branches to branches to eliminate the extra hop, it
 | |
| // eliminates unreachable basic blocks, and does other "peephole" optimization
 | |
| // of the CFG.  It returns true if a modification was made.
 | |
| //
 | |
| // WARNING:  The entry node of a function may not be simplified.
 | |
| //
 | |
| bool llvm::SimplifyCFG(BasicBlock *BB) {
 | |
|   bool Changed = false;
 | |
|   Function *M = BB->getParent();
 | |
| 
 | |
|   assert(BB && BB->getParent() && "Block not embedded in function!");
 | |
|   assert(BB->getTerminator() && "Degenerate basic block encountered!");
 | |
|   assert(&BB->getParent()->front() != BB && "Can't Simplify entry block!");
 | |
| 
 | |
|   // Remove basic blocks that have no predecessors... which are unreachable.
 | |
|   if (pred_begin(BB) == pred_end(BB) ||
 | |
|       *pred_begin(BB) == BB && ++pred_begin(BB) == pred_end(BB)) {
 | |
|     //cerr << "Removing BB: \n" << BB;
 | |
| 
 | |
|     // Loop through all of our successors and make sure they know that one
 | |
|     // of their predecessors is going away.
 | |
|     for_each(succ_begin(BB), succ_end(BB),
 | |
| 	     std::bind2nd(std::mem_fun(&BasicBlock::removePredecessor), BB));
 | |
| 
 | |
|     while (!BB->empty()) {
 | |
|       Instruction &I = BB->back();
 | |
|       // If this instruction is used, replace uses with an arbitrary
 | |
|       // constant value.  Because control flow can't get here, we don't care
 | |
|       // what we replace the value with.  Note that since this block is 
 | |
|       // unreachable, and all values contained within it must dominate their
 | |
|       // uses, that all uses will eventually be removed.
 | |
|       if (!I.use_empty()) 
 | |
|         // Make all users of this instruction reference the constant instead
 | |
|         I.replaceAllUsesWith(Constant::getNullValue(I.getType()));
 | |
|       
 | |
|       // Remove the instruction from the basic block
 | |
|       BB->getInstList().pop_back();
 | |
|     }
 | |
|     M->getBasicBlockList().erase(BB);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Check to see if we can constant propagate this terminator instruction
 | |
|   // away...
 | |
|   Changed |= ConstantFoldTerminator(BB);
 | |
| 
 | |
|   // Check to see if this block has no non-phi instructions and only a single
 | |
|   // successor.  If so, replace references to this basic block with references
 | |
|   // to the successor.
 | |
|   succ_iterator SI(succ_begin(BB));
 | |
|   if (SI != succ_end(BB) && ++SI == succ_end(BB)) {  // One succ?
 | |
| 
 | |
|     BasicBlock::iterator BBI = BB->begin();  // Skip over phi nodes...
 | |
|     while (isa<PHINode>(*BBI)) ++BBI;
 | |
| 
 | |
|     if (BBI->isTerminator()) {   // Terminator is the only non-phi instruction!
 | |
|       BasicBlock *Succ = *succ_begin(BB); // There is exactly one successor
 | |
|      
 | |
|       if (Succ != BB) {   // Arg, don't hurt infinite loops!
 | |
|         // If our successor has PHI nodes, then we need to update them to
 | |
|         // include entries for BB's predecessors, not for BB itself.
 | |
|         // Be careful though, if this transformation fails (returns true) then
 | |
|         // we cannot do this transformation!
 | |
|         //
 | |
| 	if (!PropagatePredecessorsForPHIs(BB, Succ)) {
 | |
|           //cerr << "Killing Trivial BB: \n" << BB;
 | |
|           std::string OldName = BB->getName();
 | |
| 
 | |
|           std::vector<BasicBlock*>
 | |
|             OldSuccPreds(pred_begin(Succ), pred_end(Succ));
 | |
| 
 | |
|           // Move all PHI nodes in BB to Succ if they are alive, otherwise
 | |
|           // delete them.
 | |
|           while (PHINode *PN = dyn_cast<PHINode>(&BB->front()))
 | |
|             if (PN->use_empty())
 | |
|               BB->getInstList().erase(BB->begin());  // Nuke instruction...
 | |
|             else {
 | |
|               // The instruction is alive, so this means that Succ must have
 | |
|               // *ONLY* had BB as a predecessor, and the PHI node is still valid
 | |
|               // now.  Simply move it into Succ, because we know that BB
 | |
|               // strictly dominated Succ.
 | |
|               BB->getInstList().remove(BB->begin());
 | |
|               Succ->getInstList().push_front(PN);
 | |
| 
 | |
|               // We need to add new entries for the PHI node to account for
 | |
|               // predecessors of Succ that the PHI node does not take into
 | |
|               // account.  At this point, since we know that BB dominated succ,
 | |
|               // this means that we should any newly added incoming edges should
 | |
|               // use the PHI node as the value for these edges, because they are
 | |
|               // loop back edges.
 | |
|               
 | |
|               for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
 | |
|                 if (OldSuccPreds[i] != BB)
 | |
|                   PN->addIncoming(PN, OldSuccPreds[i]);
 | |
|             }
 | |
| 
 | |
|           // Everything that jumped to BB now goes to Succ...
 | |
|           BB->replaceAllUsesWith(Succ);
 | |
| 
 | |
|           // Delete the old basic block...
 | |
|           M->getBasicBlockList().erase(BB);
 | |
| 	
 | |
|           if (!OldName.empty() && !Succ->hasName())  // Transfer name if we can
 | |
|             Succ->setName(OldName);
 | |
|           
 | |
|           //cerr << "Function after removal: \n" << M;
 | |
|           return true;
 | |
| 	}
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this is a returning block with only PHI nodes in it, fold the return
 | |
|   // instruction into any unconditional branch predecessors.
 | |
|   if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
 | |
|     BasicBlock::iterator BBI = BB->getTerminator();
 | |
|     if (BBI == BB->begin() || isa<PHINode>(--BBI)) {
 | |
|       // Find predecessors that end with unconditional branches.
 | |
|       std::vector<BasicBlock*> UncondBranchPreds;
 | |
|       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
 | |
|         TerminatorInst *PTI = (*PI)->getTerminator();
 | |
|         if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
 | |
|           if (BI->isUnconditional())
 | |
|             UncondBranchPreds.push_back(*PI);
 | |
|       }
 | |
|       
 | |
|       // If we found some, do the transformation!
 | |
|       if (!UncondBranchPreds.empty()) {
 | |
|         while (!UncondBranchPreds.empty()) {
 | |
|           BasicBlock *Pred = UncondBranchPreds.back();
 | |
|           UncondBranchPreds.pop_back();
 | |
|           Instruction *UncondBranch = Pred->getTerminator();
 | |
|           // Clone the return and add it to the end of the predecessor.
 | |
|           Instruction *NewRet = RI->clone();
 | |
|           Pred->getInstList().push_back(NewRet);
 | |
| 
 | |
|           // If the return instruction returns a value, and if the value was a
 | |
|           // PHI node in "BB", propagate the right value into the return.
 | |
|           if (NewRet->getNumOperands() == 1)
 | |
|             if (PHINode *PN = dyn_cast<PHINode>(NewRet->getOperand(0)))
 | |
|               if (PN->getParent() == BB)
 | |
|                 NewRet->setOperand(0, PN->getIncomingValueForBlock(Pred));
 | |
|           // Update any PHI nodes in the returning block to realize that we no
 | |
|           // longer branch to them.
 | |
|           BB->removePredecessor(Pred);
 | |
|           Pred->getInstList().erase(UncondBranch);
 | |
|         }
 | |
| 
 | |
|         // If we eliminated all predecessors of the block, delete the block now.
 | |
|         if (pred_begin(BB) == pred_end(BB))
 | |
|           // We know there are no successors, so just nuke the block.
 | |
|           M->getBasicBlockList().erase(BB);
 | |
| 
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->begin())) {
 | |
|     // Check to see if the first instruction in this block is just an unwind.
 | |
|     // If so, replace any invoke instructions which use this as an exception
 | |
|     // destination with call instructions.
 | |
|     //
 | |
|     std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
 | |
|     while (!Preds.empty()) {
 | |
|       BasicBlock *Pred = Preds.back();
 | |
|       if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
 | |
|         if (II->getUnwindDest() == BB) {
 | |
|           // Insert a new branch instruction before the invoke, because this
 | |
|           // is now a fall through...
 | |
|           BranchInst *BI = new BranchInst(II->getNormalDest(), II);
 | |
|           Pred->getInstList().remove(II);   // Take out of symbol table
 | |
|           
 | |
|           // Insert the call now...
 | |
|           std::vector<Value*> Args(II->op_begin()+3, II->op_end());
 | |
|           CallInst *CI = new CallInst(II->getCalledValue(), Args,
 | |
|                                       II->getName(), BI);
 | |
|           // If the invoke produced a value, the Call now does instead
 | |
|           II->replaceAllUsesWith(CI);
 | |
|           delete II;
 | |
|           Changed = true;
 | |
|         }
 | |
|       
 | |
|       Preds.pop_back();
 | |
|     }
 | |
| 
 | |
|     // If this block is now dead, remove it.
 | |
|     if (pred_begin(BB) == pred_end(BB)) {
 | |
|       // We know there are no successors, so just nuke the block.
 | |
|       M->getBasicBlockList().erase(BB);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->begin())) {
 | |
|     if (FoldValueComparisonIntoPredecessors(SI))
 | |
|       return SimplifyCFG(BB) || 1;
 | |
|   } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
 | |
|     if (Value *CompVal = isValueEqualityComparison(BB->getTerminator())) {
 | |
|       // This block must be empty, except for the setcond inst, if it exists.
 | |
|       BasicBlock::iterator I = BB->begin();
 | |
|       if (&*I == BI ||
 | |
|           (&*I == cast<Instruction>(BI->getCondition()) &&
 | |
|            &*++I == BI))
 | |
|         if (FoldValueComparisonIntoPredecessors(BI))
 | |
|           return SimplifyCFG(BB) || 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Merge basic blocks into their predecessor if there is only one distinct
 | |
|   // pred, and if there is only one distinct successor of the predecessor, and
 | |
|   // if there are no PHI nodes.
 | |
|   //
 | |
|   pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
 | |
|   BasicBlock *OnlyPred = *PI++;
 | |
|   for (; PI != PE; ++PI)  // Search all predecessors, see if they are all same
 | |
|     if (*PI != OnlyPred) {
 | |
|       OnlyPred = 0;       // There are multiple different predecessors...
 | |
|       break;
 | |
|     }
 | |
|   
 | |
|   BasicBlock *OnlySucc = 0;
 | |
|   if (OnlyPred && OnlyPred != BB &&    // Don't break self loops
 | |
|       OnlyPred->getTerminator()->getOpcode() != Instruction::Invoke) {
 | |
|     // Check to see if there is only one distinct successor...
 | |
|     succ_iterator SI(succ_begin(OnlyPred)), SE(succ_end(OnlyPred));
 | |
|     OnlySucc = BB;
 | |
|     for (; SI != SE; ++SI)
 | |
|       if (*SI != OnlySucc) {
 | |
|         OnlySucc = 0;     // There are multiple distinct successors!
 | |
|         break;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   if (OnlySucc) {
 | |
|     //cerr << "Merging: " << BB << "into: " << OnlyPred;
 | |
|     TerminatorInst *Term = OnlyPred->getTerminator();
 | |
| 
 | |
|     // Resolve any PHI nodes at the start of the block.  They are all
 | |
|     // guaranteed to have exactly one entry if they exist, unless there are
 | |
|     // multiple duplicate (but guaranteed to be equal) entries for the
 | |
|     // incoming edges.  This occurs when there are multiple edges from
 | |
|     // OnlyPred to OnlySucc.
 | |
|     //
 | |
|     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
 | |
|       PN->replaceAllUsesWith(PN->getIncomingValue(0));
 | |
|       BB->getInstList().pop_front();  // Delete the phi node...
 | |
|     }
 | |
| 
 | |
|     // Delete the unconditional branch from the predecessor...
 | |
|     OnlyPred->getInstList().pop_back();
 | |
|       
 | |
|     // Move all definitions in the successor to the predecessor...
 | |
|     OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
 | |
|                                      
 | |
|     // Make all PHI nodes that referred to BB now refer to Pred as their
 | |
|     // source...
 | |
|     BB->replaceAllUsesWith(OnlyPred);
 | |
| 
 | |
|     std::string OldName = BB->getName();
 | |
| 
 | |
|     // Erase basic block from the function... 
 | |
|     M->getBasicBlockList().erase(BB);
 | |
| 
 | |
|     // Inherit predecessors name if it exists...
 | |
|     if (!OldName.empty() && !OnlyPred->hasName())
 | |
|       OnlyPred->setName(OldName);
 | |
|       
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
 | |
|     if (BranchInst *BI = dyn_cast<BranchInst>((*PI)->getTerminator()))
 | |
|       // Change br (X == 0 | X == 1), T, F into a switch instruction.
 | |
|       if (BI->isConditional() && isa<Instruction>(BI->getCondition())) {
 | |
|         Instruction *Cond = cast<Instruction>(BI->getCondition());
 | |
|         // If this is a bunch of seteq's or'd together, or if it's a bunch of
 | |
|         // 'setne's and'ed together, collect them.
 | |
|         Value *CompVal = 0;
 | |
|         std::vector<Constant*> Values;
 | |
|         bool TrueWhenEqual = GatherValueComparisons(Cond, CompVal, Values);
 | |
|         if (CompVal && CompVal->getType()->isInteger()) {
 | |
|           // There might be duplicate constants in the list, which the switch
 | |
|           // instruction can't handle, remove them now.
 | |
|           std::sort(Values.begin(), Values.end());
 | |
|           Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
 | |
|           
 | |
|           // Figure out which block is which destination.
 | |
|           BasicBlock *DefaultBB = BI->getSuccessor(1);
 | |
|           BasicBlock *EdgeBB    = BI->getSuccessor(0);
 | |
|           if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
 | |
|           
 | |
|           // Create the new switch instruction now.
 | |
|           SwitchInst *New = new SwitchInst(CompVal, DefaultBB, BI);
 | |
|           
 | |
|           // Add all of the 'cases' to the switch instruction.
 | |
|           for (unsigned i = 0, e = Values.size(); i != e; ++i)
 | |
|             New->addCase(Values[i], EdgeBB);
 | |
|           
 | |
|           // We added edges from PI to the EdgeBB.  As such, if there were any
 | |
|           // PHI nodes in EdgeBB, they need entries to be added corresponding to
 | |
|           // the number of edges added.
 | |
|           for (BasicBlock::iterator BBI = EdgeBB->begin();
 | |
|                PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) {
 | |
|             Value *InVal = PN->getIncomingValueForBlock(*PI);
 | |
|             for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
 | |
|               PN->addIncoming(InVal, *PI);
 | |
|           }
 | |
| 
 | |
|           // Erase the old branch instruction.
 | |
|           (*PI)->getInstList().erase(BI);
 | |
| 
 | |
|           // Erase the potentially condition tree that was used to computed the
 | |
|           // branch condition.
 | |
|           ErasePossiblyDeadInstructionTree(Cond);
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|   // If there is a trivial two-entry PHI node in this basic block, and we can
 | |
|   // eliminate it, do so now.
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
 | |
|     if (PN->getNumIncomingValues() == 2) {
 | |
|       // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
 | |
|       // statement", which has a very simple dominance structure.  Basically, we
 | |
|       // are trying to find the condition that is being branched on, which
 | |
|       // subsequently causes this merge to happen.  We really want control
 | |
|       // dependence information for this check, but simplifycfg can't keep it up
 | |
|       // to date, and this catches most of the cases we care about anyway.
 | |
|       //
 | |
|       BasicBlock *IfTrue, *IfFalse;
 | |
|       if (Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse)) {
 | |
|         //std::cerr << "FOUND IF CONDITION!  " << *IfCond << "  T: "
 | |
|         //       << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n";
 | |
| 
 | |
|         // Figure out where to insert instructions as necessary.
 | |
|         BasicBlock::iterator AfterPHIIt = BB->begin();
 | |
|         while (isa<PHINode>(AfterPHIIt)) ++AfterPHIIt;
 | |
| 
 | |
|         BasicBlock::iterator I = BB->begin();
 | |
|         while (PHINode *PN = dyn_cast<PHINode>(I)) {
 | |
|           ++I;
 | |
| 
 | |
|           // If we can eliminate this PHI by directly computing it based on the
 | |
|           // condition, do so now.  We can't eliminate PHI nodes where the
 | |
|           // incoming values are defined in the conditional parts of the branch,
 | |
|           // so check for this.
 | |
|           //
 | |
|           if (DominatesMergePoint(PN->getIncomingValue(0), BB) &&
 | |
|               DominatesMergePoint(PN->getIncomingValue(1), BB)) {
 | |
|             Value *TrueVal =
 | |
|               PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
 | |
|             Value *FalseVal =
 | |
|               PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
 | |
| 
 | |
|             // FIXME: when we have a 'select' statement, we can be completely
 | |
|             // generic and clean here and let the instcombine pass clean up
 | |
|             // after us, by folding the select instructions away when possible.
 | |
|             //
 | |
|             if (TrueVal == FalseVal) {
 | |
|               // Degenerate case...
 | |
|               PN->replaceAllUsesWith(TrueVal);
 | |
|               BB->getInstList().erase(PN);
 | |
|               Changed = true;
 | |
|             } else if (isa<ConstantBool>(TrueVal) &&
 | |
|                        isa<ConstantBool>(FalseVal)) {
 | |
|               if (TrueVal == ConstantBool::True) {
 | |
|                 // The PHI node produces the same thing as the condition.
 | |
|                 PN->replaceAllUsesWith(IfCond);
 | |
|               } else {
 | |
|                 // The PHI node produces the inverse of the condition.  Insert a
 | |
|                 // "NOT" instruction, which is really a XOR.
 | |
|                 Value *InverseCond =
 | |
|                   BinaryOperator::createNot(IfCond, IfCond->getName()+".inv",
 | |
|                                             AfterPHIIt);
 | |
|                 PN->replaceAllUsesWith(InverseCond);
 | |
|               }
 | |
|               BB->getInstList().erase(PN);
 | |
|               Changed = true;
 | |
|             } else if (isa<ConstantInt>(TrueVal) && isa<ConstantInt>(FalseVal)){
 | |
|               // If this is a PHI of two constant integers, we insert a cast of
 | |
|               // the boolean to the integer type in question, giving us 0 or 1.
 | |
|               // Then we multiply this by the difference of the two constants,
 | |
|               // giving us 0 if false, and the difference if true.  We add this
 | |
|               // result to the base constant, giving us our final value.  We
 | |
|               // rely on the instruction combiner to eliminate many special
 | |
|               // cases, like turning multiplies into shifts when possible.
 | |
|               std::string Name = PN->getName(); PN->setName("");
 | |
|               Value *TheCast = new CastInst(IfCond, TrueVal->getType(),
 | |
|                                             Name, AfterPHIIt);
 | |
|               Constant *TheDiff = ConstantExpr::get(Instruction::Sub,
 | |
|                                                     cast<Constant>(TrueVal),
 | |
|                                                     cast<Constant>(FalseVal));
 | |
|               Value *V = TheCast;
 | |
|               if (TheDiff != ConstantInt::get(TrueVal->getType(), 1))
 | |
|                 V = BinaryOperator::create(Instruction::Mul, TheCast,
 | |
|                                            TheDiff, TheCast->getName()+".scale",
 | |
|                                            AfterPHIIt);
 | |
|               if (!cast<Constant>(FalseVal)->isNullValue())
 | |
|                 V = BinaryOperator::create(Instruction::Add, V, FalseVal,
 | |
|                                            V->getName()+".offs", AfterPHIIt);
 | |
|               PN->replaceAllUsesWith(V);
 | |
|               BB->getInstList().erase(PN);
 | |
|               Changed = true;
 | |
|             } else if (isa<ConstantInt>(FalseVal) &&
 | |
|                        cast<Constant>(FalseVal)->isNullValue()) {
 | |
|               // If the false condition is an integral zero value, we can
 | |
|               // compute the PHI by multiplying the condition by the other
 | |
|               // value.
 | |
|               std::string Name = PN->getName(); PN->setName("");
 | |
|               Value *TheCast = new CastInst(IfCond, TrueVal->getType(),
 | |
|                                             Name+".c", AfterPHIIt);
 | |
|               Value *V = BinaryOperator::create(Instruction::Mul, TrueVal,
 | |
|                                                 TheCast, Name, AfterPHIIt);
 | |
|               PN->replaceAllUsesWith(V);
 | |
|               BB->getInstList().erase(PN);
 | |
|               Changed = true;
 | |
|             } else if (isa<ConstantInt>(TrueVal) &&
 | |
|                        cast<Constant>(TrueVal)->isNullValue()) {
 | |
|               // If the true condition is an integral zero value, we can compute
 | |
|               // the PHI by multiplying the inverse condition by the other
 | |
|               // value.
 | |
|               std::string Name = PN->getName(); PN->setName("");
 | |
|               Value *NotCond = BinaryOperator::createNot(IfCond, Name+".inv",
 | |
|                                                          AfterPHIIt);
 | |
|               Value *TheCast = new CastInst(NotCond, TrueVal->getType(),
 | |
|                                             Name+".inv", AfterPHIIt);
 | |
|               Value *V = BinaryOperator::create(Instruction::Mul, FalseVal,
 | |
|                                                 TheCast, Name, AfterPHIIt);
 | |
|               PN->replaceAllUsesWith(V);
 | |
|               BB->getInstList().erase(PN);
 | |
|               Changed = true;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   
 | |
|   return Changed;
 | |
| }
 |