mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	enjoyed by all, fixing a fixme. Add an assert git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11505 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1145 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1145 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- Constants.cpp - Implement Constant nodes --------------------------===//
 | |
| // 
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the Constant* classes...
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Constants.h"
 | |
| #include "ConstantFolding.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/iMemory.h"
 | |
| #include "llvm/SymbolTable.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "Support/StringExtras.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| ConstantBool *ConstantBool::True  = new ConstantBool(true);
 | |
| ConstantBool *ConstantBool::False = new ConstantBool(false);
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                              Constant Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Specialize setName to take care of symbol table majik
 | |
| void Constant::setName(const std::string &Name, SymbolTable *ST) {
 | |
|   assert(ST && "Type::setName - Must provide symbol table argument!");
 | |
| 
 | |
|   if (Name.size()) ST->insert(Name, this);
 | |
| }
 | |
| 
 | |
| void Constant::destroyConstantImpl() {
 | |
|   // When a Constant is destroyed, there may be lingering
 | |
|   // references to the constant by other constants in the constant pool.  These
 | |
|   // constants are implicitly dependent on the module that is being deleted,
 | |
|   // but they don't know that.  Because we only find out when the CPV is
 | |
|   // deleted, we must now notify all of our users (that should only be
 | |
|   // Constants) that they are, in fact, invalid now and should be deleted.
 | |
|   //
 | |
|   while (!use_empty()) {
 | |
|     Value *V = use_back();
 | |
| #ifndef NDEBUG      // Only in -g mode...
 | |
|     if (!isa<Constant>(V))
 | |
|       std::cerr << "While deleting: " << *this
 | |
|                 << "\n\nUse still stuck around after Def is destroyed: "
 | |
|                 << *V << "\n\n";
 | |
| #endif
 | |
|     assert(isa<Constant>(V) && "References remain to Constant being destroyed");
 | |
|     Constant *CPV = cast<Constant>(V);
 | |
|     CPV->destroyConstant();
 | |
| 
 | |
|     // The constant should remove itself from our use list...
 | |
|     assert((use_empty() || use_back() != V) && "Constant not removed!");
 | |
|   }
 | |
| 
 | |
|   // Value has no outstanding references it is safe to delete it now...
 | |
|   delete this;
 | |
| }
 | |
| 
 | |
| // Static constructor to create a '0' constant of arbitrary type...
 | |
| Constant *Constant::getNullValue(const Type *Ty) {
 | |
|   switch (Ty->getPrimitiveID()) {
 | |
|   case Type::BoolTyID: {
 | |
|     static Constant *NullBool = ConstantBool::get(false);
 | |
|     return NullBool;
 | |
|   }
 | |
|   case Type::SByteTyID: {
 | |
|     static Constant *NullSByte = ConstantSInt::get(Type::SByteTy, 0);
 | |
|     return NullSByte;
 | |
|   }
 | |
|   case Type::UByteTyID: {
 | |
|     static Constant *NullUByte = ConstantUInt::get(Type::UByteTy, 0);
 | |
|     return NullUByte;
 | |
|   }
 | |
|   case Type::ShortTyID: {
 | |
|     static Constant *NullShort = ConstantSInt::get(Type::ShortTy, 0);
 | |
|     return NullShort;
 | |
|   }
 | |
|   case Type::UShortTyID: {
 | |
|     static Constant *NullUShort = ConstantUInt::get(Type::UShortTy, 0);
 | |
|     return NullUShort;
 | |
|   }
 | |
|   case Type::IntTyID: {
 | |
|     static Constant *NullInt = ConstantSInt::get(Type::IntTy, 0);
 | |
|     return NullInt;
 | |
|   }
 | |
|   case Type::UIntTyID: {
 | |
|     static Constant *NullUInt = ConstantUInt::get(Type::UIntTy, 0);
 | |
|     return NullUInt;
 | |
|   }
 | |
|   case Type::LongTyID: {
 | |
|     static Constant *NullLong = ConstantSInt::get(Type::LongTy, 0);
 | |
|     return NullLong;
 | |
|   }
 | |
|   case Type::ULongTyID: {
 | |
|     static Constant *NullULong = ConstantUInt::get(Type::ULongTy, 0);
 | |
|     return NullULong;
 | |
|   }
 | |
| 
 | |
|   case Type::FloatTyID: {
 | |
|     static Constant *NullFloat = ConstantFP::get(Type::FloatTy, 0);
 | |
|     return NullFloat;
 | |
|   }
 | |
|   case Type::DoubleTyID: {
 | |
|     static Constant *NullDouble = ConstantFP::get(Type::DoubleTy, 0);
 | |
|     return NullDouble;
 | |
|   }
 | |
| 
 | |
|   case Type::PointerTyID: 
 | |
|     return ConstantPointerNull::get(cast<PointerType>(Ty));
 | |
| 
 | |
|   case Type::StructTyID:
 | |
|   case Type::ArrayTyID:
 | |
|     return ConstantAggregateZero::get(Ty);
 | |
|   default:
 | |
|     // Function, Type, Label, or Opaque type?
 | |
|     assert(0 && "Cannot create a null constant of that type!");
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Static constructor to create the maximum constant of an integral type...
 | |
| ConstantIntegral *ConstantIntegral::getMaxValue(const Type *Ty) {
 | |
|   switch (Ty->getPrimitiveID()) {
 | |
|   case Type::BoolTyID:   return ConstantBool::True;
 | |
|   case Type::SByteTyID:
 | |
|   case Type::ShortTyID:
 | |
|   case Type::IntTyID:
 | |
|   case Type::LongTyID: {
 | |
|     // Calculate 011111111111111... 
 | |
|     unsigned TypeBits = Ty->getPrimitiveSize()*8;
 | |
|     int64_t Val = INT64_MAX;             // All ones
 | |
|     Val >>= 64-TypeBits;                 // Shift out unwanted 1 bits...
 | |
|     return ConstantSInt::get(Ty, Val);
 | |
|   }
 | |
| 
 | |
|   case Type::UByteTyID:
 | |
|   case Type::UShortTyID:
 | |
|   case Type::UIntTyID:
 | |
|   case Type::ULongTyID:  return getAllOnesValue(Ty);
 | |
| 
 | |
|   default: return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Static constructor to create the minimum constant for an integral type...
 | |
| ConstantIntegral *ConstantIntegral::getMinValue(const Type *Ty) {
 | |
|   switch (Ty->getPrimitiveID()) {
 | |
|   case Type::BoolTyID:   return ConstantBool::False;
 | |
|   case Type::SByteTyID:
 | |
|   case Type::ShortTyID:
 | |
|   case Type::IntTyID:
 | |
|   case Type::LongTyID: {
 | |
|      // Calculate 1111111111000000000000 
 | |
|      unsigned TypeBits = Ty->getPrimitiveSize()*8;
 | |
|      int64_t Val = -1;                    // All ones
 | |
|      Val <<= TypeBits-1;                  // Shift over to the right spot
 | |
|      return ConstantSInt::get(Ty, Val);
 | |
|   }
 | |
| 
 | |
|   case Type::UByteTyID:
 | |
|   case Type::UShortTyID:
 | |
|   case Type::UIntTyID:
 | |
|   case Type::ULongTyID:  return ConstantUInt::get(Ty, 0);
 | |
| 
 | |
|   default: return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Static constructor to create an integral constant with all bits set
 | |
| ConstantIntegral *ConstantIntegral::getAllOnesValue(const Type *Ty) {
 | |
|   switch (Ty->getPrimitiveID()) {
 | |
|   case Type::BoolTyID:   return ConstantBool::True;
 | |
|   case Type::SByteTyID:
 | |
|   case Type::ShortTyID:
 | |
|   case Type::IntTyID:
 | |
|   case Type::LongTyID:   return ConstantSInt::get(Ty, -1);
 | |
| 
 | |
|   case Type::UByteTyID:
 | |
|   case Type::UShortTyID:
 | |
|   case Type::UIntTyID:
 | |
|   case Type::ULongTyID: {
 | |
|     // Calculate ~0 of the right type...
 | |
|     unsigned TypeBits = Ty->getPrimitiveSize()*8;
 | |
|     uint64_t Val = ~0ULL;                // All ones
 | |
|     Val >>= 64-TypeBits;                 // Shift out unwanted 1 bits...
 | |
|     return ConstantUInt::get(Ty, Val);
 | |
|   }
 | |
|   default: return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ConstantUInt::isAllOnesValue() const {
 | |
|   unsigned TypeBits = getType()->getPrimitiveSize()*8;
 | |
|   uint64_t Val = ~0ULL;                // All ones
 | |
|   Val >>= 64-TypeBits;                 // Shift out inappropriate bits
 | |
|   return getValue() == Val;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                            ConstantXXX Classes
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                             Normal Constructors
 | |
| 
 | |
| ConstantBool::ConstantBool(bool V) : ConstantIntegral(Type::BoolTy) {
 | |
|   Val = V;
 | |
| }
 | |
| 
 | |
| ConstantInt::ConstantInt(const Type *Ty, uint64_t V) : ConstantIntegral(Ty) {
 | |
|   Val.Unsigned = V;
 | |
| }
 | |
| 
 | |
| ConstantSInt::ConstantSInt(const Type *Ty, int64_t V) : ConstantInt(Ty, V) {
 | |
|   assert(Ty->isInteger() && Ty->isSigned() &&
 | |
|          "Illegal type for unsigned integer constant!");
 | |
|   assert(isValueValidForType(Ty, V) && "Value too large for type!");
 | |
| }
 | |
| 
 | |
| ConstantUInt::ConstantUInt(const Type *Ty, uint64_t V) : ConstantInt(Ty, V) {
 | |
|   assert(Ty->isInteger() && Ty->isUnsigned() &&
 | |
|          "Illegal type for unsigned integer constant!");
 | |
|   assert(isValueValidForType(Ty, V) && "Value too large for type!");
 | |
| }
 | |
| 
 | |
| ConstantFP::ConstantFP(const Type *Ty, double V) : Constant(Ty) {
 | |
|   assert(isValueValidForType(Ty, V) && "Value too large for type!");
 | |
|   Val = V;
 | |
| }
 | |
| 
 | |
| ConstantArray::ConstantArray(const ArrayType *T,
 | |
|                              const std::vector<Constant*> &V) : Constant(T) {
 | |
|   Operands.reserve(V.size());
 | |
|   for (unsigned i = 0, e = V.size(); i != e; ++i) {
 | |
|     assert(V[i]->getType() == T->getElementType() ||
 | |
|            (T->isAbstract() &&
 | |
|             V[i]->getType()->getPrimitiveID() ==
 | |
|             T->getElementType()->getPrimitiveID()));
 | |
|     Operands.push_back(Use(V[i], this));
 | |
|   }
 | |
| }
 | |
| 
 | |
| ConstantStruct::ConstantStruct(const StructType *T,
 | |
|                                const std::vector<Constant*> &V) : Constant(T) {
 | |
|   assert(V.size() == T->getNumElements() &&
 | |
|          "Invalid initializer vector for constant structure");
 | |
|   Operands.reserve(V.size());
 | |
|   for (unsigned i = 0, e = V.size(); i != e; ++i) {
 | |
|     assert((V[i]->getType() == T->getElementType(i) ||
 | |
|             ((T->getElementType(i)->isAbstract() ||
 | |
|               V[i]->getType()->isAbstract()) &&
 | |
|              T->getElementType(i)->getPrimitiveID() == 
 | |
|                       V[i]->getType()->getPrimitiveID())) &&
 | |
|            "Initializer for struct element doesn't match struct element type!");
 | |
|     Operands.push_back(Use(V[i], this));
 | |
|   }
 | |
| }
 | |
| 
 | |
| ConstantPointerRef::ConstantPointerRef(GlobalValue *GV)
 | |
|   : Constant(GV->getType()) {
 | |
|   Operands.push_back(Use(GV, this));
 | |
| }
 | |
| 
 | |
| ConstantExpr::ConstantExpr(unsigned Opcode, Constant *C, const Type *Ty)
 | |
|   : Constant(Ty), iType(Opcode) {
 | |
|   Operands.push_back(Use(C, this));
 | |
| }
 | |
| 
 | |
| static bool isSetCC(unsigned Opcode) {
 | |
|   return Opcode == Instruction::SetEQ || Opcode == Instruction::SetNE ||
 | |
|          Opcode == Instruction::SetLT || Opcode == Instruction::SetGT ||
 | |
|          Opcode == Instruction::SetLE || Opcode == Instruction::SetGE;
 | |
| }
 | |
| 
 | |
| ConstantExpr::ConstantExpr(unsigned Opcode, Constant *C1, Constant *C2)
 | |
|   : Constant(isSetCC(Opcode) ? Type::BoolTy : C1->getType()), iType(Opcode) {
 | |
|   Operands.push_back(Use(C1, this));
 | |
|   Operands.push_back(Use(C2, this));
 | |
| }
 | |
| 
 | |
| ConstantExpr::ConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
 | |
|                            const Type *DestTy)
 | |
|   : Constant(DestTy), iType(Instruction::GetElementPtr) {
 | |
|   Operands.reserve(1+IdxList.size());
 | |
|   Operands.push_back(Use(C, this));
 | |
|   for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
 | |
|     Operands.push_back(Use(IdxList[i], this));
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           classof implementations
 | |
| 
 | |
| bool ConstantIntegral::classof(const Constant *CPV) {
 | |
|   return CPV->getType()->isIntegral() && !isa<ConstantExpr>(CPV);
 | |
| }
 | |
| 
 | |
| bool ConstantInt::classof(const Constant *CPV) {
 | |
|   return CPV->getType()->isInteger() && !isa<ConstantExpr>(CPV);
 | |
| }
 | |
| bool ConstantSInt::classof(const Constant *CPV) {
 | |
|   return CPV->getType()->isSigned() && !isa<ConstantExpr>(CPV);
 | |
| }
 | |
| bool ConstantUInt::classof(const Constant *CPV) {
 | |
|   return CPV->getType()->isUnsigned() && !isa<ConstantExpr>(CPV);
 | |
| }
 | |
| bool ConstantFP::classof(const Constant *CPV) {
 | |
|   const Type *Ty = CPV->getType();
 | |
|   return ((Ty == Type::FloatTy || Ty == Type::DoubleTy) &&
 | |
|           !isa<ConstantExpr>(CPV));
 | |
| }
 | |
| bool ConstantAggregateZero::classof(const Constant *CPV) {
 | |
|   return (isa<ArrayType>(CPV->getType()) || isa<StructType>(CPV->getType())) &&
 | |
|          CPV->isNullValue();
 | |
| }
 | |
| bool ConstantArray::classof(const Constant *CPV) {
 | |
|   return isa<ArrayType>(CPV->getType()) && !CPV->isNullValue();
 | |
| }
 | |
| bool ConstantStruct::classof(const Constant *CPV) {
 | |
|   return isa<StructType>(CPV->getType()) && !CPV->isNullValue();
 | |
| }
 | |
| 
 | |
| bool ConstantPointerNull::classof(const Constant *CPV) {
 | |
|   return isa<PointerType>(CPV->getType()) && !isa<ConstantExpr>(CPV) &&
 | |
|          CPV->getNumOperands() == 0;
 | |
| }
 | |
| 
 | |
| bool ConstantPointerRef::classof(const Constant *CPV) {
 | |
|   return isa<PointerType>(CPV->getType()) && !isa<ConstantExpr>(CPV) &&
 | |
|          CPV->getNumOperands() == 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                      isValueValidForType implementations
 | |
| 
 | |
| bool ConstantSInt::isValueValidForType(const Type *Ty, int64_t Val) {
 | |
|   switch (Ty->getPrimitiveID()) {
 | |
|   default:
 | |
|     return false;         // These can't be represented as integers!!!
 | |
| 
 | |
|     // Signed types...
 | |
|   case Type::SByteTyID:
 | |
|     return (Val <= INT8_MAX && Val >= INT8_MIN);
 | |
|   case Type::ShortTyID:
 | |
|     return (Val <= INT16_MAX && Val >= INT16_MIN);
 | |
|   case Type::IntTyID:
 | |
|     return (Val <= INT32_MAX && Val >= INT32_MIN);
 | |
|   case Type::LongTyID:
 | |
|     return true;          // This is the largest type...
 | |
|   }
 | |
|   assert(0 && "WTF?");
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ConstantUInt::isValueValidForType(const Type *Ty, uint64_t Val) {
 | |
|   switch (Ty->getPrimitiveID()) {
 | |
|   default:
 | |
|     return false;         // These can't be represented as integers!!!
 | |
| 
 | |
|     // Unsigned types...
 | |
|   case Type::UByteTyID:
 | |
|     return (Val <= UINT8_MAX);
 | |
|   case Type::UShortTyID:
 | |
|     return (Val <= UINT16_MAX);
 | |
|   case Type::UIntTyID:
 | |
|     return (Val <= UINT32_MAX);
 | |
|   case Type::ULongTyID:
 | |
|     return true;          // This is the largest type...
 | |
|   }
 | |
|   assert(0 && "WTF?");
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ConstantFP::isValueValidForType(const Type *Ty, double Val) {
 | |
|   switch (Ty->getPrimitiveID()) {
 | |
|   default:
 | |
|     return false;         // These can't be represented as floating point!
 | |
| 
 | |
|     // TODO: Figure out how to test if a double can be cast to a float!
 | |
|   case Type::FloatTyID:
 | |
|   case Type::DoubleTyID:
 | |
|     return true;          // This is the largest type...
 | |
|   }
 | |
| };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                replaceUsesOfWithOnConstant implementations
 | |
| 
 | |
| void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
 | |
|                                                 bool DisableChecking) {
 | |
|   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
 | |
| 
 | |
|   std::vector<Constant*> Values;
 | |
|   Values.reserve(getValues().size());  // Build replacement array...
 | |
|   for (unsigned i = 0, e = getValues().size(); i != e; ++i) {
 | |
|     Constant *Val = cast<Constant>(getValues()[i]);
 | |
|     if (Val == From) Val = cast<Constant>(To);
 | |
|     Values.push_back(Val);
 | |
|   }
 | |
|   
 | |
|   Constant *Replacement = ConstantArray::get(getType(), Values);
 | |
|   assert(Replacement != this && "I didn't contain From!");
 | |
| 
 | |
|   // Everyone using this now uses the replacement...
 | |
|   if (DisableChecking)
 | |
|     uncheckedReplaceAllUsesWith(Replacement);
 | |
|   else
 | |
|     replaceAllUsesWith(Replacement);
 | |
|   
 | |
|   // Delete the old constant!
 | |
|   destroyConstant();  
 | |
| }
 | |
| 
 | |
| void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
 | |
|                                                  bool DisableChecking) {
 | |
|   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
 | |
| 
 | |
|   std::vector<Constant*> Values;
 | |
|   Values.reserve(getValues().size());
 | |
|   for (unsigned i = 0, e = getValues().size(); i != e; ++i) {
 | |
|     Constant *Val = cast<Constant>(getValues()[i]);
 | |
|     if (Val == From) Val = cast<Constant>(To);
 | |
|     Values.push_back(Val);
 | |
|   }
 | |
|   
 | |
|   Constant *Replacement = ConstantStruct::get(getType(), Values);
 | |
|   assert(Replacement != this && "I didn't contain From!");
 | |
| 
 | |
|   // Everyone using this now uses the replacement...
 | |
|   if (DisableChecking)
 | |
|     uncheckedReplaceAllUsesWith(Replacement);
 | |
|   else
 | |
|     replaceAllUsesWith(Replacement);
 | |
|   
 | |
|   // Delete the old constant!
 | |
|   destroyConstant();
 | |
| }
 | |
| 
 | |
| void ConstantPointerRef::replaceUsesOfWithOnConstant(Value *From, Value *To,
 | |
|                                                      bool DisableChecking) {
 | |
|   if (isa<GlobalValue>(To)) {
 | |
|     assert(From == getOperand(0) && "Doesn't contain from!");
 | |
|     ConstantPointerRef *Replacement =
 | |
|       ConstantPointerRef::get(cast<GlobalValue>(To));
 | |
|     
 | |
|     // Everyone using this now uses the replacement...
 | |
|     if (DisableChecking)
 | |
|       uncheckedReplaceAllUsesWith(Replacement);
 | |
|     else
 | |
|       replaceAllUsesWith(Replacement);
 | |
|     
 | |
|   } else {
 | |
|     // Just replace ourselves with the To value specified.
 | |
|     if (DisableChecking)
 | |
|       uncheckedReplaceAllUsesWith(To);
 | |
|     else
 | |
|       replaceAllUsesWith(To);
 | |
|   }
 | |
| 
 | |
|   // Delete the old constant!
 | |
|   destroyConstant();
 | |
| }
 | |
| 
 | |
| void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
 | |
|                                                bool DisableChecking) {
 | |
|   assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
 | |
|   Constant *To = cast<Constant>(ToV);
 | |
| 
 | |
|   Constant *Replacement = 0;
 | |
|   if (getOpcode() == Instruction::GetElementPtr) {
 | |
|     std::vector<Constant*> Indices;
 | |
|     Constant *Pointer = getOperand(0);
 | |
|     Indices.reserve(getNumOperands()-1);
 | |
|     if (Pointer == From) Pointer = To;
 | |
|     
 | |
|     for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
 | |
|       Constant *Val = getOperand(i);
 | |
|       if (Val == From) Val = To;
 | |
|       Indices.push_back(Val);
 | |
|     }
 | |
|     Replacement = ConstantExpr::getGetElementPtr(Pointer, Indices);
 | |
|   } else if (getOpcode() == Instruction::Cast) {
 | |
|     assert(getOperand(0) == From && "Cast only has one use!");
 | |
|     Replacement = ConstantExpr::getCast(To, getType());
 | |
|   } else if (getNumOperands() == 2) {
 | |
|     Constant *C1 = getOperand(0);
 | |
|     Constant *C2 = getOperand(1);
 | |
|     if (C1 == From) C1 = To;
 | |
|     if (C2 == From) C2 = To;
 | |
|     Replacement = ConstantExpr::get(getOpcode(), C1, C2);
 | |
|   } else {
 | |
|     assert(0 && "Unknown ConstantExpr type!");
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   assert(Replacement != this && "I didn't contain From!");
 | |
| 
 | |
|   // Everyone using this now uses the replacement...
 | |
|   if (DisableChecking)
 | |
|     uncheckedReplaceAllUsesWith(Replacement);
 | |
|   else
 | |
|     replaceAllUsesWith(Replacement);
 | |
|   
 | |
|   // Delete the old constant!
 | |
|   destroyConstant();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                      Factory Function Implementation
 | |
| 
 | |
| // ConstantCreator - A class that is used to create constants by
 | |
| // ValueMap*.  This class should be partially specialized if there is
 | |
| // something strange that needs to be done to interface to the ctor for the
 | |
| // constant.
 | |
| //
 | |
| namespace llvm {
 | |
|   template<class ConstantClass, class TypeClass, class ValType>
 | |
|   struct ConstantCreator {
 | |
|     static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
 | |
|       return new ConstantClass(Ty, V);
 | |
|     }
 | |
|   };
 | |
|   
 | |
|   template<class ConstantClass, class TypeClass>
 | |
|   struct ConvertConstantType {
 | |
|     static void convert(ConstantClass *OldC, const TypeClass *NewTy) {
 | |
|       assert(0 && "This type cannot be converted!\n");
 | |
|       abort();
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   template<class ValType, class TypeClass, class ConstantClass>
 | |
|   class ValueMap : public AbstractTypeUser {
 | |
|     typedef std::pair<const TypeClass*, ValType> MapKey;
 | |
|     typedef std::map<MapKey, ConstantClass *> MapTy;
 | |
|     typedef typename MapTy::iterator MapIterator;
 | |
|     MapTy Map;
 | |
| 
 | |
|     typedef std::map<const TypeClass*, MapIterator> AbstractTypeMapTy;
 | |
|     AbstractTypeMapTy AbstractTypeMap;
 | |
|   public:
 | |
|     // getOrCreate - Return the specified constant from the map, creating it if
 | |
|     // necessary.
 | |
|     ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
 | |
|       MapKey Lookup(Ty, V);
 | |
|       MapIterator I = Map.lower_bound(Lookup);
 | |
|       if (I != Map.end() && I->first == Lookup)
 | |
|         return I->second;  // Is it in the map?
 | |
| 
 | |
|       // If no preexisting value, create one now...
 | |
|       ConstantClass *Result =
 | |
|         ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
 | |
| 
 | |
| 
 | |
|       /// FIXME: why does this assert fail when loading 176.gcc?
 | |
|       //assert(Result->getType() == Ty && "Type specified is not correct!");
 | |
|       I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
 | |
| 
 | |
|       // If the type of the constant is abstract, make sure that an entry exists
 | |
|       // for it in the AbstractTypeMap.
 | |
|       if (Ty->isAbstract()) {
 | |
|         typename AbstractTypeMapTy::iterator TI =
 | |
|           AbstractTypeMap.lower_bound(Ty);
 | |
| 
 | |
|         if (TI == AbstractTypeMap.end() || TI->first != Ty) {
 | |
|           // Add ourselves to the ATU list of the type.
 | |
|           cast<DerivedType>(Ty)->addAbstractTypeUser(this);
 | |
| 
 | |
|           AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
 | |
|         }
 | |
|       }
 | |
|       return Result;
 | |
|     }
 | |
|     
 | |
|     void remove(ConstantClass *CP) {
 | |
|       // FIXME: This should not use a linear scan.  If this gets to be a
 | |
|       // performance problem, someone should look at this.
 | |
|       MapIterator I = Map.begin();
 | |
|       for (MapIterator E = Map.end(); I != E && I->second != CP; ++I)
 | |
|         /* empty */;
 | |
|       
 | |
|       assert(I != Map.end() && "Constant not found in constant table!");
 | |
| 
 | |
|       // Now that we found the entry, make sure this isn't the entry that
 | |
|       // the AbstractTypeMap points to.
 | |
|       const TypeClass *Ty = I->first.first;
 | |
|       if (Ty->isAbstract()) {
 | |
|         assert(AbstractTypeMap.count(Ty) &&
 | |
|                "Abstract type not in AbstractTypeMap?");
 | |
|         MapIterator &ATMEntryIt = AbstractTypeMap[Ty];
 | |
|         if (ATMEntryIt == I) {
 | |
|           // Yes, we are removing the representative entry for this type.
 | |
|           // See if there are any other entries of the same type.
 | |
|           MapIterator TmpIt = ATMEntryIt;
 | |
|           
 | |
|           // First check the entry before this one...
 | |
|           if (TmpIt != Map.begin()) {
 | |
|             --TmpIt;
 | |
|             if (TmpIt->first.first != Ty) // Not the same type, move back...
 | |
|               ++TmpIt;
 | |
|           }
 | |
|           
 | |
|           // If we didn't find the same type, try to move forward...
 | |
|           if (TmpIt == ATMEntryIt) {
 | |
|             ++TmpIt;
 | |
|             if (TmpIt == Map.end() || TmpIt->first.first != Ty)
 | |
|               --TmpIt;   // No entry afterwards with the same type
 | |
|           }
 | |
| 
 | |
|           // If there is another entry in the map of the same abstract type,
 | |
|           // update the AbstractTypeMap entry now.
 | |
|           if (TmpIt != ATMEntryIt) {
 | |
|             ATMEntryIt = TmpIt;
 | |
|           } else {
 | |
|             // Otherwise, we are removing the last instance of this type
 | |
|             // from the table.  Remove from the ATM, and from user list.
 | |
|             cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
 | |
|             AbstractTypeMap.erase(Ty);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       Map.erase(I);
 | |
|     }
 | |
| 
 | |
|     void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
 | |
|       typename AbstractTypeMapTy::iterator I = 
 | |
|         AbstractTypeMap.find(cast<TypeClass>(OldTy));
 | |
| 
 | |
|       assert(I != AbstractTypeMap.end() &&
 | |
|              "Abstract type not in AbstractTypeMap?");
 | |
| 
 | |
|       // Convert a constant at a time until the last one is gone.  The last one
 | |
|       // leaving will remove() itself, causing the AbstractTypeMapEntry to be
 | |
|       // eliminated eventually.
 | |
|       do {
 | |
|         ConvertConstantType<ConstantClass,
 | |
|                             TypeClass>::convert(I->second->second,
 | |
|                                                 cast<TypeClass>(NewTy));
 | |
| 
 | |
|         I = AbstractTypeMap.find(cast<TypeClass>(OldTy));
 | |
|       } while (I != AbstractTypeMap.end());
 | |
|     }
 | |
| 
 | |
|     // If the type became concrete without being refined to any other existing
 | |
|     // type, we just remove ourselves from the ATU list.
 | |
|     void typeBecameConcrete(const DerivedType *AbsTy) {
 | |
|       AbsTy->removeAbstractTypeUser(this);
 | |
|     }
 | |
| 
 | |
|     void dump() const {
 | |
|       std::cerr << "Constant.cpp: ValueMap\n";
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //---- ConstantUInt::get() and ConstantSInt::get() implementations...
 | |
| //
 | |
| static ValueMap< int64_t, Type, ConstantSInt> SIntConstants;
 | |
| static ValueMap<uint64_t, Type, ConstantUInt> UIntConstants;
 | |
| 
 | |
| ConstantSInt *ConstantSInt::get(const Type *Ty, int64_t V) {
 | |
|   return SIntConstants.getOrCreate(Ty, V);
 | |
| }
 | |
| 
 | |
| ConstantUInt *ConstantUInt::get(const Type *Ty, uint64_t V) {
 | |
|   return UIntConstants.getOrCreate(Ty, V);
 | |
| }
 | |
| 
 | |
| ConstantInt *ConstantInt::get(const Type *Ty, unsigned char V) {
 | |
|   assert(V <= 127 && "Can only be used with very small positive constants!");
 | |
|   if (Ty->isSigned()) return ConstantSInt::get(Ty, V);
 | |
|   return ConstantUInt::get(Ty, V);
 | |
| }
 | |
| 
 | |
| //---- ConstantFP::get() implementation...
 | |
| //
 | |
| namespace llvm {
 | |
|   template<>
 | |
|   struct ConstantCreator<ConstantFP, Type, uint64_t> {
 | |
|     static ConstantFP *create(const Type *Ty, uint64_t V) {
 | |
|       assert(Ty == Type::DoubleTy);
 | |
|       union {
 | |
|         double F;
 | |
|         uint64_t I;
 | |
|       } T;
 | |
|       T.I = V;
 | |
|       return new ConstantFP(Ty, T.F);
 | |
|     }
 | |
|   };
 | |
|   template<>
 | |
|   struct ConstantCreator<ConstantFP, Type, uint32_t> {
 | |
|     static ConstantFP *create(const Type *Ty, uint32_t V) {
 | |
|       assert(Ty == Type::FloatTy);
 | |
|       union {
 | |
|         float F;
 | |
|         uint32_t I;
 | |
|       } T;
 | |
|       T.I = V;
 | |
|       return new ConstantFP(Ty, T.F);
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| static ValueMap<uint64_t, Type, ConstantFP> DoubleConstants;
 | |
| static ValueMap<uint32_t, Type, ConstantFP> FloatConstants;
 | |
| 
 | |
| ConstantFP *ConstantFP::get(const Type *Ty, double V) {
 | |
|   if (Ty == Type::FloatTy) {
 | |
|     // Force the value through memory to normalize it.
 | |
|     union {
 | |
|       float F;
 | |
|       uint32_t I;
 | |
|     } T;
 | |
|     T.F = (float)V;
 | |
|     return FloatConstants.getOrCreate(Ty, T.I);
 | |
|   } else {
 | |
|     assert(Ty == Type::DoubleTy);
 | |
|     union {
 | |
|       double F;
 | |
|       uint64_t I;
 | |
|     } T;
 | |
|     T.F = V;
 | |
|     return DoubleConstants.getOrCreate(Ty, T.I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| //---- ConstantAggregateZero::get() implementation...
 | |
| //
 | |
| namespace llvm {
 | |
|   // ConstantAggregateZero does not take extra "value" argument...
 | |
|   template<class ValType>
 | |
|   struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
 | |
|     static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
 | |
|       return new ConstantAggregateZero(Ty);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   template<>
 | |
|   struct ConvertConstantType<ConstantAggregateZero, Type> {
 | |
|     static void convert(ConstantAggregateZero *OldC, const Type *NewTy) {
 | |
|       // Make everyone now use a constant of the new type...
 | |
|       Constant *New = ConstantAggregateZero::get(NewTy);
 | |
|       assert(New != OldC && "Didn't replace constant??");
 | |
|       OldC->uncheckedReplaceAllUsesWith(New);
 | |
|       OldC->destroyConstant();     // This constant is now dead, destroy it.
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| static ValueMap<char, Type, ConstantAggregateZero> AggZeroConstants;
 | |
| 
 | |
| Constant *ConstantAggregateZero::get(const Type *Ty) {
 | |
|   return AggZeroConstants.getOrCreate(Ty, 0);
 | |
| }
 | |
| 
 | |
| // destroyConstant - Remove the constant from the constant table...
 | |
| //
 | |
| void ConstantAggregateZero::destroyConstant() {
 | |
|   AggZeroConstants.remove(this);
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| void ConstantAggregateZero::replaceUsesOfWithOnConstant(Value *From, Value *To,
 | |
|                                                         bool DisableChecking) {
 | |
|   assert(0 && "No uses!");
 | |
|   abort();
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //---- ConstantArray::get() implementation...
 | |
| //
 | |
| namespace llvm {
 | |
|   template<>
 | |
|   struct ConvertConstantType<ConstantArray, ArrayType> {
 | |
|     static void convert(ConstantArray *OldC, const ArrayType *NewTy) {
 | |
|       // Make everyone now use a constant of the new type...
 | |
|       std::vector<Constant*> C;
 | |
|       for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
 | |
|         C.push_back(cast<Constant>(OldC->getOperand(i)));
 | |
|       Constant *New = ConstantArray::get(NewTy, C);
 | |
|       assert(New != OldC && "Didn't replace constant??");
 | |
|       OldC->uncheckedReplaceAllUsesWith(New);
 | |
|       OldC->destroyConstant();    // This constant is now dead, destroy it.
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| static ValueMap<std::vector<Constant*>, ArrayType,
 | |
|                 ConstantArray> ArrayConstants;
 | |
| 
 | |
| Constant *ConstantArray::get(const ArrayType *Ty,
 | |
|                              const std::vector<Constant*> &V) {
 | |
|   // If this is an all-zero array, return a ConstantAggregateZero object
 | |
|   if (!V.empty()) {
 | |
|     Constant *C = V[0];
 | |
|     if (!C->isNullValue())
 | |
|       return ArrayConstants.getOrCreate(Ty, V);
 | |
|     for (unsigned i = 1, e = V.size(); i != e; ++i)
 | |
|       if (V[i] != C)
 | |
|         return ArrayConstants.getOrCreate(Ty, V);
 | |
|   }
 | |
|   return ConstantAggregateZero::get(Ty);
 | |
| }
 | |
| 
 | |
| // destroyConstant - Remove the constant from the constant table...
 | |
| //
 | |
| void ConstantArray::destroyConstant() {
 | |
|   ArrayConstants.remove(this);
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| // ConstantArray::get(const string&) - Return an array that is initialized to
 | |
| // contain the specified string.  A null terminator is added to the specified
 | |
| // string so that it may be used in a natural way...
 | |
| //
 | |
| Constant *ConstantArray::get(const std::string &Str) {
 | |
|   std::vector<Constant*> ElementVals;
 | |
| 
 | |
|   for (unsigned i = 0; i < Str.length(); ++i)
 | |
|     ElementVals.push_back(ConstantSInt::get(Type::SByteTy, Str[i]));
 | |
| 
 | |
|   // Add a null terminator to the string...
 | |
|   ElementVals.push_back(ConstantSInt::get(Type::SByteTy, 0));
 | |
| 
 | |
|   ArrayType *ATy = ArrayType::get(Type::SByteTy, Str.length()+1);
 | |
|   return ConstantArray::get(ATy, ElementVals);
 | |
| }
 | |
| 
 | |
| /// isString - This method returns true if the array is an array of sbyte or
 | |
| /// ubyte, and if the elements of the array are all ConstantInt's.
 | |
| bool ConstantArray::isString() const {
 | |
|   // Check the element type for sbyte or ubyte...
 | |
|   if (getType()->getElementType() != Type::UByteTy &&
 | |
|       getType()->getElementType() != Type::SByteTy)
 | |
|     return false;
 | |
|   // Check the elements to make sure they are all integers, not constant
 | |
|   // expressions.
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | |
|     if (!isa<ConstantInt>(getOperand(i)))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // getAsString - If the sub-element type of this array is either sbyte or ubyte,
 | |
| // then this method converts the array to an std::string and returns it.
 | |
| // Otherwise, it asserts out.
 | |
| //
 | |
| std::string ConstantArray::getAsString() const {
 | |
|   assert(isString() && "Not a string!");
 | |
|   std::string Result;
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | |
|     Result += (char)cast<ConstantInt>(getOperand(i))->getRawValue();
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| 
 | |
| //---- ConstantStruct::get() implementation...
 | |
| //
 | |
| 
 | |
| namespace llvm {
 | |
|   template<>
 | |
|   struct ConvertConstantType<ConstantStruct, StructType> {
 | |
|     static void convert(ConstantStruct *OldC, const StructType *NewTy) {
 | |
|       // Make everyone now use a constant of the new type...
 | |
|       std::vector<Constant*> C;
 | |
|       for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
 | |
|         C.push_back(cast<Constant>(OldC->getOperand(i)));
 | |
|       Constant *New = ConstantStruct::get(NewTy, C);
 | |
|       assert(New != OldC && "Didn't replace constant??");
 | |
|       
 | |
|       OldC->uncheckedReplaceAllUsesWith(New);
 | |
|       OldC->destroyConstant();    // This constant is now dead, destroy it.
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| static ValueMap<std::vector<Constant*>, StructType, 
 | |
|                 ConstantStruct> StructConstants;
 | |
| 
 | |
| Constant *ConstantStruct::get(const StructType *Ty,
 | |
|                               const std::vector<Constant*> &V) {
 | |
|   // Create a ConstantAggregateZero value if all elements are zeros...
 | |
|   for (unsigned i = 0, e = V.size(); i != e; ++i)
 | |
|     if (!V[i]->isNullValue())
 | |
|       return StructConstants.getOrCreate(Ty, V);
 | |
| 
 | |
|   return ConstantAggregateZero::get(Ty);
 | |
| }
 | |
| 
 | |
| // destroyConstant - Remove the constant from the constant table...
 | |
| //
 | |
| void ConstantStruct::destroyConstant() {
 | |
|   StructConstants.remove(this);
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| //---- ConstantPointerNull::get() implementation...
 | |
| //
 | |
| 
 | |
| namespace llvm {
 | |
|   // ConstantPointerNull does not take extra "value" argument...
 | |
|   template<class ValType>
 | |
|   struct ConstantCreator<ConstantPointerNull, PointerType, ValType> {
 | |
|     static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){
 | |
|       return new ConstantPointerNull(Ty);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   template<>
 | |
|   struct ConvertConstantType<ConstantPointerNull, PointerType> {
 | |
|     static void convert(ConstantPointerNull *OldC, const PointerType *NewTy) {
 | |
|       // Make everyone now use a constant of the new type...
 | |
|       Constant *New = ConstantPointerNull::get(NewTy);
 | |
|       assert(New != OldC && "Didn't replace constant??");
 | |
|       OldC->uncheckedReplaceAllUsesWith(New);
 | |
|       OldC->destroyConstant();     // This constant is now dead, destroy it.
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| static ValueMap<char, PointerType, ConstantPointerNull> NullPtrConstants;
 | |
| 
 | |
| ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) {
 | |
|   return NullPtrConstants.getOrCreate(Ty, 0);
 | |
| }
 | |
| 
 | |
| // destroyConstant - Remove the constant from the constant table...
 | |
| //
 | |
| void ConstantPointerNull::destroyConstant() {
 | |
|   NullPtrConstants.remove(this);
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| 
 | |
| //---- ConstantPointerRef::get() implementation...
 | |
| //
 | |
| ConstantPointerRef *ConstantPointerRef::get(GlobalValue *GV) {
 | |
|   assert(GV->getParent() && "Global Value must be attached to a module!");
 | |
|   
 | |
|   // The Module handles the pointer reference sharing...
 | |
|   return GV->getParent()->getConstantPointerRef(GV);
 | |
| }
 | |
| 
 | |
| // destroyConstant - Remove the constant from the constant table...
 | |
| //
 | |
| void ConstantPointerRef::destroyConstant() {
 | |
|   getValue()->getParent()->destroyConstantPointerRef(this);
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| 
 | |
| //---- ConstantExpr::get() implementations...
 | |
| //
 | |
| typedef std::pair<unsigned, std::vector<Constant*> > ExprMapKeyType;
 | |
| 
 | |
| namespace llvm {
 | |
|   template<>
 | |
|   struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
 | |
|     static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V) {
 | |
|       if (V.first == Instruction::Cast)
 | |
|         return new ConstantExpr(Instruction::Cast, V.second[0], Ty);
 | |
|       if ((V.first >= Instruction::BinaryOpsBegin &&
 | |
|            V.first < Instruction::BinaryOpsEnd) ||
 | |
|           V.first == Instruction::Shl || V.first == Instruction::Shr)
 | |
|         return new ConstantExpr(V.first, V.second[0], V.second[1]);
 | |
|       
 | |
|       assert(V.first == Instruction::GetElementPtr && "Invalid ConstantExpr!");
 | |
|       
 | |
|       std::vector<Constant*> IdxList(V.second.begin()+1, V.second.end());
 | |
|       return new ConstantExpr(V.second[0], IdxList, Ty);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   template<>
 | |
|   struct ConvertConstantType<ConstantExpr, Type> {
 | |
|     static void convert(ConstantExpr *OldC, const Type *NewTy) {
 | |
|       Constant *New;
 | |
|       switch (OldC->getOpcode()) {
 | |
|       case Instruction::Cast:
 | |
|         New = ConstantExpr::getCast(OldC->getOperand(0), NewTy);
 | |
|         break;
 | |
|       case Instruction::Shl:
 | |
|       case Instruction::Shr:
 | |
|         New = ConstantExpr::getShiftTy(NewTy, OldC->getOpcode(),
 | |
|                                      OldC->getOperand(0), OldC->getOperand(1));
 | |
|         break;
 | |
|       default:
 | |
|         assert(OldC->getOpcode() >= Instruction::BinaryOpsBegin &&
 | |
|                OldC->getOpcode() < Instruction::BinaryOpsEnd);
 | |
|         New = ConstantExpr::getTy(NewTy, OldC->getOpcode(), OldC->getOperand(0),
 | |
|                                   OldC->getOperand(1));
 | |
|         break;
 | |
|       case Instruction::GetElementPtr:
 | |
|         // Make everyone now use a constant of the new type... 
 | |
|         std::vector<Constant*> C;
 | |
|         for (unsigned i = 1, e = OldC->getNumOperands(); i != e; ++i)
 | |
|           C.push_back(cast<Constant>(OldC->getOperand(i)));
 | |
|         New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0), C);
 | |
|         break;
 | |
|       }
 | |
|       
 | |
|       assert(New != OldC && "Didn't replace constant??");
 | |
|       OldC->uncheckedReplaceAllUsesWith(New);
 | |
|       OldC->destroyConstant();    // This constant is now dead, destroy it.
 | |
|     }
 | |
|   };
 | |
| } // end namespace llvm
 | |
| 
 | |
| 
 | |
| static ValueMap<ExprMapKeyType, Type, ConstantExpr> ExprConstants;
 | |
| 
 | |
| Constant *ConstantExpr::getCast(Constant *C, const Type *Ty) {
 | |
|   assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
 | |
| 
 | |
|   if (Constant *FC = ConstantFoldCastInstruction(C, Ty))
 | |
|     return FC;          // Fold a few common cases...
 | |
| 
 | |
|   // Look up the constant in the table first to ensure uniqueness
 | |
|   std::vector<Constant*> argVec(1, C);
 | |
|   ExprMapKeyType Key = std::make_pair(Instruction::Cast, argVec);
 | |
|   return ExprConstants.getOrCreate(Ty, Key);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode,
 | |
|                               Constant *C1, Constant *C2) {
 | |
|   if (Opcode == Instruction::Shl || Opcode == Instruction::Shr)
 | |
|     return getShiftTy(ReqTy, Opcode, C1, C2);
 | |
|   // Check the operands for consistency first
 | |
|   assert((Opcode >= Instruction::BinaryOpsBegin &&
 | |
|           Opcode < Instruction::BinaryOpsEnd) &&
 | |
|          "Invalid opcode in binary constant expression");
 | |
|   assert(C1->getType() == C2->getType() &&
 | |
|          "Operand types in binary constant expression should match");
 | |
| 
 | |
|   if (ReqTy == C1->getType())
 | |
|     if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
 | |
|       return FC;          // Fold a few common cases...
 | |
| 
 | |
|   std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
 | |
|   ExprMapKeyType Key = std::make_pair(Opcode, argVec);
 | |
|   return ExprConstants.getOrCreate(ReqTy, Key);
 | |
| }
 | |
| 
 | |
| /// getShiftTy - Return a shift left or shift right constant expr
 | |
| Constant *ConstantExpr::getShiftTy(const Type *ReqTy, unsigned Opcode,
 | |
|                                    Constant *C1, Constant *C2) {
 | |
|   // Check the operands for consistency first
 | |
|   assert((Opcode == Instruction::Shl ||
 | |
|           Opcode == Instruction::Shr) &&
 | |
|          "Invalid opcode in binary constant expression");
 | |
|   assert(C1->getType()->isIntegral() && C2->getType() == Type::UByteTy &&
 | |
|          "Invalid operand types for Shift constant expr!");
 | |
| 
 | |
|   if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
 | |
|     return FC;          // Fold a few common cases...
 | |
| 
 | |
|   // Look up the constant in the table first to ensure uniqueness
 | |
|   std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
 | |
|   ExprMapKeyType Key = std::make_pair(Opcode, argVec);
 | |
|   return ExprConstants.getOrCreate(ReqTy, Key);
 | |
| }
 | |
| 
 | |
| 
 | |
| Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C,
 | |
|                                         const std::vector<Constant*> &IdxList) {
 | |
|   assert(GetElementPtrInst::getIndexedType(C->getType(),
 | |
|                    std::vector<Value*>(IdxList.begin(), IdxList.end()), true) &&
 | |
|          "GEP indices invalid!");
 | |
| 
 | |
|   if (Constant *FC = ConstantFoldGetElementPtr(C, IdxList))
 | |
|     return FC;          // Fold a few common cases...
 | |
| 
 | |
|   assert(isa<PointerType>(C->getType()) &&
 | |
|          "Non-pointer type for constant GetElementPtr expression");
 | |
|   // Look up the constant in the table first to ensure uniqueness
 | |
|   std::vector<Constant*> argVec(1, C);
 | |
|   argVec.insert(argVec.end(), IdxList.begin(), IdxList.end());
 | |
|   const ExprMapKeyType &Key = std::make_pair(Instruction::GetElementPtr,argVec);
 | |
|   return ExprConstants.getOrCreate(ReqTy, Key);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getGetElementPtr(Constant *C,
 | |
|                                          const std::vector<Constant*> &IdxList){
 | |
|   // Get the result type of the getelementptr!
 | |
|   std::vector<Value*> VIdxList(IdxList.begin(), IdxList.end());
 | |
| 
 | |
|   const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), VIdxList,
 | |
|                                                      true);
 | |
|   assert(Ty && "GEP indices invalid!");
 | |
|   return getGetElementPtrTy(PointerType::get(Ty), C, IdxList);
 | |
| }
 | |
| 
 | |
| 
 | |
| // destroyConstant - Remove the constant from the constant table...
 | |
| //
 | |
| void ConstantExpr::destroyConstant() {
 | |
|   ExprConstants.remove(this);
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| const char *ConstantExpr::getOpcodeName() const {
 | |
|   return Instruction::getOpcodeName(getOpcode());
 | |
| }
 | |
| 
 | |
| unsigned Constant::mutateReferences(Value *OldV, Value *NewV) {
 | |
|   // Uses of constant pointer refs are global values, not constants!
 | |
|   if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(this)) {
 | |
|     GlobalValue *NewGV = cast<GlobalValue>(NewV);
 | |
|     GlobalValue *OldGV = CPR->getValue();
 | |
| 
 | |
|     assert(OldGV == OldV && "Cannot mutate old value if I'm not using it!");
 | |
|     Operands[0] = NewGV;
 | |
|     OldGV->getParent()->mutateConstantPointerRef(OldGV, NewGV);
 | |
|     return 1;
 | |
|   } else {
 | |
|     Constant *NewC = cast<Constant>(NewV);
 | |
|     unsigned NumReplaced = 0;
 | |
|     for (unsigned i = 0, N = getNumOperands(); i != N; ++i)
 | |
|       if (Operands[i] == OldV) {
 | |
|         ++NumReplaced;
 | |
|         Operands[i] = NewC;
 | |
|       }
 | |
|     return NumReplaced;
 | |
|   }
 | |
| }
 | |
| 
 |